Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T07:06:37.598Z Has data issue: false hasContentIssue false

28 - Central nervous system findings in pre-eclampsia and eclampsia

from Part II - Clinical Practice

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Introduction

Eclampsia is one of the most severe forms of central nervous system (CNS) involvement in the pre-eclampsia syndrome. Although pre-eclampsia has been known to be a multisystem disorder for over 100 years, much of the pathophysiology, including its molecular manifestations, has only come to light in the past 20 years. This is exemplified by the fact that the prominent causative role of endothelial activation has only been recently appreciated (Redman et al., 1999; Roberts and Redman, 1993; Roberts et al., 1989; Taylor and Roberts, 1999). Currently, the CNS findings in eclampsia can be grouped in two ways: (1) Cerebral blood flow changes associated with gestational hypertension resulting in either hyperperfusion or hypoperfusion, either of which can cause edema and ischemia. (2) Characteristic anatomical lesions documented with either computed-tomographic (CT) scanning or magnetic resonance imaging (MRI) with diffusion-weighted techniques (Brown et al., 1988; Cunningham and Twickler, 2000; Dahmus et al., 1992; Digre et al., 1993; Hauser et al., 1988; Morriss et al., 1997; Port et al., 1998; Schwartz et al., 1992, 2000; Zeeman et al., 2004). These groupings are obviously artificial and there is a large amount of overlap. Specifically, endothelial injury and subsequent leakage of plasma from the intravascular compartment may be associated with manifestations of both functional flow abnormalities and discreet anatomical lesions. In our current understanding of the vascular involvement of the brain in eclampsia, we assume that the cerebral blood vessels are directly involved – in a similar fashion to the peripheral circulation in pre-eclampsia (Hankins et al., 1984).

Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 424 - 436
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaslid, R., Lundar, T., Lindegaard, K. F. and Nornes, H. (1986). Estimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler recordings. In Intracranial Pressure VI, ed. Miller, J. D., Teasdale, G. M., Rowan, J. O., Galbraith, S. I. and Mendelow, A. D.. Berlin: Springer-Verlag, pp. 226–9.CrossRefGoogle Scholar
Belfort, M. A. and Moise, K. J. Jr. (1992). Effect of magnesium sulfate on maternal brain blood flow in preeclampsia: a randomized placebo-controlled study. Am. J. Obstet. Gynecol., 167, 661–6.CrossRefGoogle ScholarPubMed
Belfort, M. A., Grunewald, C., Saade, G. R., Varner, M. and Nisell, H. (1999a). Preeclampsia may cause both overperfusion and underperfusion of the brain. Acta Obstet. Gynecol. Scand., 78, 586–91.CrossRefGoogle Scholar
Belfort, M. A., Giannina, G. and Herd, J. A. (1999b). Transcranial and orbital Doppler ultrasound in normal pregnancy and preeclampsia. Clin. Obstet. Gynecol., 42, 479–506.CrossRefGoogle Scholar
Belfort, M. A., Tooke-Miller, C., Varner, M., et al. (2000). Evaluation of a non-invasive transcranial Doppler and blood pressure method for the assessment of cerebral perfusion pressure in pregnant women. Hypertens. Pregn., 19(3), 331–40.CrossRefGoogle Scholar
Belfort, M. A., Tooke-Miller, C., Allen, J. C. Jr., et al. (2001). Pregnant women with chronic hypertension and superimposed pre-eclampsia have high cerebral perfusion pressure. Br. J. Obstet. Gynaecol., 108, 1141–7.Google ScholarPubMed
Belfort, M. A., Varner, M. W., Dizon-Townson, D. S., Grunewald, C. and Nisell, H. (2002). Cerebral perfusion pressure, and not cerebral blood flow, may be the critical determinant of intracranial injury in preeclampsia: a new hypothesis. Am. J. Obstet. Gynecol., 187, 626–34.CrossRefGoogle Scholar
Belfort, M. A., Anthony, J., Saade, G. R. and Allen, J. C. (2003). A comparison of magnesium sulfate and nimodipine for the prevention of eclampsia. N. Engl. J. Med., 348, 304–11.CrossRefGoogle ScholarPubMed
Boemi, G., Bruno, M. T., Ferrera, G., et al. (1996). Maternal renal and interlobar arteries waveforms evaluation with color Doppler ultrasound in pregnancy-induced hypertension. Fetal Diagn. Ther., 11, 132–6.CrossRefGoogle ScholarPubMed
Brown, C. E., Purdy, P. and Cunningham, F. G. (1988). Head computed tomographic scans in women with eclampsia. Am. J. Obstet. Gynecol., 159, 915–20.CrossRefGoogle ScholarPubMed
Burns, P. N. (1988). Hemodynamics; Clinical Applications of Doppler Ultrasound. New York, Raven Press, pp. 46–75.Google Scholar
Chester, E. M., Agamanolis, D. P., Banker, B. Q. and Victor, M. (1978). Hypertensive encephalopathy: a clinicopathologic study of 20 cases. Neurology, 28, 928–39.CrossRefGoogle ScholarPubMed
Cunningham, F. G. and Twickler, D. (2000). Cerebral edema complicating eclampsia. Am. J. Obstet. Gynecol., 182, 94–100.CrossRefGoogle ScholarPubMed
Dahmus, M. A., Barton, J. R. and Sibai, B. M. (1992). Cerebral imaging in eclampsia; magnetic resonance imaging versus computed tomography. Am. J. Obstet. Gynecol., 167, 935–41.CrossRefGoogle ScholarPubMed
Digre, K. B., Varner, M. W., Osborn, A. G. and Crawford, S. (1993). Cranial magnetic resonance imaging in severe preeclampsia vs eclampsia. Arch. Neurol., 50, 3999–406.CrossRefGoogle ScholarPubMed
Duley, L. (1995). Which anticonvulsant for women with eclampsia? Evidence from the collaborative eclampsia trial. Lancet, 345, 1455–63.Google Scholar
Duley, L. (2002). Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The magpie trial: a randomized placebo-controlled trial. Lancet, 359, 1877–90.Google Scholar
Enzmann, D. R., Marks, M. P. and Pelc, N. J. (1993). Comparison of cerebral artery blood flow measurements with gated cine and ungated phase-contrast techniques. J. Magn. Res. Imag., 3, 705–12.CrossRefGoogle ScholarPubMed
Fleischer, A., Schulman, H., Farmakides, G., et al. (1986). Uterine artery Doppler velocimetry in pregnant women with hypertension. Am. J. Obstet. Gynecol., 154, 806–13.CrossRefGoogle ScholarPubMed
Giller, C. A., Hatab, M. R. and Giller, A. M. (1998). Estimation of vessel flow and diameter during cerebral vasospasm using transcranial Doppler indices. Neurosurgery, 42, 1076–82.CrossRefGoogle ScholarPubMed
Goldman, R. S. and Finkbeiner, S. M. (1988). Therapeutic use of magnesium sulfate in selected cases of cerebral ischemia and seizure. N. Engl. J. Med., 319, 1224–5.Google ScholarPubMed
Govan, A. (1961). The pathogenesis of eclamptic lesions. J. Pathol. Microbiol., 24, 561–75.Google ScholarPubMed
Hackett, P. H., Yarnell, P. R., Hill, R., Reynard, K., Heit, J. and McCormick, J. (1998). High-altitude cerebral edema evaluated with magnetic resonance imaging. J. Am. Med. Ass., 280, 1920–5.CrossRefGoogle ScholarPubMed
Hallak, M., Irtenkauf, S. M. and Cotton, D. B. (1996). Effect of magnesium sulfate on excitatory amino acid receptors in the rat brain. I. N-methyl-D-aspartate receptor channel complex. Am. J. Obstet. Gynecol., 175(3, Pt. 1), 575–81.CrossRefGoogle Scholar
Hankins, G. D., Wendel, G. D. Jr., Cunningham, F. G. and Leveno, K. J. (1984). Longitudinal evaluation of hemodynamic changes in eclampsia. Am. J. Obstet. Gynecol., 150(5, Pt. 1), 506–12.CrossRefGoogle ScholarPubMed
Harrington, K., Carpenter, R. G., Goldfrad, C. and Campbell, S. (1977). Transvaginal Doppler ultrasound of the uteroplacental circulation in the early prediction of pre-eclampsia and intrauterine growth retardation. Br. J. Obstet. Gynaecol., 104, 674–81.CrossRefGoogle Scholar
Harrington, K., Cooper, D., Lees, C., Hecher, K. and Campbell, S. (1996). Doppler ultrasound of the uterine arteries: the importance of bilateral notching in the prediction of pre-eclampsia, placental abruption or delivery of a small-for-gestational-age baby. Ultrasound Obstet. Gynecol., 7, 182–8.CrossRefGoogle ScholarPubMed
Hatab, M. R., Giller, C. A. and Clarke, G. D. (1997). Evaluation of cerebral arterial flow with transcranial Doppler ultrasound: theoretical development and phantom studies. Ultrasound Med. Biol., 23, 1025–31.CrossRefGoogle ScholarPubMed
Hauser, R. A., Lacey, D. M. and Knight, M. R. (1988). Hypertensive encephalopathy: magnetic resonance imaging demonstration of reversible cortical and white matter lesions. Arch. Neurol., 45, 1078–83.CrossRefGoogle ScholarPubMed
Hundley, W. G., Hong, F. L., Hillis, L. D., et al. (1995). Quantitation of cardiac output with velocity-encoded, phase-difference magnetic resonance imaging. Am. J. Cardiol., 75, 1250–5.CrossRefGoogle ScholarPubMed
Hundley, W. G., Lange, R. A., Clarke, G. D., et al. (1996). Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation, 93, 1502–8.CrossRefGoogle ScholarPubMed
Ikeda, T. and Nori, N. (1990). Assessment of cerebral hemodynamics in pregnant women by internal carotid artery pulsed Doppler velocimetry. Am. J. Obstet. Gynecol., 163, 494–8.CrossRefGoogle ScholarPubMed
Ito, I., Sasaki, T., Inagawa, S., Utsu, M. and Bun, T. (1995). MR angiography of cerebral vasospasm in preeclampsia. Am. J. Neuroradiol., 16, 1344–6.Google ScholarPubMed
Kanayama, N., Nakajima, A., Maehara, K., et al. (1993). Magnetic resonance imaging angiography in a case of eclampsia. Gynecol. Obstet. Invest., 36, 56–8.CrossRefGoogle Scholar
Kobayashi, T., Tokunaga, N., Isoda, H., Kanayama, N. and Terao, T. (2001). Vasospasms are characteristic in cases with eclampsia/preeclampsia and HELLP syndrome: proposal of an angiospastic syndrome of pregnancy. Semin. Thromb. Hemost., 27, 131–5.CrossRefGoogle ScholarPubMed
Kublickas, M., Lunell, N. O., Nisell, H. and Westgren, M. (1996). Maternal renal artery blood flow velocimetry in normal and hypertensive pregnancies. Acta Obstet. Gynecol. Scand., 76, 715–19.CrossRefGoogle Scholar
Levine, A. B., Lockwood, C. J., Chitkara, U. and Berkowitz, R. L. (1992). Maternal renal artery Doppler velocimetry in normotensive pregnancies and pregnancies complicated by hypertensive disorders. Obstet. Gynecol., 79, 264–7.Google ScholarPubMed
Liberati, M., Rotmensch, S., Zannoli, P. and Bellati, U. (1994). Doppler velocimetry of maternal renal interlobar arteries in pregnancy-induced hypertension. Int. J. Gynecol. Obstet., 44, 129–33.CrossRefGoogle ScholarPubMed
Lucas, M. J., Leveno, K. J. and Cunningham, F. G. (1995). A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N. Engl. J. Med., 333, 201–5.CrossRefGoogle ScholarPubMed
Marks, M. P., Norbert, J. P., Ross, M. R. and Enzmann, D. R. (1992). Determination of cerebral blood flow with a phase-contrast cine MR imaging technique: evaluation of normal subjects and patients with arteriovenous malformations. Radiology, 182, 477–81.CrossRefGoogle ScholarPubMed
Morriss, M. C., Twickler, D. M., Hatab, M. R., Clarke, G. D., Peshock, M. R. and Cunningham, F. G. (1997). Cerebral blood flow and cranial magnetic resonance imaging in eclampsia and severe preeclampsia. Obstet. Gynecol., 89, 561–8.Google ScholarPubMed
Port, J. D. and Beauchamp, N. J. Jr. (1998). Reversible intracerebral pathologic entities mediated by vascular autoregulatory dysfunction. RadioGraphics, 18, 353–67.CrossRefGoogle ScholarPubMed
Redman, C. W., Sacks, G. P. and Sargent, I. L. (1999). Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol., 180, 499–506.CrossRefGoogle Scholar
Roberts, J. M. and Redman, C. W. (1993). Preeclampsia: more than pregnancy-induced hypertension. Lancet, 341, 1447–51.CrossRefGoogle ScholarPubMed
Roberts, J. M., Taylor, R. N., Musci, T. J., Rogers, G. M., Hubel, C. A. and McLaughlin, M. K. (1989). Preeclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol., 161, 1200–4.CrossRefGoogle Scholar
Sadeh, M. (1989). Action of magnesium sulfate in the treatment of preeclampsia–eclampsia. Stroke, 20, 1273–5.CrossRefGoogle ScholarPubMed
Schobel, H. P., Fischer, T., Heuszer, K., Geiger, H. and Schmieder, R. E. (1996). Preeclampsia – a state of sympathetic overactivity. N. Engl. J. Med., 335(20), 1480–5.CrossRefGoogle ScholarPubMed
Schwartz, R. B., Jones, K. M., Kolina, P., et al. (1992). Hypertensive encephalopathy; findings on CT, MR imaging and SPECT imaging in 14 cases. Am. J. Radiogr., 159, 379–83.Google ScholarPubMed
Schwartz, R. B., Feske, S. K., Polak, J. F., et al. (2000). Preeclampsia–eclampsia; clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology, 217, 371–6.CrossRefGoogle ScholarPubMed
Serra-Serra, V., Chandran, R., Kyle, P. M. and Redman, C. W. G. (1995). Cerebral hemodynamic changes during severe orthostatic hypotension in pregnancy. Acta Obstet. Gynecol. Scand., 74, 656–9.CrossRefGoogle ScholarPubMed
Sheehan, J. L. and Lynch, J. B. (1973). Pathology of Toxemia of Pregnancy. New York, NY: Churchill Livingstone.Google Scholar
Tajima, Y., Isonishi, K., Kashiwaba, T. and Tashiro, K. (1999). Two similar cases of encephalopathy, possibly a reversible posterior leukoencephalopathy syndrome: serial findings of magnetic resonance imaging, SPECT and angiography. Intern. Med., 38, 54–8.CrossRefGoogle ScholarPubMed
Taylor, K. J. W. (1988). Clinical Applications of Carotid Doppler Ultrasound. Clinical Applications of Doppler Ultrasound. New York, Raven Press, pp. 120–61.Google Scholar
Taylor, R. N. and Roberts, J. M. (1999). Endothelial cell dysfunction (Chap. 12). In Chesley's Hypertensive Disorders in Pregnancy, 2nd edn, ed. Lindheimer, M. D., Roberts, J. M. and Cunningham, F. G.. Stamford, CT: Appleton & Lange, pp. 395–429.Google Scholar
Williams, K. and Galerneau, F. (2003). Maternal transcranial Doppler in pre-eclampsia and eclampsia. Ultrasound Obstet. Gynecol., 21, 507–13.CrossRefGoogle ScholarPubMed
Williams, K. and McLean, C. (1994). Transcranial assessment of maternal cerebral blood flow velocity in normal vs hypertensive states variations with maternal posture. J. Reprod. Med., 39, 685–8.Google ScholarPubMed
Williams, K. P. and McLean, C. (1993). Peripartum changes in maternal cerebral blood flow velocity in normotensive and preeclamptic patients. Obstet. Gynecol., 82, 334–7.Google ScholarPubMed
Zeeman, G. G., Hatab, M. and Twickler, D. M. (2002). Magnesium sulfate and cerebral blood flow in severe preeclampsia by MR evaluation. Am. J. Obstet. Gynecol., 187, S211.Google Scholar
Zeeman, G. G., Hatab, M. and Twickler, D. M. (2003). Maternal cerebral blood flow changes in pregnancy. Am. J. Obstet. Gynecol., 189(4), 968–72.CrossRefGoogle ScholarPubMed
Zeeman, G. G., Fleckenstein, J. L., Twickler, D. M. and Cunningham, F. G. (2004a). Cerebral infarction in eclampsia. Am. J. Obstet. Gynecol., 190, 714–20.CrossRefGoogle Scholar
Zeeman, G., Hatab, M. and Twickler, D. (2004b). Increased large vessel cerebral blood flow in severe preeclampsia by magnetic resonance evaluation. Am. J. Obstet. Gynecol., 191, 2148–53.CrossRefGoogle Scholar
Zunker, P., Happe, S., Georgiadis, A. L., et al. (2001). Maternal cerebral hemodynamics in pregnancy-related hypertension. A prospective transcranial Doppler study. Ultrasound Obstet. Gynecol., 16L, 179–87.Google Scholar
Zunker, P., Georgiadis, A. L., Czech, N., Golombeck, K., Brossmann, J. and Deuschl, G. (2003). Impaired cerebral glucose metabolism in eclampsia: a new finding in two cases. Fetal Diagn. Ther., 18(1), 41–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×