Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T13:10:01.698Z Has data issue: false hasContentIssue false

1 - Semiconducting materials

Published online by Cambridge University Press:  10 September 2009

D. B. Holt
Affiliation:
Imperial College of Science, Technology and Medicine, London
B. G. Yacobi
Affiliation:
University of Toronto
Get access

Summary

Materials development and crystal growth techniques

This chapter outlines the nature and importance of semiconductors. The industrially important semiconductors are tetrahedrally coordinated, diamond and related structure IVB, III-V and related materials. The sp3 tetrahedral covalent bonding is stiff and brittle, unlike the metallic bond, which merely requires closest packing to minimize the energy. The atomic core structures of extended defects in semiconductors depend on this stiff, brittle bonding and in turn give rise to the electrical and optical properties of defects.

The semiconductors' closely related adamantine (diamond-like) crystal structures and energy band diagrams are outlined. There are a large number of families of such semiconducting compounds and alloys, some of which are non-crystalline. However, only a few have been developed to the highest levels of purity and perfection so that single crystal wafers are available. Instead, with modern epitaxial growth techniques, thin films, quantum wells, wires and dots and artificial superlattices can be produced. This can be done with many semiconductor materials, including alloys of continuously variable composition, with the necessary quality on one of the few available types of wafer. These epitaxial materials have ‘engineered’ energy band structures and hence electronic and optoelectronic properties and can be designed for incorporation into devices to meet new needs. It is largely to this field that materials development has moved, except for the occasional development of an additional material like GaN.

The chapter closes with a brief account of the way that competitive materials development, responding to economic demand, determines which materials enter production.

Type
Chapter
Information
Extended Defects in Semiconductors
Electronic Properties, Device Effects and Structures
, pp. 1 - 72
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alferov, Zh. I., Andreev, V. M., Garbuzov, D. Z.et al. (1971). Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Soviet Physics Semiconductors, 4, 1573–75.Google Scholar
Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Physical Review, 109, 1492–505.CrossRefGoogle Scholar
Aulich, H. and Schulze, F.-W. (2002). Silicon supply for solar PV. Renewable Energy World, 5, 49–59.Google Scholar
Aven, M. and Prener, J. S. (1967). Physics and Chemistry of II-VI Compounds. Amsterdam: North-Holland.Google Scholar
Austin, I. G., Goodman, C. H. L. and Pengelly, A. E. S. (1956). New semiconductors with the chalcopyrite structure. Journal of the Electrochemical Society, 103, 609–10.CrossRefGoogle Scholar
Bachmann, K. J. (1995). The Materials Science of Microelectronics, Chapter 6. Weinheim: VCH.Google Scholar
Bergh, A. A. and Dean, P. J. (1976). Light Emitting Diodes, Oxford: Clarendon Press.Google Scholar
Blakemore, J. S. (1982). Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics, 53, R123–R181.CrossRefGoogle Scholar
Blakemore, J. S. (1985). Solid State Physics, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Blakeslee, A. E. (1971). Vapor growth of a semiconductor superlattice. Journal of the Electrochemical Society, 118, 1459–63.CrossRefGoogle Scholar
Borchers, H. and Maier, R. G. (1963). Uber die ternare halbleitende kristallart ZnSnAs2 und den aufbau des driestoffsystems Zinc – Zinn – Arsen. Metall, 17, 775–80; Quasibinaare zustandsdiagramme der halbleitenden kristallart InAs mit ZnSnAs2, ZnGeAs2 und CdGeAs2. Metall, 17, 1006–10.Google Scholar
Brice, J. C. (1986). Crystal Growth Processes. New York: Wiley.Google Scholar
Buerger, M. J. (1978). Elementary Crystallography. An Introduction to the Fundamental Geometrical Features of Crystals. Cambridge, Mass.: MIT Press.Google Scholar
Capasso, F. and Margaritondo, G. (eds.) (1987). Heterojunction Band Discontinuities: Physics and Device Applications. Amsterdam: North-Holland.Google Scholar
Capasso, F., Paiella, R., Martini, R.et al. (2002). Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth and far-infrared emission. IEEE Journal of Quantum Electronics, 38, 511–32.CrossRefGoogle Scholar
Chang, L. L. and Esaki, L. (1979). Semiconductor superlattices by MBE and their characterizaton. Progress in Crystal Growth and Characterization, 2, 3–14.CrossRefGoogle Scholar
Chang, L. L. and Giessen, B. C. (eds.) (1985). Synthetic Modulated Structures. New York: Academic Press.Google Scholar
Chelikowsky, J. R. and Cohen, M. L. (1976). Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Physical Review, B 14, 556–82.CrossRefGoogle Scholar
Cho, A. Y. (1995). Molecular beam epitaxy from research to manufacturing. MRS Bulletin, 20(4), 21–8.CrossRefGoogle Scholar
Cho, A. Y., Sivco, D. L., Ng, H. M.et al. (2001). Quantum devices, MBE technology for the 21st century. Journal of Crystal Growth, 227–228, 1–7.CrossRefGoogle Scholar
Dash, W. C. (1958). The growth of silicon crystals free from dislocations. In Growth and Perfection of Crystals, eds. Doremus, R. H., Roberts, B. W. and Turnbull, D. (New York: Wiley), pp. 361–85.Google Scholar
Davies, G. J. and Williams, R. H. (eds.) (1994). Semiconductor Growth, Surfaces and Interfaces. London: Chapman & Hall.Google Scholar
Dingle, R. (1976). Optical properties of semiconductor superlattices. In Physics of Semiconductors ; Proc. 13th Internat. Conf. Rome, ed. Fumi, F.G. (Amsterdam: North-Holland), pp. 965–74.Google Scholar
Dingle, R. (ed.) (1987). Applications of multiquantum wells, selective doping and superlattices. In Semiconductors and Semimetals, Vol. 24. New York: Academic Press.Google Scholar
Dismukes, J. P. and Ekstrom, L. (1965). Homogenous solidification of Ge-Si alloys. Transactions of the Metallurgical Society of AIME, 233, 672–80.Google Scholar
Esaki, L. and Tsu, R. (1970). Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Development, 14, 61–5.CrossRefGoogle Scholar
Faist, J., Capasso, F., Sivco, D. L.et al. (1994). Quantum cascade laser. Science, 264, 553–6.CrossRefGoogle ScholarPubMed
Finkelnburg, W. (1950). Atomic Physics. New York: McGraw-Hill.Google Scholar
Goodman, C. H. L. (1957). A new group of compounds with diamond-type (chalcopyrite) structure. Nature, 179, 828–9.CrossRefGoogle Scholar
Goodman, C. H. L. and Douglas, R. W. (1954). New semiconducting compounds of diamond type structure. Physica, 20, 1107–9.CrossRefGoogle Scholar
Goryunova, N. A. and Obuchov, A. P. (1951). Zhur. Tekh. Fiz., 21, 237.
Goryunova, N. A. (1965). The Chemistry of Diamond Like Semiconductors. Cambridge: The MIT Press.Google Scholar
Goryunova, N. A., Kesamanly, F. P. and Nasledov, D. N. (1968). Phenomena in solid solutions. In Semiconductors and Semimetals, Vol. 4, Physics of III-V Compounds, eds. Willardson, R. K. and Beer, A. C. (New York: Academic Press), pp. 413–58.Google Scholar
Hayashi, I., Panish, M. B., Foy, P. W. and Sumski, S. (1970). Junction lasers which operate continuously at room temperature. Applied Physics Letters, 17, 109–11.CrossRefGoogle Scholar
Herman, M. A. and Sitter, H. (1989). Molecular Beam Epitaxy: Fundamentals and Current Status. New York: Springer-Verlag.CrossRefGoogle Scholar
Holt, D. B. (1966). Misfit Dislocations in Semiconductors. Journal of Physics and Chemistry of Solids, 27, 280–95.CrossRefGoogle Scholar
Huff, H. R. (2002). An electronics division retrospective (1952–2002) and future opportunities in the twenty-first century. Journal of the Electrochemical Society, 149, S35–S58.CrossRefGoogle Scholar
Hume-Rothery, W. and Raynor, G. V. (1954). The Structure of Metals and Alloys. 3rd edn. London: Institute of Metals.Google Scholar
Hurle, D. T. J. and Rudolph, P. (2004). A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. Journal of Crystal Growth, 264, 550–64.CrossRefGoogle Scholar
Ioffe, A. F. (1960). Physics of Semiconductors. London: Infosearch.Google Scholar
Ioffe, A. F. and Regel, A. R. (1960). Non-crystalline, amorphous and liquid electronic semiconductors. Progress in Semiconductors, 4, 237–91.Google Scholar
Jain, S. C. (2000). Compound Semiconductor Strained Layers and Devices. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
Jaros, M. (1989). Physics and Applications of Semiconductor Microstructures. Oxford: Clarendon Press.Google Scholar
Kazarinov, R. F. and Suris, R. A. (1971). Amplification of electromagnetic waves in a semiconductor superlattice. Soviet Physics Semiconductors, 5, 707–9.Google Scholar
Kelly, A. and Groves, G. W. (1970). Crystallography and Crystal Defects. London: Longman.Google Scholar
Kittel, C. (1996). Introduction to Solid State Physics, 7th edn. New York: Wiley.Google Scholar
Kleinman, W. and Phillips, J. C. (1960). Crystal potential and energy bands of semiconductors. III self-consistent calculations for silicon. Physical Review, 118, 1153–67.CrossRefGoogle Scholar
Kolomiets, B. T. (1964). Vitreous semiconductors I. Physica Status Solidi, 7, 359–72; and Vitreous semiconductors II. Physica Status Solidi, 7, 713–31.CrossRefGoogle Scholar
Kroemer, H. (1957). Quasi-electric and quasi-magnetic fields in nonuniform semiconductors. RCA Review, 18, 332–42.Google Scholar
Kroemer, H. (1963). A proposed class of heterojunction injection laser. Proceedings of the IEEE, 51, 1782–3.CrossRefGoogle Scholar
Madelung, O. (1964). Physics of III-V Compounds. New York: Wiley.Google Scholar
Mahajan, S. (2004). The role of materials science in microelectronics: past, present and future. Progress in Materials Science, 49, 487–509.CrossRefGoogle Scholar
Mahajan, S. and Sree Harsha, K. S. (1999). Principles of Growth and Processing of Semiconductors. New York: McGraw-Hill.Google Scholar
Matthews, J. M. (ed.) (1975). Epitaxial Growth, Vols A and B. New York: Academic Press.Google Scholar
Miller, A., MacKinnon, A. and Weaire, D. (1981). Beyond the binaries – the chalcopyrite and related semiconducting compounds. Solis State Physics, 36, 119–75.CrossRefGoogle Scholar
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, Vol. 38, No. 8, April 19.Google Scholar
Mooser, E. and Pearson, W. B. (1960). The chemical bond in semiconductors. Progress in Semiconductors, 5, 103–39.Google Scholar
Mott, N. F. (1969). Conduction in non-crystalline materials III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philosophical Magazine, 19, 835–52.CrossRefGoogle Scholar
Mott, N. F. and Davis, E. A. (1979). Electronic Processes in Non-crystalline Materials. 2nd edn. Oxford: Clarendon Press.Google Scholar
Mullin, J. B. (2004). Progress in the melt growth of III–V compounds. Journal of Crystal Growth, 264, 578–92.CrossRefGoogle Scholar
Nakamura, S. (1994). Growth of InxGa(1-x)N compound semiconductors and high power InGaN/AlGaN double heterostructure violet-light-emitting diodes. Microelectronics Journal, 25, 651–9.CrossRefGoogle Scholar
Nakamura, S. (1998). III-V nitride-based short-wavelength LEDs and LDs. In Group III Nitride Semiconductor Compounds, ed. Gil, B. (Oxford: Clarendon Press), pp. 391–416.Google Scholar
Pamplin, B. R. (ed.) (1980). Crystal Growth. 2nd edn. Oxford: Pergamon.Google Scholar
Parker, E. H. C. (ed.) (1985). The Technology and Physics of Molecular Beam Epitaxy. New York: Plenum Press.CrossRefGoogle Scholar
Parthe, E. (1966). Crystal Chemistry of Tetrahedral Structures. New York: Gordon & Breach.Google Scholar
Pashley, D. W. (1991). The epitaxy of metals. In Processing of Metals and Alloys, ed. Cahn, R. W. Materials Science and Technology: A Comprehensive Treatment, Vol. 15 (Weinheim: VCH), pp. 290–328.Google Scholar
Pfann, W.G. (1952), Principles of zone melting. Journal of Metals, 4, 747–53.Google Scholar
Phillips, F. C. (1971). An Introduction to Crystallography. 4th edn. London: Longman.Google Scholar
Phillips, J. C. (1973). Bonds and Bands in Semiconductors. New York: Academic Press.Google Scholar
Rees, H. D. and Gray, K. W. (1976). Indium phosphide: A semiconductor for microwave devices. IEEE Journal of Solid State and Electron Devices, 1, 1–8.CrossRefGoogle Scholar
Reid, M. (ed.) (1992). Nanostructural systems. In Semiconductors and Semimetals, Vol. 35. New York: Academic Press.Google Scholar
Shay, J. L. and Wernick, J. H. (1975). Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications. Oxford: Pergamon.Google Scholar
Shockley, W. (1950). Electrons and Holes in Semiconductors. Princeton: van Nostrand.Google Scholar
Spear, W. E. and Comber, L. G. (1975). Substitutional doping of amorphous silicon. Solid State Communications, 17, 1193–6.CrossRefGoogle Scholar
Stormer, H. L., Dingle, R., Gossard, A. C., Wiegmann, W. and Logan, R. A. (1978). Electronic properties of modulation-doped GaAs-AlxGa(1-x)As superlattices. In Physics of Semiconductors 1978. Proceed. 14th Internat. Conf. Phys. Semicond. Edinburgh. Conf. Series No. 43 (Bristol: Inst. Phys., 1979), pp. 557–60.Google Scholar
Stradling, R. A. and Klipstein, P. C. (eds.) (1990). Growth and Characterization of Semiconductors. New York: Adam Hilger.Google Scholar
Stringfellow, G. B. (1989). Organometallic Vapor-Phase Epitaxy: Theory and Practice. Boston: Academic Press.Google Scholar
Sze, S. M. (1981). Physics of Semiconductor Devices. New York: Wiley.Google Scholar
Sze, S. M. (1985). Semiconductor Devices. Physics and Technology. New York: Wiley.Google Scholar
Verma, A. R. and Krishna, P. (1966). Polymorphism and Polytypism in Crystals. New York: Wiley.Google Scholar
Vurgaftman, I., Meyer, J. R. and Ram-Mohan, L. R. (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89, 5815–75.CrossRefGoogle Scholar
Wang, C. C. and Alexander, B. H. (1955). Hardness of germanium-silicon alloys at room temperature. Acta Metallurgica, 3, 515–16.CrossRefGoogle Scholar
Welker, H. (1952). Uber neue halbleitende verbindungen. Zeitschrift fur Naturforschung A: A Journal of Physical Sciences, 7, 744–9.Google Scholar
Welker, H. and Weiss, H. (1956). Group III – group V compounds. In Solid State Physics, eds. Seitz, F. and Turnbull, D., Vol. 3, pp. 1–78.Google Scholar
Wilkes, P. (1973). Solid State Theory in Metallurgy. Cambridge: Cambridge University Press.Google Scholar
Woolley, J. C. (1962). Solid solution of III-V compounds. In Compound Semiconductors, Vol. 1. Preparation of III-V Compounds, eds. Willardson, R. K. and Goering, H. L. (New York: Reinhold), pp. 3–20.Google Scholar
Ziman, J. M. (1972). Principles of the Theory of Solids. 2nd edn. (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Mayer, J. W. and Lau, S. S. (1990). Electronic Materials Science: For Integrated Circuits in Si and GaAs. New York: Macmillan Publishing.Google Scholar
Pierret, R. F. and Neudeck, G. W. (eds.) (1989). Modular Series on Solid State Devices. Reading, Mass.: Addison-Wesley.Google Scholar
Seeger, K. (1999). Semiconductor Physics: An Introduction. New York: Springer-Verlag.CrossRefGoogle Scholar
Streetman, B. G. (1995). Solid State Electronic Devices. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
Sze, S. M. (1981). Physics of Semiconductor Devices. New York: Wiley.Google Scholar
Wilson, J. and Hawkes, J. F. B. (1998). Optoelectronics: An Introduction. Englewood Cliffs, N.J: Prentice-Hall.Google Scholar
Yu, P. Y. and Cardona, M. (1996). Fundamentals of Semiconductors: Physics and Materials Properties. New York: Springer.CrossRefGoogle Scholar
Brice, J. C. (1986). Crystal Growth Processes. New York: Wiley.Google Scholar
Davies, G. J. and Williams, R. H. (eds.) (1994). Semiconductor Growth, Surfaces and Interfaces. London: Chapman & Hall.Google Scholar
Herman, M. A. and Sitter, H. (1989). Molecular Beam Epitaxy: Fundamentals and Current Status. New York: Springer-Verlag.CrossRefGoogle Scholar
Lewis, B. and Anderson, J. C. (1978). Nucleation and Growth of Thin Films. New York: Academic Press.Google Scholar
Pamplin, B. R. (1975). Crystal Growth, International Series of Monographs in The Science of the Solid State, Volume 6. New York: Pergamon Press.Google Scholar
Parker, E. H. C. (ed.) (1985). The Technology and Physics of Molecular Beam Epitaxy. New York: Plenum Press.CrossRefGoogle Scholar
Stradling, R. A. and Klipstein, P. C. (eds.) (1990). Growth and Characterization of Semiconductors. New York: Adam Hilger.Google Scholar
Stringfellow, G. B. (1989). Organometallic Vapor-Phase Epitaxy: Theory and Practice. Boston: Academic Press.Google Scholar
Mayer, J. W. and Lau, S. S. (1990). Electronic Materials Science: For Integrated Circuits in Si and GaAs. New York: Macmillan Publishing.Google Scholar
Pierret, R. F. and Neudeck, G. W. (eds.) (1989). Modular Series on Solid State Devices. Reading, Mass.: Addison-Wesley.Google Scholar
Seeger, K. (1999). Semiconductor Physics: An Introduction. New York: Springer-Verlag.CrossRefGoogle Scholar
Streetman, B. G. (1995). Solid State Electronic Devices. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
Sze, S. M. (1981). Physics of Semiconductor Devices. New York: Wiley.Google Scholar
Wilson, J. and Hawkes, J. F. B. (1998). Optoelectronics: An Introduction. Englewood Cliffs, N.J: Prentice-Hall.Google Scholar
Yu, P. Y. and Cardona, M. (1996). Fundamentals of Semiconductors: Physics and Materials Properties. New York: Springer.CrossRefGoogle Scholar
Brice, J. C. (1986). Crystal Growth Processes. New York: Wiley.Google Scholar
Davies, G. J. and Williams, R. H. (eds.) (1994). Semiconductor Growth, Surfaces and Interfaces. London: Chapman & Hall.Google Scholar
Herman, M. A. and Sitter, H. (1989). Molecular Beam Epitaxy: Fundamentals and Current Status. New York: Springer-Verlag.CrossRefGoogle Scholar
Lewis, B. and Anderson, J. C. (1978). Nucleation and Growth of Thin Films. New York: Academic Press.Google Scholar
Pamplin, B. R. (1975). Crystal Growth, International Series of Monographs in The Science of the Solid State, Volume 6. New York: Pergamon Press.Google Scholar
Parker, E. H. C. (ed.) (1985). The Technology and Physics of Molecular Beam Epitaxy. New York: Plenum Press.CrossRefGoogle Scholar
Stradling, R. A. and Klipstein, P. C. (eds.) (1990). Growth and Characterization of Semiconductors. New York: Adam Hilger.Google Scholar
Stringfellow, G. B. (1989). Organometallic Vapor-Phase Epitaxy: Theory and Practice. Boston: Academic Press.Google Scholar
Mayer, J. W. and Lau, S. S. (1990). Electronic Materials Science: For Integrated Circuits in Si and GaAs. New York: Macmillan Publishing.Google Scholar
Pierret, R. F. and Neudeck, G. W. (eds.) (1989). Modular Series on Solid State Devices. Reading, Mass.: Addison-Wesley.Google Scholar
Seeger, K. (1999). Semiconductor Physics: An Introduction. New York: Springer-Verlag.CrossRefGoogle Scholar
Streetman, B. G. (1995). Solid State Electronic Devices. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
Sze, S. M. (1981). Physics of Semiconductor Devices. New York: Wiley.Google Scholar
Wilson, J. and Hawkes, J. F. B. (1998). Optoelectronics: An Introduction. Englewood Cliffs, N.J: Prentice-Hall.Google Scholar
Yu, P. Y. and Cardona, M. (1996). Fundamentals of Semiconductors: Physics and Materials Properties. New York: Springer.CrossRefGoogle Scholar
Brice, J. C. (1986). Crystal Growth Processes. New York: Wiley.Google Scholar
Davies, G. J. and Williams, R. H. (eds.) (1994). Semiconductor Growth, Surfaces and Interfaces. London: Chapman & Hall.Google Scholar
Herman, M. A. and Sitter, H. (1989). Molecular Beam Epitaxy: Fundamentals and Current Status. New York: Springer-Verlag.CrossRefGoogle Scholar
Lewis, B. and Anderson, J. C. (1978). Nucleation and Growth of Thin Films. New York: Academic Press.Google Scholar
Pamplin, B. R. (1975). Crystal Growth, International Series of Monographs in The Science of the Solid State, Volume 6. New York: Pergamon Press.Google Scholar
Parker, E. H. C. (ed.) (1985). The Technology and Physics of Molecular Beam Epitaxy. New York: Plenum Press.CrossRefGoogle Scholar
Stradling, R. A. and Klipstein, P. C. (eds.) (1990). Growth and Characterization of Semiconductors. New York: Adam Hilger.Google Scholar
Stringfellow, G. B. (1989). Organometallic Vapor-Phase Epitaxy: Theory and Practice. Boston: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Semiconducting materials
  • D. B. Holt, Imperial College of Science, Technology and Medicine, London, B. G. Yacobi, University of Toronto
  • Book: Extended Defects in Semiconductors
  • Online publication: 10 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511534850.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Semiconducting materials
  • D. B. Holt, Imperial College of Science, Technology and Medicine, London, B. G. Yacobi, University of Toronto
  • Book: Extended Defects in Semiconductors
  • Online publication: 10 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511534850.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Semiconducting materials
  • D. B. Holt, Imperial College of Science, Technology and Medicine, London, B. G. Yacobi, University of Toronto
  • Book: Extended Defects in Semiconductors
  • Online publication: 10 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511534850.002
Available formats
×