Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T07:16:25.596Z Has data issue: false hasContentIssue false

5 - The electrical, optical and device effects of dislocations and grain boundaries

Published online by Cambridge University Press:  10 September 2009

D. B. Holt
Affiliation:
Imperial College of Science, Technology and Medicine, London
B. G. Yacobi
Affiliation:
University of Toronto
Get access

Summary

Introduction to the electrical effects of dislocations and other defects in semiconductors

In this chapter the historically important influence of high densities of dislocations on the electrical properties of semiconductors and on device performance is first outlined. (In the early days of semiconductor studies, high densities were generally either grown-in or introduced into the material by plastic deformation.) The mechanisms giving rise to the electronic and luminescence properties of dislocations and other defects are next treated. The role of defects in devices is discussed. The electrical properties of grain boundaries in polycrystalline semiconductors are also treated.

Introduction

The first short paper reporting that plastic deformation of Ge and Si was possible at raised temperatures, also reported that this increased the resistivity of Ge and the lifetime of photo-injected carriers was greatly reduced (Gallagher 1952). Further early studies revealed that <1% plastic strain would eliminate all the electrons in lightly doped n-type Ge and turn it p-type. (Ge was the important semiconductor at that time.) The effects of dislocations were so important that much basic dislocation theory is due to workers in the pioneering group at Bell Laboratories, especially Shockley (who introduced ‘dangling bonds’ and Shockley partial dislocations) and Read (of the Frank-Read source and the first theory of the electrical effects of dislocations). However, the industrial laboratories lost interest once it was found possible to grow low or zero dislocation density Si and effectively avoid or passivate process-induced dislocations.

Type
Chapter
Information
Extended Defects in Semiconductors
Electronic Properties, Device Effects and Structures
, pp. 412 - 605
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberle, A. G. (2001). Overview on SiN surface passivation of crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 65, 239–48.CrossRefGoogle Scholar
Abrahams, M. S. and Pankove, J. I. (1966). Orientation effect in GaAs injection lasers. Journal of Applied Physics, 37, 2596–7.CrossRefGoogle Scholar
Abrahams, M. S., Blanc, J. and Buiocchi, C. J. (1972). Like-sign asymmetric dislocations in zinc-blende structure. Applied Physics Letters, 21, 185–6.CrossRefGoogle Scholar
Akil, N., Kerns, S. E., Kerns, D. V., Hoffmann, A. and Charles, J. P. (1998). Photon generation by silicon diodes in avalanche breakdown. Applied Physics Letters, 73, 871–2.CrossRefGoogle Scholar
Akil, N., Kerns, S. E., Kerns, D. V., Hoffmann, A. and Charles, J. P. (1999). A multimechanism model for photon generation by silicon junctions in avalanche breakdown. IEEE Transactions on Electron Devices, 46, 1022–8.CrossRefGoogle Scholar
Alexander, H. (1986). Dislocations in covalent crystals. In Dislocations in Solids, 7, ed. Nabarro, F. R. N. (Amsterdam: North-Holland), pp. 113–234.Google Scholar
Alexander, H. (1989). Changes of electrical properties of silicon caused by plastic deformation. In Point and Extended Defects in Semiconductors, eds. Benedek, G., Cavallini, A. and Schröter, W.. New York: Plenum.CrossRefGoogle Scholar
Alexander, H. (1991). Chapter 6 Dislocations. In Materials Science and Technology, Vol. 4 Electronic Structure and Properties of Semiconductors, ed. Schröter, W. (Basel: VCH), pp. 249–319.Google Scholar
Alexander, H. (1994). What information on extended defects do we obtain from beam-injection methods?Materials Science and Engineering, B 24, 1–7.CrossRefGoogle Scholar
Alexander, H., Labusch, R. and Sander, W. (1965). Electron spin resonance in deformed silicon crystals. Solid State Communications, 3, 357–60.CrossRefGoogle Scholar
Alexander, H., Dietrich, S., Hüne, M., Kolbe, M. and Weber, G. (1990). EBIC microscopy applied to glide dislocations. Physica Status Solidi, A 117, 417–28.CrossRefGoogle Scholar
Alfrey, G. F. and Wiggins, C. S. (1960). Electroluminescence at grain boundaries in gallium phosphide. In Solid State Physics in Electronics and Telecommunications, 2 (London: Academic Press), pp. 747–50.Google Scholar
Allender, D., Bray, J. and Bardeen, J. (1973). Model for an exciton mechanism of superconductivity. Physical Review, B7, 1020–9.CrossRefGoogle Scholar
Amelinckx, S. and Dekeyser, W. (1959). The structure and properties of grain boundaries. Solid State Physics, 8, 325–499.CrossRefGoogle Scholar
Auciello, O., Foster, C. M. and Ramesh, R. (1998). Processing technologies for ferroelectric thin films and heterostructures. Annual Review of Materials Science, 28, 501–31.CrossRefGoogle Scholar
Baccarani, G., Ricco, B. and Spadini, G. (1978). Transport properties of polycrystalline silicon films. Journal of Applied Physics, 49, 5565–70.CrossRefGoogle Scholar
Balk, L. J., Kubalek, E. and Menzel, E. (1976). Investigations of as-grown dislocations in GaAs single crystals in the SEM. Scanning Electron Microscopy, 1, 257–64.Google Scholar
Ballutaud, D., Riviere, A., Rusu, M., Bourdais, S. and Slaoui, A. (2002). EBIC technique applied to polycrystalline silicon thin films: minority carrier diffusion length improvement by hydrogenation. Thin Solid Films, 403, 549–52.CrossRefGoogle Scholar
Bardeen, J., Cooper, L. N. and Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review, 108, 1175–204.CrossRefGoogle Scholar
Bardsley, W. (1960). The electrical effects of dislocations in semiconductors. Progress in Semiconductors, 4, 155–203.Google Scholar
Barth, W. and Güth, W. (1970). Absorptionsmessungen am Plastisch Deformiertem Germanium. Physica Status Solidi, 38, K141–K144.CrossRefGoogle Scholar
Barth, W. and Elsässer, K. (1971). Polarization of the infrared absorption of dislocations in germanium. Physica Status Solidi, B 48, K147–K149.CrossRefGoogle Scholar
Barth, W., Elsässer, K. and Güth, W. (1976). The optical absorption of 60° dislocations in germanium. Physica Status Solidi, A 34, 153–63.CrossRefGoogle Scholar
Batstone, J. L. and Steeds, J. W. (1985). TEM and CL characterization of dislocations in OMCVD ZnSe. In Microscopy of Semiconducting Materials 1985. Conf. Series No. 76 (Bristol: Institute of Physics), pp. 383–8.Google Scholar
Beam, E. A., Temkin, H. and Mahajan, S. (1992). Influence of dislocation density on I–V characteristics of InP photodiodes. Semiconductor Science and Technology, 7, A229–A232.CrossRefGoogle Scholar
Bell, R. L. and Willoughby, A. R. F. (1966). Etch-pit studies of dislocations in InSb. Journal of Materials Science, 1, 219–28.CrossRefGoogle Scholar
Bell, R. L. and Willoughby, A. R. F. (1970). The effect of plastic bending on the electrical properties of indium antimonide 2. Four-point bending of n-type material. Journal of Materials Science, 5, 198–217.CrossRefGoogle Scholar
Bell, R. L., Latkowski, R. and Willoughby, A. R. F. (1966). The effect of plastic bending on the electrical properties of indium antimonide. Journal of Materials Science, 1, 66–78.CrossRefGoogle Scholar
Benoit a la Guillaume, C. (1959). Recombinaison radiative par l'intermediare des dislocations dans le rermanium. Physics and Chemistry of Solids, 8, 150–3.CrossRefGoogle Scholar
Bensahel, D. and Dupuy, M. (1979). SEM and TEM. Diffusion of lithium in ZnTe. Physica Status Solidi, A 55, 203–10.CrossRefGoogle Scholar
Bergman, J. P., Lendenmann, H., Nilsson, P. A., Lindefelt, U. and Skytt, P. (2001). Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes. Materials Science Forum, 353–356, 299–302.CrossRefGoogle Scholar
Billig, E. and Ridout, M. S. (1954). Transmission of electrons and holes across a twin boundary in germanium. Nature, 173, 496–7.CrossRefGoogle Scholar
Blatter, G. and Greuter, F. (1986a). Carrier transport through grain-boundaries in semiconductors. Physical Review, B 33, 3952–66.CrossRefGoogle Scholar
Blatter, G. and Greuter, F. (1986b). Electrical breakdown at semiconductor grain boundaries. Physical Review, B 34, 8555–72.CrossRefGoogle Scholar
Blumtritt, H., Kittler, M. and Seifert, W. (1989). On the formation of bright EBIC contrasts at crystal defects. In International Symposium on Structural Properties of Dislocations in Semiconductors, Institute of Physics Conference Series 104 (Bristol: Institute of Physics), pp. 233–8.Google Scholar
Bode, M., Jakubowicz, A. and Habermeier, H. U. (1987). Characterization of dislocations in GaAs by simultaneous EBIC/CL measurements. In Proceedings of the Second International Symposium on Defect Recognition and Image Processing in III–V Compounds (DRIP II) (New York: Elsevier), pp. 155–62.Google Scholar
Bonch-Bruevich, V. L. and Glasko, V. B. (1961). The theory of electron states connected with dislocations. I. Linear dislocations. Soviet Physics Solid State, 3, 26–33.Google Scholar
Bondarenko, I. E., Eremenko, V. G., Farber, B. Ya., Nikitenko, V. I. and Yakimov, E. B. (1981). On the real structure of monocrystalline silicon near dislocation. Physica Status Solidi, A 68, 53–60.CrossRefGoogle Scholar
Bondarenko, I. E., Blumtritt, H., Heydreich, J., Kazmirruk, V. V. and Yakimov, E. B. (1986). Recombination properties of dislocation slip planes. Physica Status Solidi, A 95, 173–7.CrossRefGoogle Scholar
Booker, G. R., Ourmazd, A. and Darby, D. B. (1979). Electrical recombination behavior at dislocations in gallium-phosphide and silicon. Journal de Physique, 40, Suppl. 6, 19–21.Google Scholar
Booyens, H., Vermaak, J. S. and Proto, G. R. (1977). Dislocations and the piezoelectric effect in III–V crystals. Journal of Applied Physics, 48, 3008–13.CrossRefGoogle Scholar
Booyens, H., Vermaak, J. S. and Proto, G. R. (1978a). The piezoresistance effect and dislocations in III–V compounds. Journal of Applied Physics, 49, 1149–55.CrossRefGoogle Scholar
Booyens, H., Vermaak, J. S. and Proto, G. R. (1978b). The anisotropic carrier mobility due to dislocations in III–V compounds. Journal of Applied Physics, 49, 1173–6.CrossRefGoogle Scholar
Bougrioua, Z., Farvacque, J. L. and Ferre, D. (1996a). Effects of dislocations on transport properties of two dimensional electron gas. 1. Transport at zero magnetic field. Journal of Applied Physics, 79, 1536–45.CrossRefGoogle Scholar
Bougrioua, Z., Farvacque, J. L. and Ferre, D. (1996b). Effects of dislocations on transport properties of two dimensional electron gas. 2. The quantum regime. Journal of Applied Physics, 79, 1546–55.CrossRefGoogle Scholar
Bozhokin, S. V., Parshin, D. A. and Karchenko, V. A. (1982). Dislocation Mott exciton. Soviet Physics Solid State, 24, 800–3.Google Scholar
Brantley, W. A., Lorimor, O. C., Dapkus, P. D., Haszko, S. E. and Saul, R. H. (1975). Effect of dislocations on green electroluminescence efficiency in GaP grown by liquid phase epitaxy. Journal of Applied Physics, 46, 2629–37.CrossRefGoogle Scholar
Bredikhin, S. I. and Shmurak, S. Z. (1974). Deformation-stimulated emission of ZnS crystals. JETP Letters, 19, 367–8.Google Scholar
Bredikhin, S. I. and Shmurak, S. Z. (1975). Effect of electric field on deformation induced light emission of ZnS crystals. JETP Letters, 21, 156–7.Google Scholar
Breitenstein, O. (1989). Scanning DLTS. Review de Physique Applique, C 6, 101–10.Google Scholar
Breitenstein, O. and Heydenreich, J. (1985). Review: Scanning deep level spectroscopy. Scanning, 7, 273–89.CrossRefGoogle Scholar
Brohl, M. and Alexander, H. (1989). Microwave conductivity in plastically deformed silicon. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford. Conference Series No. 104, pp. 163–8.Google Scholar
Brophy, J. J. (1956). Excess noise in deformed germanium. Journal of Applied Physics, 27, 1383–4.CrossRefGoogle Scholar
Brophy, J. J. (1959). Crystalline imperfections and 1/f noise. Physical Review, 115, 1122–5.CrossRefGoogle Scholar
Broudy, R. M. (1963). The electrical properties of dislocations in semiconductors. Advances in Physics, 12, 135–84.CrossRefGoogle Scholar
Brümmer, O. and Schreiber, J. (1972). Microskopische untersuchungen des katodolumineszenz-verhaltens von kristallbaufehlern in CdS-einkristallen mit der elektronenstrahlmikrosonde. Annalen der Physik, 28, 105–17.CrossRefGoogle Scholar
Brümmer, O. and Schreiber, J. (1974). Zum lumineszenzverhalten von versetzungen in CdS-einkristallen. Kristall und Technik, 9, 817–29.CrossRefGoogle Scholar
Brümmer, O. and Schreiber, J. (1975). Mikroskopische kathodolumineszenz-untersuchungen an halbleitern mit der elektronenstrahlmikrosonde. Microchimica Acta (Supplement), 6, 331–44.CrossRefGoogle Scholar
Bube, R. H. (1992). Photoelectronic Properties of Semiconductors. Cambridge: Cambridge University Press.Google Scholar
Bude, J., Sano, N. and Yoshii, A. (1992). Hot-carrier luminescence in Si. Physical Review, B 45, 5848–56.CrossRefGoogle Scholar
Bull, C., Ashburn, P., Booker, G. R. and Nicholas, K. H. (1979). Effects of dislocations in silicon transistors with implanted emitters. Solid State Electronics, 22, 95–104.CrossRefGoogle Scholar
Buonassisi, T., Heuer, M., Vyvenko, O. F.et al. (2003). Applications of synchrotron radiation x-ray techniques on the analysis of the behavior of transition metals in solar cells and single-crystalline silicon with extended defects. Physica B: Condensed Matter, 340–342, 1137–41.CrossRefGoogle Scholar
Cai, W., Bulatov, V. V., chang, J., Li, J. and Yip, S. (2004). Dislocation core effects on mobility. In Dislocations in Solids, eds. Nabarro, F. R. N. and Hirth, J. P. (North-Holland Publishers), vol. 12, p. 1.Google Scholar
Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 57, 1046–8.CrossRefGoogle Scholar
Canham, L. T., Dyball, M. R. and Barraclough, K. G. (1989). Surface copper contamination of as-received float-zone silicon-wafers. Journal of Applied Physics, 66, 920–7.CrossRefGoogle Scholar
Casey, H. C. (1967). Investigation of inhomogeneities in GaAs by electron beam excitation. Journal of the Electrochemical Society, 114, 153–8.CrossRefGoogle Scholar
Castaldini, A. and Cavallini, A. (1989). Imaging of extended defects by quenched infra-red beam induced currents (Q-IRBIC). In Point and Extended Defects in Semiconductors, eds. Benedek, G., Cavallini, A. and Schröter, W. (New York: Plenum Press), pp. 257–68.CrossRefGoogle Scholar
Castaldini, A., Cavallini, A. and Gondi, P. (1987). IRBIC semiconductor defect pictures. Bulletin of the Academy of Sciences of the USSR Division of Physical Science, 51, 77–80.Google Scholar
Castaldini, A., Cavallini, A. and Cavalcoli, D. (1989). Electrical activity associated with dislocations in silicon. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford. Conference Series 104 (Bristol: Institute of Physics), pp. 169–74.Google Scholar
Cavalcoli, D., Cavallini, A. and Gombia, E. (1997). Defect states in plastically deformed n-type silicon. Physical Review, B 56, 10208–14.CrossRefGoogle Scholar
Cavallini, A. and Castaldini, A. (1991). Developments of IRBIC and QIRBIC in defect studies: A review. Journal de Physique, C 6, 89–99.Google Scholar
Chakrabarti, U. K., Pearton, S. J., Hobson, W. S., Lopata, J. and Swaminathan, V. (1990). Hydrogenation of GaAs-on-InP. Applied Physics Letters, 57, 887–9.CrossRefGoogle Scholar
Chamonal, J. P., Molva, E., Dupuy, M., Accomo, R. and Pautrat, J. L. (1983). Spectral resolution in low temperature cathodoluminescence. Application to CdTe. Physica, 116B, 519–26.Google Scholar
Champlin, K. S. (1959). Microplasma fluctuations in silicon. Journal of Applied Physics, 30, 1039–50.CrossRefGoogle Scholar
Chan, D. S. H., Pey, K. L. and Phang, J. C. H. (1993). Semiconductor parameters extraction using cathodoluminescence in the scanning electron microscope. IEEE Transactions on Electron Devices, 40, 1417–25.CrossRefGoogle Scholar
Chatterjee, B., Ringel, S. A., Sieg, R., Hoffman, R. and Weinberg, I. (1994). Hydrogen passivation of dislocations in InP on GaAs heterostructures. Applied Physics Letters, 65, 58–60.CrossRefGoogle Scholar
Chatterjee, B. and Ringel, S. A. (1995). Hydrogen passivation and its effects on carrier trapping by dislocations in InP/GaAs heterostructures. Journal of Applied Physics, 77, 3885–98.CrossRefGoogle Scholar
Chelyadinskii, A. R. and Komarov, F. F. (2003). Defect-impurity engineering in implanted silicon. Physics Uspechi, 46, 789–820.CrossRefGoogle Scholar
Chen, J., Sekiguchi, T., Yang, D.et al. (2004). Electron-beam-induced current study of grain boundaries in multicrystalline silicon. Journal of Applied Physics, 96, 5490–5.CrossRefGoogle Scholar
Chim, W. K., Chan, D. S. H., Low, T. S.et al. (1992). Modelling techniques for the quantification of some electron beam induced phenomena. Scanning Microscopy, 6, 961–78.Google Scholar
Chin, A. K., Temkin, H., Mahajan, S.et al. (1979). Evaluation of defects in InP and InGaAsP by transmission cathodoluminescence. Journal of Applied Physics, 50, 5707–9.CrossRefGoogle Scholar
Chynoweth, A. G. and McKay, K. G. (1956). Photon emission from avalanche breakdown in silicon. Physical Review, 102, 369–76.CrossRefGoogle Scholar
Chynoweth, A. G. and Pearson, G. L. (1958). Effect of dislocations on breakdown in silicon p-n junctions. Journal of Applied Physics, 29, 1103–10.CrossRefGoogle Scholar
Claesson, A. (1979). Effect of disorder and long range strain field on the electron states. Journal de Physique, C 6, 39–41.Google Scholar
Claeys, C. and Vanhellemont, J. (1993). Recent progress in the understanding of crystallographic defects in silicon. Journal of Crystal Growth, 126, 41–62.CrossRefGoogle Scholar
Claeys, C. and Simoen, E. (1998). Noise as a diagnostic tool for semiconductor material and device characterization. Journal of the Electrochemical Society, 145, 2058–67.CrossRefGoogle Scholar
Clarke, D. R. (1999). Varistor ceramics. Journal of the American Ceramic Society, 82, 485–502.CrossRefGoogle Scholar
Collins, A. T. (1992). The characterization of point defects in diamond by luminescence spectroscopy. Diamond and Related Materials, 1, 457–69.CrossRefGoogle Scholar
Cook, J. W. and Schetzina, J. F. (1995). Blue-green light-emitting diodes promise full-color displays. Laser Focus World (March), pp. 101–4.Google Scholar
Cremades, A., Dominguez-Adame, F. and Piqueras, J. (1993). Study of defects in chemical-vapor-deposited diamond films by cross-sectional cathodoluminescence. Journal of Applied Physics, 74, 5726–8.CrossRefGoogle Scholar
Crookes, W. W. (1979). Contributions to molecular physics in high vacua. Philosophical Transactions of the Royal Society, 170, 641–62.CrossRefGoogle Scholar
Cullis, A. G. and Canham, L. T. (1991). Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature, 353, 335–8.CrossRefGoogle Scholar
Czyzewski, Z. and Joy, D. C. (1990). Monte Carlo simulation of CL and EBIC contrasts for isolated dislocations. Scanning, 12, 5–12.CrossRefGoogle Scholar
Daniels, B. K. and Meadowcroft, D. B. (1968). Twist boundaries and electroluminescence. Physica Status Solidi, 27, 535–9.CrossRefGoogle Scholar
Darby, D. B. and Booker, G. R. (1977). Scanning electron microscope EBIC and CL micrographs of dislocations in GaP. Journal of Materials Science, 12, 1827–33.CrossRefGoogle Scholar
Davidson, S. M. and Rasul, A. (1977). Applications of high performance SEM-based CL analysis system to compound semiconductor devices. In Scanning Electron Microscopy 1977/I, ed. Johari, O. (Chicago: SEM Inc), pp. 225–31.Google Scholar
Davidson, S. M. and Dimitriadis, C. A. (1980). Advances in the electrical assessment of semiconductors using the scanning electron microscope. Journal of Microscopy, 118, 275–90.CrossRefGoogle Scholar
Davidson, S. M., Iqbal, M. Z. and Northrop, D. C. (1975). SEM cathode-luminescent studies of plastically deformed gallium phosphide. Physica Status Solidi, A 29, 571–8.CrossRefGoogle Scholar
Dean, P. J. (1984). Comparison of MOCVD-grown with conventional II–VI materials parameters for EL thin films. Physica Status Solidi, A 81, 625–46.CrossRefGoogle Scholar
Dean, P. J. and Choyke, W. J. (1977). Recombination-enhanced defect reactions, strong new evidence for an old concept in semiconductors. Advances in Physics, 26, 1–30.CrossRefGoogle Scholar
Dean, P. J., Williams, G. M. and Blackmore, G. (1984). Novel type of optical transition observed in MBE grown CdTe. Journal of Physics D: Applied Physics, 17, 2291–300.CrossRefGoogle Scholar
DeLoach, B. C., Hakki, B. W., Hartman, R. L. and D'Asarg, L. A. (1973). Degradation of CW GaAs double-heterojunction lasers at 300K. Proceedings of IEEE, 61, 1042–4.CrossRefGoogle Scholar
Nobel, D. (1959). Phase equilibria and semiconducting properties of CdTe. Philips Research Reports, 14, 361–99.Google Scholar
Dmitrenko, I. M., Fogel, N. Ya., Cherkasova, V. G., Fedorenko, A. I. and Sipatov, A. Yu. (1993). Dimension crossover and the nature of the superconducting layers in PbTe/PbS semiconductor superlattices. Low Temperature Physics, 19, 533–8.Google Scholar
Dobson, P. S., Hutchinson, P. W., O'Hara, S. and Newman, D. H. (1977). TEM observation of dark defects in degraded gallium arsenide heterojunction lasers. In Gallium Arsenide and Related Compounds 1976. Conf. Series No. 33A (Inst. Phys.: Bristol and London), pp. 419–26.Google Scholar
Donolato, C. (1978/79). On the theory of SEM charge-collection imaging of localized defects in semiconductors. Optik, 52, 19–36.Google Scholar
Donolato, C. (1983). Quantitative evaluation of the EBIC contrast of dislocations. Journal de Physique, 44, Colloque C4, 269–75.Google Scholar
Donolato, C. (1985). Beam induced current characterization in polycrystalline semiconductors. In Polycrystalline Semiconductors. Physical Properties and Applications, ed. Harbeke, G. (Berlin: Springer-Verlag), pp. 138–54.CrossRefGoogle Scholar
Donolato, C. and Klann, H. (1980). Computer simulation of SEM electron beam induced current images of dislocations and stacking faults. Journal of Applied Physics, 51, 1624–33.CrossRefGoogle Scholar
Dow, J. D. and Redfield, D. (1972). Toward a unified theory of Urbach's rule and exponential absorption edges. Physical Review, B 5, 594–610.CrossRefGoogle Scholar
Drozdov, N. A., Patrin, A. A. and Tkachev, V. D. (1976). Recombination radiation on dislocations in silicon. JETP Letters, 23, 597–9.Google Scholar
Duerinckx, F. and Szlufcik, J. (2002). Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride. Solar Energy Materials and Solar Cells, 72, 231–46.CrossRefGoogle Scholar
Dumas, P., Gu, M., Syrykh, C.et al. (1993). Direct observation of individual nanometer-sized light-emitting structures on porous silicon surfaces. Europhysics Letter, 23, 197–202.CrossRefGoogle Scholar
Dumas, P., Gu, M., Syrykh, C.et al. (1994a). Photon spectroscopy, mapping and topography of 85% porous silicon. Journal of Vacuum Science and Technology, B12, 2064–6.CrossRefGoogle Scholar
Dumas, P., Gu, M., Syrykh, C.et al. (1994b). Nanostructuring of porous silicon using scanning tunneling microscopy. Journal of Vacuum Science and Technology, B12, 2067–9.CrossRefGoogle Scholar
Durose, K., Edwards, P. R. and Halliday, D. P. (1999). Materials aspects of CdTe/CdS solar cells. Journal of Crystal Growth, 197, 733–42.CrossRefGoogle Scholar
Ebert, P., Domke, C. and Urban, K. (2001). Direct observation of electrical charges at dislocation in GaAs by cross-sectional scanning tunneling microscopy. Applied Physics Letters, 78, 480–2.CrossRefGoogle Scholar
Edmiston, S. A., Heiser, G., Sproul, A. B. and Green, M. A. (1996). Improved modeling of grain boundary recombination in bulk and p-n junction regions of polycrystalline silicon solar cells. Journal of Applied Physics, 80, 6783–95.CrossRefGoogle Scholar
Edwards, P. R., Halliday, D. P. and Durose, K. (1997). The influence of CdCl2 treatment and interdiffusion on grain boundary passivation in CdTe/CdS solar cells. InProceedings of 14th Photovoltaic Solar Energy Conference (Barcelona: WIP), pp. 2083–6.Google Scholar
Eliseev, P. G. (1973). Degradation of injection lasers. Journal of Luminescence, 7, 338–56.CrossRefGoogle Scholar
Elliott, C. R., Regnault, J. C. and Wakefield, B. (1982). Nonradiative regions in GaInAsP/InP double heterostructure material: Correlation with dislocation clusters in the substrates. Electronics Letters, 18, 7–8.CrossRefGoogle Scholar
Elsner, J., Jones, R., Heggie, M. I.et al. (1998). Deep acceptors trapped at threading-edge dislocations in GaN. Physical Review, B 58, 12571–4.CrossRefGoogle Scholar
Emtage, P. R. (1967). Binding of electrons, holes and excitons to dislocations in insulators. Physical Review, 163, 865–72.CrossRefGoogle Scholar
Eremenko, V. G. and Fedorov, A. V. (1995). New effect of interaction between moving dislocation and point defects in silicon. Materials Science Forum, 196, 1219–23.CrossRefGoogle Scholar
Eremenko, V. G. and Yakimov, E. B. (2004). Anomalous electrical properties of dislocation slip plane in Si. European Physical Journal – Applied Physics, 27, 349–51.CrossRefGoogle Scholar
Eremenko, V., Jimenez, J., Fedorov, A. et al. (1997). Characterization of the new type of structural defects in Si by the scanning optical and electron beam techniques. Institute of Physics Conference Series No. 160, pp. 269–72.
Eremenko, V., Abrosimov, N. and Fedorov, A. (1999). The origin and properties of new extended defects revealed by etching in plastically deformed Si and SiGe. Physica Status Solidi, A 171, 383–8.3.0.CO;2-M>CrossRefGoogle Scholar
Erenburg, A. I., Bomze, Y. V., Fogel, N. Y.et al. (2001). Structural investigations of superconducting multilayers consisting of semiconducting materials. Low Temperature Physics, 27, 93–5.CrossRefGoogle Scholar
Esquivel, A. L., Lin, W. N. and Wittry, D. B. (1973). Cathodoluminescence study of plastically deformed GaAs. Applied Physics Letters, 22, 414–16.CrossRefGoogle Scholar
Esquivel, A. L., Sen, S. and Lin, W. N. (1976). Cathodoluminescence and electrical anisotropy from α and β dislocations in plastically deformed gallium arsenide. Journal of Applied Physics, 47, 2598–603.CrossRefGoogle Scholar
Ettenberg, M. (1974). Effects of dislocation density on the properties of liquid phase epitaxial GaAs. Journal of Applied Physics, 45, 901–6.CrossRefGoogle Scholar
Evoy, S., Craighead, H. G., Keller, S., Mishra, U. K. and DenBarrs, S. P. (1999). Scanning tunneling microscope-induced luminescence of GaN at threading dislocations. Journal of Vacuum Science and Technology, B17, 29–32.CrossRefGoogle Scholar
Fang, R. Z., Rheenen, A. D., Ziel, A., Young, A. C. and Ziel, J. P. (1990). 1/f noise in double-heterojunction AlGaAs/GaAs laser diodes on GaAs and on Si substrates. Journal of Applied Physics, 68, 4087–90.CrossRefGoogle Scholar
Feklisova, O. V., Yakimov, E. B. and Yarykin, N. (2003). Contribution of the disturbed dislocation slip planes to the electrical properties of plastically deformed silicon. Physica, B340, 1005–8.CrossRefGoogle Scholar
Feklisova, O.V., Pichaud, B. and Yakimov, E.B. (2005). Annealing effect on the electrical activity of extended defects in plastically deformed p-Si with low dislocation density. Physica Status Solidi, A202, 896–900.CrossRefGoogle Scholar
Fell, T. S. and Wilshaw, P. R. (1989). Recombination at dislocations in the depletion region in silicon. In International Symposium on Structural Properties of Dislocations in Semiconductors, Institute of Physics Conference Series 104, pp. 227–32.Google Scholar
Fell, T. S. and Wilshaw, P. R. (1991). Quantitative EBIC Investigation of Deformation-Induced and Copper Decorated Dislocations in Silicon. In Microscopy of Semiconducting Materials 1991. Conf. Series No. 117 (Bristol: Institute of Physics), pp. 733–6.Google Scholar
Fell, T. S., Wilshaw, P. R. and Coteau, M. D. (1993). EBIC investigations of dislocations and their interactions with impurities in silicon. Physica Status Solidi, A 138, 695–704.CrossRefGoogle Scholar
Figielski, T. (1960). Electronic processes at intercrystalline barriers in germanium. Acta Physica Polonica, 19, 607–30.Google Scholar
Figielski, T. (1978). Recombination at dislocations. Solid State Electronics, 21, 1403–12.CrossRefGoogle Scholar
Figielski, T. (2002). Dislocations as electrically active centers in semiconductors, half a century from the discovery. Journal of Physics: Condensed Matter, 14, 12665–72.Google Scholar
Figielski, T. and Torum, A. (1962). On the origin of light emitted from reverse biased p-n junctions. In Proceedings of 6th International Conference on Physics of Semiconductors, Exeter (London: Pergamon), pp. 863–8.Google Scholar
Figielski, T., Wosinski, T., Makosa, A., Dobrowolski, W. and Raczynska, J. (1998). Solid-state Aharonov-Bohm effect at dislocations in semiconductors. Philosophical Magazine Letters, 77, 221–7.CrossRefGoogle Scholar
Figielski, T., Wosinski, T. and Makosa, A. (2000). Mesoscopic conductance oscillations associated with dislocations in semiconductors. Physica Status Solidi, B 222, 151–8.3.0.CO;2-D>CrossRefGoogle Scholar
Fischer, A. G. (1962). Electroluminescent lines in ZnS powder particles. I Embedding media and basic observations. Journal of the Electrochemical Society, 109, 1043–9.CrossRefGoogle Scholar
Fogel, N. Y., Pokhila, A. S., Bomze, Y. V.et al. (2001). Novel superconducting semiconducting superlattices: Dislocation-induced superconductivity?Physical Review Letters, 86, 512–15.CrossRefGoogle ScholarPubMed
Fogel, N. Y., Buchstab, E. I., Bomze, Y. V.et al. (2002). Interfacial superconductivity in semiconducting monochalcogenide superlattices. Physical Review, B 66, 174513–1–174513–11.Google Scholar
Fornari, R., Franzosi, P., Salviati, G., Ferrari, C. and Ghezzi, C. (1985). A study of microdefects in n-type doped GaAs crystals using cathodoluminescence and x-ray techniques. Journal of Crystal Growth, 72, 717–25.CrossRefGoogle Scholar
Gaevski, M., Elfwing, M., Olsson, E. and Kvist, A. (2002). Three-dimensional investigations of electrical barriers using electron beam induced current measurements. Journal of Applied Physics, 91, 2713–24.CrossRefGoogle Scholar
Gallagher, C. J. (1952). Plastic deformation of germanium and silicon. Physical Review, 88, 721.CrossRefGoogle Scholar
Galloway, S. A., Wilshaw, P. R. and Fell, T. S. (1993). An EBIC investigation of alpha, beta and screw dislocations in gallium arsenide. In Microscopy of Semiconducting Materials 1993. Conference Series No. 134 (Bristol: Institute of Physics), pp. 71–6.Google Scholar
Galloway, S. A., Edwards, P. R. and Durose, K. (1997). EBIC and cathodoluminescence studies of grain boundary and interface phenomena in CdTe/CdS solar cells. In Microscopy of Semiconducting Materials 1997, Conference Series. No. 157 (Bristol: Institute of Physics), pp. 579–82.Google Scholar
Galloway, S. A., Edwards, P. R. and Durose, K. (1999). Characterization of thin film CdS/CdTe solar cells using electron and optical beam induced current. Solar Energy Materials and Solar Cells, 57, 61–74.CrossRefGoogle Scholar
Garrido, J. A., Foutz, B. E., Smart, J. A.et al. (2000). Low-frequency noise and mobility fluctuations in AlGaN/GaN heterostructure field-effect transistors. Applied Physics Letters, 76, 3442–4.CrossRefGoogle Scholar
Gautam, D. K., Khokle, W. S. and Garg, K. B. (1988). Effect of absorption on photon-emission from reverse-biased silicon p-n-junctions. Solid State Electronics, 31, 1119–21.CrossRefGoogle Scholar
George, A. and Rabier, J. (1987). Dislocations and plasticity in semiconductors. I Dislocation structures and dynamics. Review de Physique Applique, 22, 941–66.CrossRefGoogle Scholar
Ginzburg, V. L. (1971). Manifestation of exciton mechanism in case of granulated superconductors. JETP Letter, 14, 396.Google Scholar
Giovane, L. M., Luan, H. C., Agarwal, A. M. and Kimerling, L. C. (2001). Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers. Applied Physics Letters, 78, 541–3.CrossRefGoogle Scholar
Gippius, A. A. and Vavilov, V. S. (1963). Radiative recombination at dislocations in germanium. Soviet Physics Solid State, 4, 1777–82.Google Scholar
Gippius, A. A. and Vavilov, V. S. (1965a). Mechanism for radiative recombination at dislocations in germanium. Soviet Physics Solid State, 6, 1873–9.Google Scholar
Gippius, A. A. and Vavilov, V. S. (1965b). On the mechanism of radiative recombination on dislocations in germanium. In Proceedings of 7th International Congress on Physics of Semiconductors (Paris: Dunod), pp. 137–42.Google Scholar
Gippius, A. A., Vavilov, V. S. and Konoplev, V. S. (1965). Determination of the yield of luminescence associated with dislocations in germanium. Soviet Physics Solid State, 6, 1741–2.Google Scholar
Gleichmann, R., Blumtritt, H. and Heydenreich, J. (1983). New morphological types of CuSi precipitates in silicon and their electrical effects. Physica Status Solidi, A 78, 527–38.CrossRefGoogle Scholar
Gökden, S. (2004). Dislocation scattering effect on two-dimensional electron gas transport in GaN/AlGaN modulation-doped heterostructures. Physica, E 23, 19–25.CrossRefGoogle Scholar
Gopal, V., Kvam, E. P., Chin, T. P. and Woodall, J. M. (1998). Evidence for misfit dislocation-related carrier accumulation at the InAs/GaP heterointerface. Applied Physics Letters, 72, 2319–21.CrossRefGoogle Scholar
Graham, R. J., Moustakas, T. D. and Disko, M. M. (1991). Cathodoluminescence imaging of defects and impurities in diamond films grown by chemical vapor deposition. Journal of Applied Physics, 69, 3212–18.CrossRefGoogle Scholar
Graham, R. J., Shaapur, F., Kato, Y. and Stoner, B. R. (1994). Imaging of boron dopant in highly oriented diamond films by cathodoluminescence in a transmission electron microscope. Applied Physics Letters, 65, 292–4.CrossRefGoogle Scholar
Grazhulis, V. A. (1979). Application of EPR and electric measurements to study dislocation energy spectrum in silicon. Journal de Physique, C 6, 59–61.Google Scholar
Grazhulis, V. A. and Osipyan, Yu. A. (1970). Electron paramagnetic resonance in plastically deformed silicon. Soviet Physics JETP, 31, 677.Google Scholar
Grazhulis, V. A., Kveder, V. V. and Mukhina, V. Yu. (1977a). Investigation of the energy spectrum and kinetic phenomena in dislocated Si crystals. Physica Status Solidi, 43, 407–15.CrossRefGoogle Scholar
Grazhulis, V. A., Kveder, V. V. and Mukhina, V. Yu. (1977b). Investigation of energy-spectrum and kinetic phenomena in dislocated Si crystals. 2. Microwave conductivity. Physica Status Solidi, A 44, 107–15.CrossRefGoogle Scholar
Greuter, F. and Blatter, G. (1990). Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semiconductor Science and Technology, 5, 111–37.CrossRefGoogle Scholar
Grovenor, C. R. M. (1985). Grain boundaries in semiconductors. Journal of Physics, C18, 4079–119.Google Scholar
Güth, W. (1972). Electronic states of dislocations in germanium. Physica Status Solidi, B 51, 143–7.CrossRefGoogle Scholar
Hanley, P. L., Kiflawi, I. and Lang, A. R. (1977). On topographically identifiable sources of cathodoluminescence in natural diamonds. Philosophical Transactions of the Royal Society, A 284, 329–68.CrossRefGoogle Scholar
Hanoka, J. I., Seager, C. H., Sharp, D. J. and Panitz, J. K. G. (1983). Hydrogen passivation of defects in silicon ribbon grown by the edge-defined film-fed growth process. Applied Physics Letters, 42, pp. 618–20.CrossRefGoogle Scholar
Hansen, P. J., Strausser, Y. E., Erickson, A. N.et al. (1998). Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor deposition. Applied Physics Letters, 72, 2247–9.CrossRefGoogle Scholar
Hartman, R. L. and Koszi, L. A. (1978). Characterization of (Al, Ga) As injection lasers using the luminescence emitted from the substrate. Journal of Applied Physics, 49, 5731–44.CrossRefGoogle Scholar
Hastenrath, M., Lohnert, K. and Kubalek, E. (1979). Zeitaufgeloste kathodolumineszenz im raster-rlektronenmikroskop mit hilf einer streak kamera. BEDO 12/1, 163–76, see also the account in Pfefferkorn, G., Brocker, W. and Hastenrath, M. (1980). The cathodoluminescence method in the scanning electron microscope. Scanning Electron Microscopy, 1, 250–8.Google Scholar
Hatz, J. (1968). Some effects of material inhomogeneities on the near-field pattern of GaAs diode lasers. Physica Status Solidi, 28, 233–45.CrossRefGoogle Scholar
Hayashi, K., Yamamoto, T. and Sakuma, T. (1996). Grain orientation dependence of the PTCR effect in niobium-doped barium titanate. Journal of the American Ceramic Society, 79, 1669–72.CrossRefGoogle Scholar
Hayashi, K., Yamamoto, T., Ikuhara, Y. and Sakuma, T. (1999). Grain boundary character dependence of potential barrier in barium titanate. Materials Science Forum, 294–2, 711–14.Google Scholar
Henry, C. H., Petroff, P. M., Logan, R. A. and Merritt, F. R. (1979). Catastrophic damage of AlxGa1–xAs double-heterostructure laser material. Journal of Applied Physics, 50, 3721–32.CrossRefGoogle Scholar
Hergert, W. and Hildebrandt, S. (1988). Unified theoretical description of EBIC, LBIC, CL and PL experiments. Transient analysis. Physica Status Solidi, A 109, 625–33.CrossRefGoogle Scholar
Hergert, W., Hildebrandt, S. and Pasemann, L. (1987). Theoretical investigations of combined EBIC, LBIC, CL, and PL experiments. Physica Status Solidi, A 102, 819–28.CrossRefGoogle Scholar
Hergert, W. and Pasemann, L. (1984). Theoretical study of the information depth of the cathodoluminescence signal in semiconductor materials. Physica Status Solidi, A 85, 641–8.CrossRefGoogle Scholar
Herrera Zaldivar, M., Fernández, P. and Piqueras, J. (2001). Study of growth hillocks in GaN:Si films by electron beam induced current imaging. Journal of Applied Physics, 90, 1058–60.CrossRefGoogle Scholar
Heywang, W. (1961). Bariumtitanat als sperrschichthalbleiter. Solid State Electronics, 3, 51–8.CrossRefGoogle Scholar
Heywang, W. (1964). Resistivity anomaly in doped. Journal of the American Ceramic Society, 47, 484–90.CrossRefGoogle Scholar
Higgs, V. and Kittler, M. (1994). Influence of hydrogen on the electrical and optical activity of misfit dislocations in Si/SiGe epilayers. Applied Physics Letters, 65, 2804–6.CrossRefGoogle Scholar
Higgs, V., Lightowlers, E. C., Davies, G., Schaffler, E. and Kasper, E. (1989). Photoluminescence from MBE Si grown at low-temperatures – donor bound excitons and decorated dislocations. Semiconductor Science and Technology, 4, 593–8.CrossRefGoogle Scholar
Higgs, V., Lightowlers, E. C. and Kightley, P. (1990a). Dislocation related D-band luminescence; The effects of transition metal contamination. InMaterials Research Society Symposia Proceedings, 163, pp. 57–62.CrossRefGoogle Scholar
Higgs, V., Norman, C. E., Lightowlers, E. C. and Kightley, P. (1990b). Characterization of clean dislocations and the influence of transition metal contamination. In Proceedings of 20th International Conference on Physics of Semiconductors, eds. Anastassakis, E. M. and Joannopoulos, J. D. (Singapore: World Scientific), pp. 706–9.Google Scholar
Higgs, V., Norman, C. E., Lightowlers, E. C. and Kightley, P. (1991). Characterization of dislocations in the presence of transition-metal contamination. Institute of Physics Conference Series (117), pp. 737–42.Google Scholar
Higgs, V. and Lightowlers, E. C. (1992a). Characterization of extended defects in Si and Si1-xGex alloys: The influence of transition metal contamination. In Mechanisms of Heteroepitaxial Growth, eds. Chisholm, M. F., Hull, R., Schowalter, L. J. and Garrison, B. J. (Materials Research Society Symposia Proceedings No. 263, Pittsburgh, PA, 1992), pp. 305–16.Google Scholar
Higgs, V. and Lightowlers, E. C. (1992b). Characterization of extended defects in Si and Si1-xGex alloys: The influence of transition metal contamination. InMaterials Research Society Symposia Proceedings, 263, 305–16.CrossRefGoogle Scholar
Higgs, V., Lightowlers, E. C., Norman, C. E. and Kightley, P. (1992). Characterization of dislocations in the presence of transition metal contamination. Materials Science Forum, 83–87, 1309–14.CrossRefGoogle Scholar
Higgs, V., Chin, F., Wang, X., Mosalski, J. and Beanland, R. (2000). Photoluminescence characterization of defects in Si and SiGe structures. Journal of Physics: Condensed Matter, 12, 10105–21.Google Scholar
Hildebrandt, S. and Hergert, W. (1990). Unified theoretical description of the CL, EBIC, PL, and LBIC contrast profile area of an individual surface-parallel dislocation. Physica Status Solidi, A119, 689–99.CrossRefGoogle Scholar
Hildebrandt, S., Schreiber, J. and Hergert, W. (1991). Recent results in the theoretical description of CL and EBIC defect contrasts. Journal de Physique, IV 1(C6), 39–44.Google Scholar
Hildebrandt, S., Schreiber, J., Hergert, W., Uniewski, H. and Leipner, H. S. (1998). Theoretical fundamentals and experimental materials and defect studies using quantitative scanning electron microscopy-cathodoluminescence/electron beam induced current on compound semiconductors. Scanning Microscopy International, 12, 535–52.Google Scholar
Hilpert, U., Schreiber, J., Worschech, L.et al. (2000). Optical characterization of isolated Se(g)-type misfit dislocations and their influence on strain relief in thin ZnSe films. Journal of Physics: Condensed Matter, 12, 10169–74.Google Scholar
Hirsch, P. B. (1981). Electronic and mechanical properties of dislocations in semiconductors. In Defects in Semiconductors (New York: North-Holland), pp. 257–71.Google Scholar
Hirsch, P. B. (1985). Dislocations in semiconductors. Materials Science and Technology, 1, 666–77.CrossRefGoogle Scholar
Hirsch, P. B., Pirouz, P., Roberts, S. G. and Warren, P. D. (1985). Indentation plasticity and polarity of hardness on {111} faces of GaAs. Philosophical Magazine, 52, 759–84.CrossRefGoogle Scholar
Hoering, L., Schreiber, J. and Hilpert, U. (2001). SEM CL in-situ observation during dislocation motion in GaAs and CdTe. Solid State Phenomena, 78–79, 139–48.CrossRefGoogle Scholar
Holt, D. B. (1989). The conductive mode. In SEM Microcharacterization of Semiconductors, eds. Holt, D. B. and Joy, D. C. (London: Academic Press), pp. 241–338.Google Scholar
Holt, D. B. (1996). The role of defects in semiconductor materials and devices. Scanning Microscopy, 10, 1047–78.Google Scholar
Holt, D. B. and Lesniak, M. (1985). Recent developments in electrical microcharacterization using the charge collection mode of the scanning electron-microscope. Scanning Electron Microscopy, Part 1, pp. 67–86.Google Scholar
Holt, D. B. and Napchan, E. (1994). Quantitation of SEM EBIC and CL signals using Monte Carlo electron-trajectory simulations. Scanning, 16, 78–86.CrossRefGoogle Scholar
Holt, D. B., Alfrey, G. F. and Wiggins, C. S. (1958). Grain boundaries and electroluminescence in gallium phosphide. Nature, 181, 109.CrossRefGoogle Scholar
Hooge, F. N. (1969). 1/f is no surface effect. Physics Letters, A 29, 139–40.CrossRefGoogle Scholar
Hornstra, J. (1958). Dislocations in the diamond lattice. Journal of Physics and Chemistry of Solids, 5, 129–41.CrossRefGoogle Scholar
Hornstra, J. (1959). Models of grain boundaries in the diamond lattice. I. Tilt about 〈110〉. Physica, 25, 409–22.CrossRefGoogle Scholar
Hornstra, J. (1960). Models of grain boundaries in the diamond lattice. II. Tilt about 〈001〉 and theory. Physica, 26, 198–208.CrossRefGoogle Scholar
Hsu, J. W. P., Fitzgerald, E. A., Xie, Y. H. and Silverman, P. J. (1994). Near-field scanning optical microscopy imaging of indiviual threading dislocations on relaxed GexSi1-x films. Applied Physics Letters, 65, 344–6.CrossRefGoogle Scholar
Hsu, J. W. P., Fitzgerald, E. A., Xie, Y. H. and Silverman, P. J. (1996). Studies of electrically active defects in relaxed GeSi films using a near-field scanning optical microscope. Journal of Applied Physics, 79, 7743–50.CrossRefGoogle Scholar
Hsu, J. W. P., Manfra, M. J., Lang, D. V.et al. (2001). Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Applied Physics Letters, 78, 1685–7.CrossRefGoogle Scholar
Hsu, J. W. P., Manfra, M. J., Molnar, R. J., Heying, B. and Speck, J. S. (2002). Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Applied Physics Letters, 81, 79–81.CrossRefGoogle Scholar
Hsu, J. W. P., Weimann, N. G., Manfra, M. J.et al. (2003). Effect of dislocations on local transconductance in AlGaN/GaN heterostructures as imaged by scanning gate microscopy. Applied Physics Letters, 83, 4559–61.CrossRefGoogle Scholar
Huang, Y., Chen, X. D., Fung, S., Beling, C. D. and Ling, C. C. (2003). Experimental study and modeling of the influence of screw dislocations on the performance of Au/n-GaN Schottky diodes. Journal of Applied Physics, 94, 5771–5.CrossRefGoogle Scholar
Hunter, D. R., Paxman, D. H., Burgess, M. and Booker, G. R. (1973). Use of the SEM for measuring minority carrier lifetimes and diffusion lengths in semiconductor devices. In Scanning Electron Microscopy: Systems and Applications, Conference Series No. 18 (London: Institute of Physics), pp. 208–13.Google Scholar
Hutchinson, P. W., Dobson, P. S., O'Hara, S. and Newman, D. H. (1975). Defect structure of degraded heterojunction GaAsAs–GaAs lasers. Applied Physics Letters, 26, 250–2.CrossRefGoogle Scholar
Hutchinson, P. W. and Dobson, P. S. (1975). Defect structure of degraded GaAsAs–GaAs double heterostructure lasers. Philosophical Magazine, 32, 745–54.CrossRefGoogle Scholar
Hutchinson, P. W. and Dobson, P. S. (1980). Climb assymmetry in degraded gallium arsenide lasers. Philosophical Magazine, 41, 601–14.CrossRefGoogle Scholar
Iber, H., Peiner, E. and Schlachetzki, A. (1996). The effect of dislocations on the optical absorption of heteroepitaxial InP and GaAs on Si. Journal of Applied Physics, 79, 9273–7.CrossRefGoogle Scholar
Im, H. J., Ding, Y., Pelz, J. P., Heying, B. and Speck, J. S. (2001). Characterization of individual threading dislocations in GaN using ballistic electron emission microscopy. Physical Review Letters, 87, 106802-1–106802-4.CrossRefGoogle ScholarPubMed
Ito, R., Nakashima, H. and Nakada, O. (1974). Growth of dark lines from crystal defects in GaAs–GaAlAs double heterostructure crystals. Japanese Journal of Applied Physics, 13, 1321–2.CrossRefGoogle Scholar
Jain, R. K. and Flood, D. J. (1993). Influence of the dislocation density on the performance of heteroepitaxial indium-phosphide solar-cells. IEEE Transactions on Electron Devices, 40, 1928–34.CrossRefGoogle Scholar
Jain, S. C., Willander, M., Narayan, J. and Overstraeten, R. (2000). III–nitrides: Growth, characterization, and properties. Journal of Applied Physics, 87, 965–1006.CrossRefGoogle Scholar
Jakubowicz, A. (1986). Theory of cathodoluminescence contrast from localized defects in semiconductors. Journal of Applied Physics, 59, 2205–9.CrossRefGoogle Scholar
Jakubowicz, A. and Habermeier, H.-U. (1985). Electron-beam-induced current investigations of oxygen precipitates in silicon. Journal of Applied Physics, 58, 1407–9.CrossRefGoogle Scholar
Jakubowicz, A., Bode, M. and Habermeier, H.-U. (1987). Simultaneous EBIC/CL investigations of dislocations in GaAs. In Microscopy of Semiconducting Materials 1987, Conference Series No. 87 (Bristol: Institute of Physics), pp. 763–8.Google Scholar
Jaszek, R. (2001). Carrier scattering by dislocations in semiconductors. Journal of Materials Science: Materials Electronics, 12, 1–9.Google Scholar
Jena, D., Gossard, A. C. and Mishra, U. K. (2000). Dislocation scattering in a two-dimensional electron gas. Applied Physics Letters, 76, 1707–9.CrossRefGoogle Scholar
Jena, D. and Mishra, U. K. (2002). Effect of scattering by strain fields surrounding edge dislocations on electron transport in two-dimensional electron gases. Applied Physics Letters, 80, 64–6.CrossRefGoogle Scholar
Jiang, F., Stavola, M., Rohatgi, A.et al. (2003). Hydrogenation of Si from SiNx(H) films: Characterization of H introduced into the Si. Applied Physics Letters, 83, 931–3.CrossRefGoogle Scholar
John, H. F. (1967). Silicon power device material problems. Proceedings of IEEE, 55, 1249–71.CrossRefGoogle Scholar
Johnston, W. D., Callahan, W. M. and Miller, B. T. (1974). Observation of dark-line degradation sites in a GaAs/GaAsAs DH laser material by etching and phase contrast microscopy. Journal of Applied Physics, 45, 505–7.CrossRefGoogle Scholar
Jones, R. (1979). Theoretical calculations of electron states associated with dislocations. Journal de Physique, C 6, 33–8.Google Scholar
Jones, R. (2000). Do we really understand dislocations in semiconductors?Materials Science and Engineering, B 71, 24–9.CrossRefGoogle Scholar
Jones, B. K. (2002). Electrical noise as a reliability indicator in electronic devices and components. IEE Proceedings – Circuit and Device Systems, 149, 13–22.CrossRefGoogle Scholar
Jones, R., Coomer, B. J., Goss, J. P., Oberg, S. and Briddon, P. R. (2000). Intrinsic defects and the D1 to D4 optical bands detected in plastically deformed Si. Physica Status Solidi, B 222, 133–40.3.0.CO;2-D>CrossRefGoogle Scholar
Jonker, G. H. (1964). Some aspects of semiconducting barium titanate. Solid-State Electronics, 7, 895–903.CrossRefGoogle Scholar
Joshi, R. P., Viswanadha, S., Jogai, B., Shah, P. and del Rosario, R. D. (2003). Analysis of dislocation scattering on electron mobility in GaN high electron mobility transistors. Journal of Applied Physics, 93, 10046–52.CrossRefGoogle Scholar
Joy, D. C. (1988). An introduction to Monte Carlo simulations. In Eurem 88, Conference Series No. 93, eds. Goodhew, P. J. and Dickinson, H. G. (Bristol: Institute of Physics), pp. 23–32.Google Scholar
Joy, D. C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis, Oxford: Oxford University Press.
Kamieniecki, E. (1979). Photoconductivity produced by polarized light in plastically deformed Ge. Journal de Physique, 40, Colloque C6, 87–9.Google Scholar
Kamins, T. (1998). Polycrystalline Silicon for Integrated Circuits and Displays (Boston: Kluwer), Chap. 5, pp. 195–243.CrossRefGoogle Scholar
Kamiya, T., Durrani, Z. A. K. and Ahmed, H. (2002). Control of grain-boundary tunneling barriers in polycrystalline silicon. Applied Physics Letters, 81, 2388–90.CrossRefGoogle Scholar
Kanda, H., Watanabe, K., Koizumi, S. and Teraji, T. (2003). Characterization of phosphorus doped CVD diamond films by cathodoluminescence spectroscopy and topography. Diamond and Related Materials, 12, 20–5.CrossRefGoogle Scholar
Kazmerski, L. L. (1980). Polycrystalline and Amorphous Thin Films and Devices (New York: Academic Press), pp. 59–133.Google Scholar
Kazmerski, L. L. (1991). Specific atom imaging, nanoprocessing and electrical nanoanalysis with scanning tunneling microscopy. Journal of Vacuum Science and Technology, B 9, 1549–56.CrossRefGoogle Scholar
Kiflawi, I. and Lang, A. R. (1974). Linearly polarised luminescence from linear defects in natural and synthetic diamond. Philosophical Magazine, 30, 219–23.CrossRefGoogle Scholar
Kiflawi, I. and Lang, A. R. (1976). On the correspondence between cathodoluminesence images and x-ray diffraction contrast images of individual dislocations in diamond. Philosophical Magazine, 33, 697–701.CrossRefGoogle Scholar
Kisielowski-Kemmerich, C. (1989). LCAO analysis of dislocation-related EPR spectra in deformed silicon. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford. Conf. Series No. 104 (Bristol: Institute of Physics), pp. 187–92.Google Scholar
Kisielowski-Kemmerich, C., Weber, G. and Alexander, H. (1985). In Proceedings of the Thirteenth International Conference on Defects in Semiconductors (Metallurgical Society of AIME, Warrendale, PA, 1985), p. 387.Google Scholar
Kisielowski, C., Plam, J., Bollig, B. and Alexander, H. (1991). Inhomogeneities in plastically deformed silicon single-crystals. I. ESR and photo-ESR investigations of p-doped and n-doped silicon. Physical Review, B44, 1588–99.CrossRefGoogle Scholar
Kittler, M. and Seifert, W. (1981). On the sensitivity of the EBIC technique as applied to defect investigations in silicon. Physica Status Solidi, A66, 573–83.CrossRefGoogle Scholar
Kittler, M. and Seifert, W. (1993a). On the origin of EBIC defect contrast in silicon: A reflection on injection- and temperature-dependent investigations. Physica Status Solidi, A 138, 687–93.CrossRefGoogle Scholar
Kittler, M. and Seifert, W. (1993b). Two classes of defect recombination behaviour in silicon as studied by SEM-EBIC. Scanning, 15, 316–21.CrossRefGoogle Scholar
Kittler, M. and Seifert, W. (1993c). On the sensitivity of the EBIC technique as applied to defect investigations in silicon. Physica Status Solidi, A 66, 573–83.CrossRefGoogle Scholar
Kittler, M. and Seifert, W. (1994). Two types of electron-beam-induced current behaviour of misfit dislocations in Si(Ge): Experimental observations and modelling. Materials Science and Engineering, B 24, 78–81.CrossRefGoogle Scholar
Kittler, M., Ulhaq-Bouillet, C. and Higgs, V. (1994). Recombination activity of ‘clean’ and contaminated misfit dislocations in Si(Ge) structures. Materials Science and Engineering, B 24, 52–5.CrossRefGoogle Scholar
Kittler, M., Ulhaq-Bouillet, C. and Higgs, V. (1995). Influence of copper contamination on recombination activity of misfit dislocations in SiGe/Si epilayers: temperature dependence of activity as a marker characterizing the contamination level. Journal of Applied Physics, 78, 4573–83.CrossRefGoogle Scholar
Kittler, M., Seifert, W. and Krüger, O. (2001). Electrical behaviour of crystal defects in silicon solar cells. Solid State Phenomena, 78–79, 39–48.CrossRefGoogle Scholar
Kittler, M., Seifert, W., Arguirov, T., Tarassov, I. and Ostapenko, S. (2002). Room-temperature luminescence and electron-beam-induced current (EBIC) recombination behaviour of crystal defects in multicrystalline silicon. Solar Energy Materials and Solar Cells, 72, 465–72.CrossRefGoogle Scholar
Kittler, M., Seifert, W. and Knobloch, K. (2003). Influence of contamination on the electrical activity of crystal defects in silicon. Microelectronic Engineering, 66, 281–28.CrossRefGoogle Scholar
Klassen, N. V. and Osipiyan, Yu. A. (1979). Optical properties of II–VI compounds with dislocations. Journal de Physique, C 6, 91–4.Google Scholar
Knobloch, K., Kittler, M. and Winfried Seifert, W. (2003). Influence of contamination on the dislocation-related deep level C1 line observed in deep-level-transient spectroscopy of n-type silicon: A comparison with the technique of electron-beam-induced current. Journal of Applied Physics, 93, 1069–74.CrossRefGoogle Scholar
Koley, G. and Spencer, M. G. (2001). Scanning Kelvin probe microscopy characterization of dislocations in III-nitrides grown by metalorganic chemical vapor deposition. Applied Physics Letters, 78, 2873–5.CrossRefGoogle Scholar
Kolyubakin, A. I., Osipiyan, Yu. A., Shevchenko, S. A. and Steinman, E. A. (1984). Dislocation luminescence in germanium. Soviet Physics Solid State, 26, 407–11.Google Scholar
Kozodoy, P., Ibbetson, J. P., Marchand, H.et al. (1998). Electrical characterization of GaN p-n junctions with and without threading dislocations. Applied Physics Letters, 73, 975–7.CrossRefGoogle Scholar
Kressel, H., Nelson, H., McFarlane, S. H.et al. (1969). Effect of substrate imperfections on GaAs injection lasers prepared by liquid-phase epitaxy. Journal of Applied Physics, 40, 3587–97.CrossRefGoogle Scholar
Kressel, H., Byer, N. E., Lockwood, H.et al. (1970). Evidence for role of certain metallurgical flaws in accelerating electroluminescent diode degradation. Metallurgical Transactions, 1, 635–8.CrossRefGoogle Scholar
Krtschil, A., Dadgar, A. and Krost, A. (2003). Decoration effects as origin of dislocation-related charges in gallium nitride layers investigated by scanning surface potential microscopy. Applied Physics Letters, 82, 2263–5.CrossRefGoogle Scholar
Krüger, O., Seifert, W., Kittler, M. and Vyvenko, O. F. (2000). Extension of hydrogen passivation of intragrain defects and grain boundaries in cast multicrystalline silicon. Physica Status Solidi, 222, 367–78.3.0.CO;2-E>CrossRefGoogle Scholar
Kuksenkov, D. V., Temkin, H., Osinsky, A., Gaska, R. and Khan, M. A. (1998). Low-frequency noise and performance of GaN p-n junction photodetectors. Journal of Applied Physics, 83, 2142–6.CrossRefGoogle Scholar
Kurtz, A. D., Kulin, S. A. and Averbach, B. L. (1956). Effects of growth rate on crystal perfection and lifetime in germanium. Journal of Applied Physics, 27, 1287–90.CrossRefGoogle Scholar
Kusanagi, S., Sekiguchi, T. and Sumino, K. (1992). Difference of the electrical properties of screw and 60° dislocations in silicon as detected with temperature-dependent electron beam induced current technique. Applied Physics Letters, 61, 792–4.CrossRefGoogle Scholar
Kusanagi, S., Sekiguchi, T., Shen, B. and Sumino, K. (1995). Electrical activity of extended defects and gettering of metallic impurities in silicon. Materials Science and Technology, 11, 685–90.CrossRefGoogle Scholar
Kveder, V. V., Labusch, R. and Osipiyan, Y. A. (1985). Frequency-dependence of the dislocation conduction in Ge and Si. Physica Status Solidi, A92, 293–302.CrossRefGoogle Scholar
Kveder, V. V., Osipiyan, Yu. A., Schröter, W. and Zoth, G. (1982). On the energy spectrum of dislocations in silicon. Physica Status Solidi, A 72, 701–13.CrossRefGoogle Scholar
Kveder, V., Kittler, M. and Schröter, W. (2001). Recombination activity of contaminated dislocations in silicon: A electron-beam-induced current contrast behaviour. Physical Review, B 63, 115208–1 to 115208–11.CrossRefGoogle Scholar
Kveder, V., Badylevich, M., Steinman, E.et al. (2004). Room-temperature silicon light-emitting diodes based on dislocation luminescence. Applied Physics Letters, 84, 2106–8.CrossRefGoogle Scholar
Kyser, D. F. and Wittry, D. B. (1964). Cathodoluminescence in gallium arsenide. In The Electron Microprobe, eds. McKinley, T. D., Heinrich, K. F. J. and Wittry, D. B. (New York: Wiley), pp. 691–714.Google Scholar
Labusch, R. (1997). Conductivity and photoconductivity at dislocations. Journal de Physique III, 7, 1411–24.CrossRefGoogle Scholar
Labusch, R. and Schröter, W. (1978). Electrical properties of dislocations in semiconductors. In Dislocations in Solids, 5, ed. Nabarro, F. R. N. (Amsterdam: North-Holland), pp. 127–91.Google Scholar
Landauer, R. (1954). Bound states in dislocations. Physical Review, 94, 1386–8.CrossRefGoogle Scholar
Lang, A. R. (1977). Defects in natural diamonds – recent observations by new methods. Journal of Crystal Growth, 42, 625–31.CrossRefGoogle Scholar
Lang, A. R. (1980). Polarized infrared cathodoluminescence from synthetic diamonds. Philosophical Magazine, B41, 689–98.CrossRefGoogle Scholar
Lang, R. G., Kren, J. G. and Patrick, W. J. (1963). Vacuum evaporation of cadmium telluride. Journal of the Electrochemical Society, 110, 407–12.Google Scholar
Langenkamp, M. and Breitenstein, O. (2002). Classification of shunting mechanisms in crystalline silicon solar cells. Solar Energy Materials Solar Cells, 72, 433–40.CrossRefGoogle Scholar
Leach, C. (2000). SEM based estimation of the grain boundary plane orientation in zinc oxide varistors using conductive mode microscopy. Scripta Materialia, 43, 529–34.CrossRefGoogle Scholar
Leach, C. (2001). Crystal plane influence of the EBIC contrast in zinc oxide varistors. Journal of the European Ceramic Society, 21, 2127–30.CrossRefGoogle Scholar
Leamy, H. J. (1982). Charge collection scanning electron microscopy. Journal of Applied Physics, 53, R51–R80.CrossRefGoogle Scholar
Lee, T. P. and Burrus, C. A. (1980). Dark current and breakdown characteristics of dislocation-free InP photodiodes. Applied Physics Letters, 36, 587–9.CrossRefGoogle Scholar
Lelikov, Yu. S., Rebane, Yu. T. and Shreter, Yu. G. (1989). Optical properties of dislocations in germanium crystals. In Structure and Properties of Dislocations in Semiconductors, Conference Series No. 104 (Bristol: Institute of Physics), pp. 119–29.Google Scholar
Lendvay, E. and Kovacs, P. (1966). Luminescence and impurity precipitation in ZnS single crystals with high Cu concentrations. In Proceedings of International Conference on Luminescence (Budapest Academiai Kiado), pp. 1098–101.Google Scholar
Lesniak, M. and Holt, D. B. (1983). Electrically active defects in Si photodetector devices. InInstitute of Physics Conference Series 67, pp. 439–44.Google Scholar
Lesniak, M. and Holt, D. B. (1987). Defect microstructure and microplasmas in silicon avalanche photodiodes. Journal of Materials Science, 22, 3547–55.CrossRefGoogle Scholar
Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A. (1995). High dislocation densities in high efficiency GaN-based light-emitting diodes. Applied Physics Letters, 66, 1249–51.CrossRefGoogle Scholar
Levade, C., Faress, A. and Vanderschaeve, G. (1994). A TEM in situ investigation of dislocation mobility in the II–VI semiconductor compound ZnS. A quantitative study of the cathodoplastic effect. Philosophical Magazine, A 69, 855–70.CrossRefGoogle Scholar
Lipson, H. G., Burstein, E. and Smith, P. L. (1955). Optical properties of plastically deformed germanium. Physical Review, 99, 444–5.CrossRefGoogle Scholar
Logan, R. A., Pearson, G. L. and Kleinman, D. A. (1959). Anisotropic mobilities in plastically deformed germanium. Journal of Applied Physics, 30, 885–95.CrossRefGoogle Scholar
Lohnert, K. and Kubalek, E. (1983). Characterization of semiconducting materials and devices by EBIC and CL techniques. In Microscopy of Semiconducting Materials1983, Conference Series No. 67 (Bristol: Institute of Physics), pp. 303–14.Google Scholar
Lohnert, K. and Kubalek, E. (1984). The cathodoluminescence contrast formation of localized non-radiative defects in semiconductors. Physica Status Solidi, A 83, 307–14.CrossRefGoogle Scholar
Lohnert, K., Hastenrath, M. and Kubalek, E. (1979). Spatially resolved cathodoluminescence studies of GaP LEDs in the scanning electron microscope using optical multichannel analysis. Scanning Electron Microscopy, I, 229–36.Google Scholar
Look, D. C. and Sizelove, J. R. (1999). Dislocation scattering in GaN. Physical Review Letters, 82, 1237–40.CrossRefGoogle Scholar
Louchet, F. and Thibault-Dessaux, J. (1987). Dislocation cores in semiconductors. From the ‘shuffle or glide’ dispute to the ‘glide and shuffle’ partnership. Review de Physique Appliquee, 22, 207–19.CrossRefGoogle Scholar
Lourenço, M. A., Siddiqui, M. S. A., Gwilliam, R. M., Shao, G. and Homewood, K. P. (2003). Efficient silicon light emitting diodes made by dislocation engineering. Physica, E 16, 376–81.CrossRefGoogle Scholar
Lüdemann, R. (1999). Hydrogen passivation of multicrystalline silicon solar cells. Materials Science and Engineering, B 58, 86–90.CrossRefGoogle Scholar
McCarthy, L., Smorchkova, I., Xing, H.et al. (2001). Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors. Applied Physics Letters, 78, 2235–7.CrossRefGoogle Scholar
McIntyre, R. J. (1961). Theory of microplasma instability in silicon. Journal of Applied Physics, 32, 983–95.CrossRefGoogle Scholar
McKay, K. G. (1954). Avalanche breakdown in silicon. Physical Review, 94, 877–84.CrossRefGoogle Scholar
Mackintosh, I. M. (1956). Effects at high-angle grain boundaries in indium antimonide. Journal of Electronics, 1, 554–8.Google Scholar
Maeda, K. and Takeuchi, S. (1983). Recombination enhanced mobility of dislocations in III–V-compounds. Journal de Physique, 44 (NC-4), 375–85.Google Scholar
Maeda, K., Sato, M., Kubo, A. and Takeuchi, S. (1983). Quantitative measurements of recombination enhanced dislocation glide in gallium arsenide. Journal of Applied Physics, 54, 161–8.CrossRefGoogle Scholar
Maeda, K. and Takeuchi, S. (1996). Enhancement of dislocation mobility in semiconducting crystals by electronic excitation. In Dislocations in Solids, 10, eds. Nabarro, F. R. N. and Duesbery, M. S. (Amsterdam: Elsevier), pp. 443–504.Google Scholar
Maeda, K., Suzuki, K., Yamashita, Y. and Mera, Y. (2000). Dislocation motion in semiconducting crystals under the influence of electronic perturbations. Journal of Physics: Condensed Matter, 12, 10079–91.Google Scholar
Maestre, D., Cremades, A. and Piqueras, J. (2004). Direct observation of potential barrier formation at grain boundaries of SnO2 ceramics. Semiconductor Science and Technology, 19, 1236–9.CrossRefGoogle Scholar
Magnea, N., Petroff, P. M., Capasso, F., Logan, R. A. and Foy, W. (1985). Microplasma characteristics in InP-In0.53Ga0.47As long wavelength avalanche photodiodes. Applied Physics Letters, 46, 66–8.CrossRefGoogle Scholar
Mahajan, S. (1981). The interrelationship between structure and properties in InP and InGaAsP materials. In Defects in Semiconductors. Proceedings of Materials Research Society Annual Meeting, eds. Narayan, J. and Tan, T. Y. (New York: North-Holland), pp. 465–79.Google Scholar
Mahajan, S. (2000). Defects in semiconductors and their effects on devices. Acta Materialia, 48, 137–49.CrossRefGoogle Scholar
Mahajan, S., Johnston, W. D., Pollack, M. A. and Nahorny, R. E. (1979). The mechanism of optically induced degradation in InP/In1-xGaxAsyP1-y heterostructures. Applied Physics Letters, 34, 717–19.CrossRefGoogle Scholar
Masut, R., Penchina, C. M. and Farvaque, J. L. (1982). Occupation statistics of dislocation deep levels in III–V compounds. Journal of Applied Physics, 53, 4964–9.CrossRefGoogle Scholar
Matare, H. F. (1955). Grain boundaries and transistor action. Proceedings of the Institute of Radio Engineers, 43, 375–8.Google Scholar
Matare, H. F. (1956a). Zum elektrischen verhalten von bikristallzwischenschichten. Zeitschrift fur Physik, 145, 206–34.CrossRefGoogle Scholar
Matare, H. F. (1956b). Korngrenzen-transistoren. Elektronische Rundschau, 8, 209–11.Google Scholar
Matare, H. F. (1956c). Korngrenzen-transistoren. Elektronische Rundschau, 9, 253–5.Google Scholar
Matare, H. F. and Wegener, H. A. R. (1957). Oriented growth and definition of medium angle semiconductor bicrystals. Zeitschrift fur Physik, 148, 631–45.CrossRefGoogle Scholar
Matragrano, M. J., Watson, G. P., Ast, D. G., Anderson, T. J. and Pathangey, B. (1993). Passivation of deep level states caused by misfit dislocations in InGaAs on patterned GaAs. Applied Physics Letters, 62, 1417–19.CrossRefGoogle Scholar
McNally, P. J., McCaffrey, J. K. and Baric, A. (1995). Piezoelectrically-active defects and their impact on the performance of GaAs MESFETs. Journal of Materials Processing Technology, 55, 303–10.CrossRefGoogle Scholar
McNally, P. J., Cooper, L. S., Rosenburg, J. J. and Jackson, T. N. (1988). Investigation of stress effects on the direct current characteristics of GaAs metal semiconductor field effect transistors through the use of externally applied loads. Applied Physics Letters, 52, 1800–2.CrossRefGoogle Scholar
Melliar-Smith, C. M. (1977). Crystal defects in integrated circuits. In Treatise on Materials Science and Technology, ed. Herman, H., 11. Properties and Microstructure, ed. R. K. MacCrone (New York: Academic Press).Google Scholar
Merten, L. (1964a). Modell einer schraubenversetzung in piezoelektrischen kristallen I and II (Model of a screw dislocation in piezoelectric crystals I and II). Physik der Kondensiterten Materie, 2, 53–79.Google Scholar
Merten, L. (1964b). Piezoelektrische potentialfelder um stufenversetzungen belibiger richtung in piezoelektrischen kristallen mit elastischer isotropie. Zeitschrift fur Naturforschung, 19a, 1161–9.Google Scholar
Mettler, K. and Pawlik, D. (1972). Effect of dislocations on the degradation of silicon-doped GaAs luminescent diodes. Siemens Forschungs und Entwicklungsberichte, 1, 274–8.Google Scholar
Meyer, M., Miles, M. H. and Ninomiya, T. (1967). Some electrical and optical effects of dislocations on semiconductors. Journal of Applied Physics, 38, 4481–6.CrossRefGoogle Scholar
Miller, E. J., Schaadt, D. M., Yu, E. T.et al. (2002). Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope. Journal of Applied Physics, 91, 9821–6.CrossRefGoogle Scholar
Miller, E. J., Schaadt, D. M., Yu, E. T.et al. (2003a). Origin and microscopic mechanism for suppression of leakage currents in Schottky contacts to GaN grown by molecular-beam epitaxy. Journal of Applied Physics, 94, 7611–15.CrossRefGoogle Scholar
Miller, E. J., Schaadt, D. M., Yu, E. T.et al. (2003b). Reverse-bias leakage current reduction in GaN Schottky diodes by electrochemical surface treatment. Applied Physics Letters, 82, 1293–5.CrossRefGoogle Scholar
Miller, E. J., Yu, E. T., Waltereit, P. and Speck, J. S. (2004). Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy. Applied Physics Letters, 84, 535–7.CrossRefGoogle Scholar
Mil'shtein, S. (1999). Dislocations in microelectronics. Physica Status Solidi, A 171, 371–6.3.0.CO;2-Y>CrossRefGoogle Scholar
Mil'shtein, S. (2002). Dislocation-induced noise in semiconductors. Journal of Physics: Condensed Matter, 14, 13387–95.Google Scholar
Mironov, O. A., Savitskii, B. A., Sipatov, A. Y.et al. (1988). Superconductivity of semiconductor superlattices based on lead chalcogenides. JETP Letters, 48, 106–9.Google Scholar
Mishima, T. D., Keay, J. C., Goel, N.et al. (2004). Structural defects in InSb/AlxIn1−xSb quantum wells grown on GaAs (0 0 1) substrates. Physica, E 21, 770–3.CrossRefGoogle Scholar
Mitsuhashi, H., Komura, H. and Chikawa, J. (1967). Dislocation effects on the luminescence of CdS crystals. In II-VI Semiconducting Compounds, International Conference, ed. Thomas, D. G. (New York: Benjamin), pp. 179–89.Google Scholar
Miyazawa, S. and Hyuga, F. (1986). Proximity effect of dislocations on GAAs MESFET threshold voltage. IEEE Transactions on Electron Devices, ED- 33, 227–33.CrossRefGoogle Scholar
Möller, H. J. (1993). Semiconductors for Solar Cells. Boston: Artech House.
Möller, H. J. (1996). Multicrystalline silicon for solar cells. Solid State Phenomena, 47–48, 127–42.Google Scholar
Monemar, B. A. and Woolhouse, G. R. (1977). Optical studies of defects and degradation in GaAs–GaAlAs double-heterostructure laser material. In Gallium Arsendie and Related Compounds 1976. Conference Series No. 33A (Bristol: Institute of Physics), pp. 400–10.Google Scholar
Montelius, L., Owman, F., Pistol, M.-E. and Samuelson, L. (1991). Low temperature injection luminescence using a scanning tunneling microscope. In Microscopy of Semiconducting Materials 1991. Conference Series No. 117 (Bristol: Institute of Physics), pp. 719–22.Google Scholar
Montelius, L., Pistol, M.-E. and Samuelson, L. (1992). Low-temperature luminescence due to minority carrier injection from the scanning tunneling microscope tip. Ultramicroscopy, 42–44, 210–14.CrossRefGoogle Scholar
Morrison, S. R. (1956). Recombination of electrons and holes at dislocations. Physical Review, 104, 619–23.CrossRefGoogle Scholar
Morrison, S. R. (1992). 1/f noise from levels in a linear or planar array. III. Trapped carrier fluctuations at dislocations; IV. The origin of the Hooge parameter. Journal of Applied Physics, 72, 4104–12 and 4113–17.CrossRefGoogle Scholar
Mueller, R. K. (1959a). Transient response of grain boundaries and its application for a novel light sensor. Journal of Applied Physics, 30, 1004–10.CrossRefGoogle Scholar
Mueller, R. K. (1959b). Capture diameter of dislocations in low-angle grain boundaries in germanium. Journal of Physics and Chemistry of Solids, 8, 157–61.CrossRefGoogle Scholar
Mueller, R. K. and Jacobson, R. L. (1959). Grain boundary photovoltaic cell. Journal of Applied Physics, 30, 121–2.CrossRefGoogle Scholar
Mueller, R. K. and Jacobson, R. L. (1962). Alpha and beta grain boundaries in indium antimonide. Journal of Applied Physics, 33, 2341–5.CrossRefGoogle Scholar
Mueller, R. K. and Maffitt, K. N. (1964). Grain Boundary Conductance in InSb. Journal of Applied Physics, 33, 734–5.CrossRefGoogle Scholar
Murase, K., Ishida, S., Takaoka, S.et al. (1986). Superconducting behavior in PbTe-SnTe superlattices. Surface Science, 170, 486–90.CrossRefGoogle Scholar
Myers, S. M., Seibt, M. and Schröter, W. (2000). Mechanisms of transition-metal gettering in silicon. Journal of Applied Physics, 88, 3795–819.CrossRefGoogle Scholar
Myhajlenko, S. S., Batstone, J. L., Hutchinson, H. J. and Steeds, J. W. (1984). Luminescence studies of individual dislocations in II–VI (ZnSe) and III–V (InP) semiconductors. Journal of Physics C: Solid State Physics, 17, 6477–92.CrossRefGoogle Scholar
Naidenkova, M., Goorsky, M. S., Sandhu, R.et al. (2002). Interfacial roughness and carrier scattering due to misfit dislocations in In0.52Al0.48As/In0.75Ga0.25As/InP structures. Journal of Vacuum Science and Technology, B20, 1205–8.CrossRefGoogle Scholar
Nakashima, H., Kishino, S., Chinone, N. and Ito, R. (1977). Growth and propagation mechanism of 〈110〉-oriented dark-line defects in GaAs–Ga1-xAlxAs double hererostructure crystals. Journal of Applied Physics, 48, 2771–5.CrossRefGoogle Scholar
Negrii, V. D. (1992). Dynamic and optical properties of screw dislocations introduced by plastic deformation of CdS crystals at 77–4.2 K. Journal of Crystal Growth, 117, 672–6.CrossRefGoogle Scholar
Negrii, V. D. and Osipyan, (1978). Y. A. Influence of dislocations on radiative recombination processes in cadmium-sulfide. Soviet Physics Solid State, 20, 432–6.Google Scholar
Negrii, V. D. and Osipiyan, Yu. A. (1979). Dislocation emission in CdS. Physica Status Solidi, A55, 583–8.CrossRefGoogle Scholar
Negrii, V. D. and Osipyan, Y. A. (1982a). Cooperative behavior of defects introduced by plastic-deformation in cadmium-sulfide crystals. JETP Letters, 35, 598–601.Google Scholar
Negrii, V. D. and Osipyan, Yu. A. (1982b). Distinctive features of the luminescence of cadmium sulfide deformed at low temperatures. Soviet Physics Solid State, 24, 197–9.Google Scholar
Negrii, V. D., Osipiyan, Yu. A. and Lomak, N. V. (1991). Dislocation structure and motion in CdS crystals. Physica Status Solidi, A126, 49–61.CrossRefGoogle Scholar
Neubert, D., Kos, J. and Hahn, D. (1973). Problems of lifetime doping by dislocation in silicon. In Solid State Devices 1972. Conference Series No. 15. (London: Institute of Physics), p. 220 (abstract only).Google Scholar
Newman, R. (1955). Visible light from a silicon p-n junction. Physical Review, 100, 700–3.CrossRefGoogle Scholar
Newman, R. (1957). Recombination radiation from deformed and alloyed germanium p-n junctions at 80° K. Physical Review, 105, 1715–20.CrossRefGoogle Scholar
Ng, W. L., Lourenço, M. A., Gwilliam, R. M.et al. (2001). An efficient room-temperature silicon-based light-emitting diode. Nature, 410, 192–4.CrossRefGoogle ScholarPubMed
Nickel, N. H. (1999). Hydrogen in semiconductors II. In Semiconductors and Semimetals, Volume 61, eds. Willardson, R. K., Beer, A. C. and Weber, E. R. (San Diego: Academic Press).Google Scholar
Nikitenko, V. I., Farber, B. Ya. and Yakimov, E. B. (1981). Asymmetry of dislocation mobility in semiconductors. JETP Letters, 34, 233–6.Google Scholar
O'Hara, S., Hutchinson, P. W., Davis, R. and Dobson, P. S. (1977). Defect-induced degradation in high radiance lamps. In Gallium Arsenide and Related Compounds 1976. Conference Series No. 33A (Bristol: Institute of Physics), pp. 379–87.Google Scholar
Ohori, T., Ohkubo, S., Kasai, K. and Komeno, J. (1994). Effect of threading dislocations on mobility in selectively doped heterostructures grown on Si substrates. Journal of Applied Physics, 75, 3681–3.CrossRefGoogle Scholar
Okada, J. (1955). Effects of dislocations on minority carrier lifetime in germanium. Journal of the Physical Society of Japan, 10, 1110–11.CrossRefGoogle Scholar
Omling, P., Weber, E. R., Montelius, L, Alexander, H. and Michel, J. (1985). Electrical properties and point defects in plastically deformed silicon. Physical Review, B22, 6571–81.CrossRefGoogle Scholar
Ono, H. and Sumino, K. (1985). Defect states in p-type silicon crystals induced by plastic deformation. Journal of Applied Physics, 57, 287–92.CrossRefGoogle Scholar
Orton, J. W. and Powell, M. J. (1980). The Hall effect in polycrystalline and powdered semiconductors. Reports on Progress in Physics, 43, 1263–307.CrossRefGoogle Scholar
Osipyan, Yu. A. (1981). Dislocation microwave electrical conductivity of semiconductors and electron-dislocation spectrum. Crystal Research and Technology, 16, 239–46.Google Scholar
Osipyan, Yu. A. (1983). Dislocation electron spectrum and the mechanism of dislocation microwave conduction in semiconductors. Journal de Physique, C4, 103–11.Google Scholar
Osipiyan, Yu. A. (1989). Electrical and optical phenomena of II–VI semiconductors associated with dislocations. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford, Conference Series No. 104 (Bristol: Institute of Physics), pp. 109–18.Google Scholar
Osipyan, Yu. A. and Steinman, E. A. (1973). The effect of dislocations on the luminescence spectra of CdS and CdSe single crystals. In Luminescence of Crystals, Molecules and Solutions, ed. Williams, F. (New York: Plenum Press), pp. 467–72.Google Scholar
Osipyan, Yu. A. and Negrii, V. D. (1987). Optical properties of configuration defects arising under low-temperature plastic deformation of CdS crystals. In Microscopy of Semiconducting Materials 1987, Conference Series No. 87 (Bristol: Institute of Physics), pp. 333–8.Google Scholar
Osipyan, Yu. A. and Negrii, V. D. (1989). Optical studies of cadmium sulphide crystals plastically deformed at low temperatures. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford, Conference Series No. 104 (Bristol: Institute of Physics), pp. 217–20.Google Scholar
Osipyan, Y. A. and Petrenko, V. F. (1975). Short-circuit effect in plastic-deformation of ZnS and motion of charged dislocations. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 69, 1362–71.Google Scholar
Osipiyan, Yu. A. and Smirnova, I. S. (1968). Perfect dislocations in the wurtzite lattice. Physica Status Solidi, 30, 19–29.CrossRefGoogle Scholar
Osipyan, Yu. A., Timofeev, V. B. and Shteinman, E. A. (1972). Exciton scattering by dislocations in the CdSe crystal. Soviet Physics JETP, 35, 146–9.Google Scholar
Osipyan, Yu. A., Petrenko, V. F., Zaretskii, A. V. and Whitworth, R. W. (1986). Properties of II–VI semiconductors associated with moving dislocations. Advances in Physics, 35, 115–88.CrossRefGoogle Scholar
Osvenskii, V. B., Proshko, G. P. and Milvidskii, M. G. (1967). Effect of dislocations on the structure of diffused p-n junctions in GaAs and on recombination radiation parameters. Soviet Physics Semiconductors, 1, 755–60.Google Scholar
Oualid, J., Singal, C. M., Dugas, J., Crest, J. P. and Amzil, H. (1984). Influence of illumination on the grain-boundary recombination velocity in silicon. Journal of Applied Physics, 55, 1197–205.CrossRefGoogle Scholar
Pankove, J. I. and Johnson, N. M. (1991). Hydrogen in semiconductors. In Semiconductors and Semimetals, Volume 34, eds. Willardson, R. K. and Beer, A. C. (San Diego: Academic Press).Google Scholar
Parish, G., Keller, S., Kozodoy, P.et al. (1999). High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN. Applied Physics Letters, 75, 247–9.CrossRefGoogle Scholar
Pasemann, L. (1981). A contribution to the theory of the EBIC contrast of lattice defects in semiconductors. Ultramicroscopy, 6, 237–50.CrossRefGoogle Scholar
Pasemann, L. and Hergert, W. (1986). A theoretical study of the determination of the depth of a dislocation by combined use of EBIC and CL technique. Ultramicroscopy, 19, 15–22.CrossRefGoogle Scholar
Pasemann, L., Blumtritt, H. and Gleichmann, R. (1982). Interpretation of the EBIC contrast of dislocations in silicon. Physica Status Solidi, A70, 197–209.CrossRefGoogle Scholar
Pavesi, L. (2003). Will silicon be the photonic material of the third millennium. Journal of Physics: Condensed Matter, 15, R1169–R1196.Google Scholar
Pearson, G. L. and Riesz, R. P. (1959). High-speed switching diodes from plastically deformed germanium. Journal of Applied Physics, 30, 311–12.CrossRefGoogle Scholar
Pearton, S. J., Wu, C. S., Stavola, M.et al. (1987). Hydrogenation of GaAs on Si. Effects on diode reverse leakage current. Applied Physics Letters, 51, 496–8.CrossRefGoogle Scholar
Pearton, S. J., Corbett, J. W. and Stavola, M. (1992). Hydrogen in Crystalline Semiconductors. Berlin: Springer.CrossRefGoogle Scholar
Peiner, E., Guttzeit, A. and Wehmann, H. H. (2002). The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III-V compound semiconductors on silicon. Journal of Physics: Condensed Matter, 14, 13195–201.Google Scholar
Pennycook, S. J., Brown, L. M. and Craven, A. J. (1980). Observation of cathodoluminescence at single dislocations by STEM. Philosophical Magazine, A41, 589–600.CrossRefGoogle Scholar
Petrenko, V. F. (1982). Doctor of Science Thesis, Institute of Solid State Physics, Chernogolovka as quoted by Osipiyan et al. (1986).
Petrenko, V. F. and Whitworth, R. W. (1980). Charged dislocations and the plastic-deformation of II–VI compounds. Philosophical Magazine, A41, 681–99.CrossRefGoogle Scholar
Petroff, P. (1979). Point defects and dislocation climb in III–V compounds. Journal de Physique, C6, 201–5.Google Scholar
Petroff, P. (1981). Luminescence properties of GaAs epitaxial layers grown by liquid phase epitaxy and molecular beam epitaxy. In Defects in Semiconductors. Proceedings of the Materials Research Society (New York: North-Holland), pp. 457–64.Google Scholar
Petroff, P. and Hartman, R. L. (1973). Defect structure introduced during operation of heterojunction GaAs lasers. Applied Physics Letters, 23, 469–71.CrossRefGoogle Scholar
Petroff, P. and Hartman, R. L. (1974). Rapid degradation phenomenon in heterojunction GaAsAs–GaAs lasers. Journal of Applied Physics, 45, 3899–903.CrossRefGoogle Scholar
Petroff, P. M. and Lang, D. V. (1977). New spectroscopic technique for imaging spatial-distribution of nonradiative defects in a scanning-transmission electron-microscope. Applied Physics Letters, 31, 60–2.CrossRefGoogle Scholar
Petroff, P. M., Kimerling, L. C. and Johnston, W. D. (1977). Electronic excitation effects on the mobility of point defects and dislocations in GaAlAs-GaAs heterostructures. In Radiation Effects in Semiconductors 1976, Conference Series No. 31 (Bristol: Institute of Physics), pp. 362–7.Google Scholar
Petroff, P., Lang, D. V., Logan, R. A. and Johnston, W. D. (1978a). Deep level–dislocation interactions in Ga1-xAlxAs (DH) structures. In Defects and Radiation Effects in Semiconductors 1978. Conference Series No. 46 (Bristol: Institute of Physics), pp. 427–32.Google Scholar
Petroff, P., Lang, D. V., Strudel, J. L. and Logan, R. A. (1978b). Scanning transmission electron microscopy techniques for simultaneous electronic analysis and observation of defects in semiconductors. In SEM 1978, I (Chicago: SEM Inc), pp. 325–32.Google Scholar
Petroff, P. M., Lang, D. V., Strudel, D. L. and Savage, A. (1978c). New STEM spectroscopic techniques for simultaneous electronic analysis and observation of defects in semiconductor materials and devices. In Proceedings of Ninth International Congress on Electron Microscopy, Toronto 1978, 1 (Toronto: Microscopical Society of Canada), pp. 130–1.Google Scholar
Petroff, P. M., Logan, R. A. and Savage, A. (1980a). Nonradiative recombination at dislocations in III–V compound semiconductors. Physical Review Letters, 44, 287–91.CrossRefGoogle Scholar
Petroff, P. M., Logan, R. A. and Savage, A. (1980b). Nonradiative recombination at dislocations in III–V compound semiconductors. Journal of Microscopy, 118, 255–61.CrossRefGoogle Scholar
Pey, K. L., Chan, D. S. H. and Phang, J. C. H. (1993a). A numerical method for simulating cathodoluminescence contrast from localized defects. In Microscopy of Semiconducting Materials 1993, Conference Series No. 134 (Bristol: Institute of Physics), pp. 687–92.Google Scholar
Pey, K. L., Phang, J. C. H. and Chan, D. S. H. (1993b). Investigation of dislocations in GaAs using cathodoluminescence in the scanning electron microscope. Scanning Microscopy, 7, 1195–206.Google Scholar
Pey, K. L., Chan, D. S. H. and Phang, J. C. H. (1995a). Cathodoluminescence contrast of localized defects Part I. Numerical model for simulation. Scanning Microscopy, 9, 355–66.Google Scholar
Pey, K. L., Chan, D. S. H. and Phang, J. C. H. (1995b). Cathodoluminescence contrast of localized defects Part II. Defect investigation. Scanning Microscopy, 9, 367–80.Google Scholar
Pfann, W. G. (1961). Improvement of semiconducting devices by elastic strain. Solid State Electronics, 3, 261–7.CrossRefGoogle Scholar
Pike, G. E. (1982). Electronic properties of ZnO varistors: a new model. In Grain Boundaries in Semiconductors, Materials Research Society Symposium Proceedings, 5, eds. Leamy, H. J., Pike, G. E. and Seager, C. H. (Amsterdam: North-Holland), pp. 369–80.Google Scholar
Pike, G. E. and Seager, C. H. (1979). The DC voltage dependence of semiconductor grain-boundary resistance. Journal of Applied Physics, 50, 3414–22.CrossRefGoogle Scholar
Pödör, B. (1966). Electron mobility in plastically deformed germanium. Physica Status Solidi, 16, K167.CrossRefGoogle Scholar
Queisser, H. J. (1963). Properties of twin boundaries in silicon. Journal of the Electrochemical Society, 110, 52–6.CrossRefGoogle Scholar
Queisser, H. J. (1969). Observations and properties of lattice defects in silicon. In Semiconductor Silicon, eds. Haberecht, R. R. and Kern, E. L. (New York: Electrochemical Society), pp. 585–95.Google Scholar
Queisser, H. J. and Haller, E. E. (1998). Defects in semiconductors: Some fatal, some vital. Science, 281, 945–50.CrossRefGoogle ScholarPubMed
Radzimski, Z. J., Zhou, T. Q., Buczkowski, A. B. and Rozgonyi, G. A. (1991). Electrical activity of dislocations: Prospects for practical utilization. Applied Physics, A53, 189–93.CrossRefGoogle Scholar
Rasul, A. and Davidson, S. M. (1977). SEM measurements of minority carrier lifetimes at dislocations in GaP, employing photon counting. In Scanning Electron Microscopy 1977/I, ed. Johari, O. (Chicago: SEM Inc.), pp. 233–9.Google Scholar
Read, W. T. (1954a). Theory of dislocations in germanium. Philosophical Magazine, 45, 775–96.Google Scholar
Read, W. T. (1954b). Statistics of the occupation of dislocation acceptor centres. Philosophical Magazine, 45, 1119–28.Google Scholar
Read, W. T. (1955). Scattering of electrons by charged dislocations in semiconductors. Philosophical Magazine, 46, 111–31.Google Scholar
Rebane, Y. T. and Shreter, Y. G. (1993). g-tensors of electrons bound to 60°-dislocations in Ge and Si. Physics and Technology, p. 35.Google Scholar
Rebane, Y. T., Shreter, Y. G. and Albrecht, M. (1997). Excitons bound to stacking faults in wurtzite GaN. In Materials Research Society Symposium – Proceedings, 468, Gallium Nitride and Related Materials II, 1997, pp. 179–82.Google Scholar
Reddy, C. V. and Narayanamurti, V. (2001). Characterization of nanopipes/dislocations in silicon carbide using ballistic electron emission microscopy. Journal of Applied Physics, 89, 5797–9.CrossRefGoogle Scholar
Ringel, S. A. (1997). Hydrogen-extended defect interactions in heteroepitaxial InP materials and devices. Solid-State Electronics, 41, 359–80.CrossRefGoogle Scholar
Robertson, M. J., Wakefield, B. and Hutchinson, P. (1981). Strain-related degradation phenomena in long-lived GaAlAs stripe lasers. Journal of Applied Physics, 52, 4462–6.CrossRefGoogle Scholar
Robins, L. H., Cook, L. P., Farabaugh, E. N. and Feldman, A. (1989). Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapor deposition. Physical Review, B39, 13367–77.CrossRefGoogle Scholar
Romero, M. J., Al-Jassim, M. M., Dhere, R. G.et al. (2002a). Beam injection methods for characterizing thin-film solar cells. Progress in Photovoltaics, 10, 445–55.CrossRefGoogle Scholar
Romero, M. J., Albin, D. S., Al-Jassim, M. M.et al. (2002b). Cathodoluminescence of Cu diffusion in CdTe thin films for CdTe/CdS solar cells. Applied Physics Letters, 81, 2962–4.CrossRefGoogle Scholar
Rose, D. J. (1957). Microplasmas in silicon. Physical Review, 105, 413–18.CrossRefGoogle Scholar
Roseman, R. D. and Mukherjee, N. (2003). PTCR effect in BaTiO3: Structural aspects and grain boundary potentials. Journal of Electroceramics, 10, 117–35.CrossRefGoogle Scholar
Ross, F. M., Hull, R., Bahnck, D.et al. (1993). Changes in electrical device characteristics during the in situ formation of dislocations. Applied Physics Letters, 62, 1426–8.CrossRefGoogle Scholar
Rozgonyi, G. A., Petroff, P. M. and Panish, M. B. (1974a). Elimination of dislocations in heteroepitaxial layers by the controlled introduction of interfacial misfit dislocations. Applied Physics Letters, 24, 251–4.CrossRefGoogle Scholar
Rozgonyi, G. A., Petroff, P. M. and Panish, M. B. (1974b). Control of lattice parameters and dislocations in the system (Ga1-xAlxAs1-yPy/GaAs). Journal of Crystal Growth, 27, 106–17.CrossRefGoogle Scholar
Rozgonyi, G. A., Salih, A. S. M., Radzimski, Z. J.et al. (1987). Defect engineering for VLSI epitaxial silicon. Journal of Crystal Growth, 85, 300–7.CrossRefGoogle Scholar
Rozgonyi, G. A. and Kola, R. R. (1989). Defect engineering for ULSI epitaxial silicon. Solid State Phenomena, 6–7, 143–58.CrossRefGoogle Scholar
Ruan, J., Choyke, W. J. and Partlow, W. D. (1991). Cathodoluminescence and annealing study of plasma-deposited polycrystalline diamond films. Journal of Applied Physics, 69, 6632–6.CrossRefGoogle Scholar
Ruan, J., Kobashi, K. and Choyke, W. J. (1992). On the ‘band-A’ emission and boron related luminescence in diamond. Applied Physics Letters, 60, 3138–40.CrossRefGoogle Scholar
Salerno, J. P., Gale, R. P., Fan, J. C. C. and Vaughan, J. (1981). Scanning cathodoluminescence microscopy of polycrystalline GaAs. In Defects in Semiconductors. Proceedings of Materials Research Society Annual Meeting, eds. Narayan, J. and Tan, T. Y. (New York: North-Holland), pp. 509–14.Google Scholar
Samuelson, L., Gustafsson, A., Lindahl, J.et al. (1994a). Scanning tunneling microscope and electron beam induced luminescence in quantum wires. Journal of Vacuum Science and Technology, B12, 2521–6.CrossRefGoogle Scholar
Sauer, R., Weber, J., Stolz, J., Weber, E. R., Kusters, K. H. and Alexander, H. (1985). Dislocation-related photoluminescence in silicon. Applied Physics, A36, 1–13.Google Scholar
Seto, J. Y. W. (1975). The electrical properties of polycrystalline silicon films. Journal of Applied Physics, 46, 5247–54.CrossRefGoogle Scholar
Schmidt, T. M., Justo, J. F. and Fazzio, A. (2000). The effect of a stacking fault on the electronic properties of dopants in gallium arsenide. Journal of Physics: Condensed Matter, 12, 10235–9.Google Scholar
Schreiber, J. and Hergert, W. (1989). Combined application of SEM-CL and SEM-EBIC for the investigation of compound semiconductors. In International Symposium on the Structure and Properties of Dislocations in Semiconductors, 1989. Conf. Series No. 104 (Bristol: Inst. Phys.), pp. 97–107.Google Scholar
Schreiber, J. and Hildebrandt, S. (1991). Quantitative evaluation of recombination activity of dislocations by combined SEM-CL/EBIC. Journal de Physique, C6, 15–19.Google Scholar
Schreiber, J. and Vasnyov, S. (2004). The dynamic mode of high-resolution cathodoluminescence microscopy. Journal of Physics: Condensed Matter, 16, S75–S84.Google Scholar
Schreiber, J., Hergert, W. and Hildebrandt, S. (1991). Combined application of SEM-CL and SEM-EBIC for the investigation of compound semiconductors. Applied Surface Science, 50, 181–5.CrossRefGoogle Scholar
Schreiber, J., Uniewski, H., Hildebrandt, S., Hoering, L. and Leipner, H. S. (1997). Distinction of the recombination properties and identification of Y luminescence at glide dislocations in CdTe. In Microscopy of Semiconducting Materials 1997. Conference Series No. 157 (Bristol: Institute of Physics), pp. 651–4.Google Scholar
Schreiber, J., Hoering, L., Uniewski, H., Hildebrandt, S. and Leipner, H. S. (1999a). Recognition and distribution of A(g) and B(g) dislocations in indentation deformation zones on {111} and {110} surfaces of CdTe. Physica Status Solidi, A171, 89–97.3.0.CO;2-D>CrossRefGoogle Scholar
Schreiber, J., Hilpert, U., Hoering, L.et al. (1999b). Study of plastic relaxation of layer stress in ZnSe/GaAs (001) heterostructures. In Microscopy of Semiconducting Materials 1999. Conference Series No. 164 (Bristol: Institute of Physics), pp. 299–304.Google Scholar
Schreiber, J., Hilpert, U., Hoering, L.et al. (2000). Luminescence studies on plastic stress relaxation in ZnSe/GaAs (001). Physica Status Solidi, A222, 169–77.3.0.CO;2-E>CrossRefGoogle Scholar
Schreiber, J. and Vasnyov, S. (2004). The dynamic mode of high-resolution cathodoluminescence microscopy. Journal of Physics: Condensed Matter, 16, S75–S84.Google Scholar
Schröter, W. and Cerva, H. (2002). Interaction of point defects with dislocations in silicon and germanium: Electrical and optical effects. Solid State Phenomena, 85–86, 67–143.Google Scholar
Schröter, W., Scheibe, E. and Schoen, H. (1980). Energy spectra of dislocations in silicon and germanium. Journal of Microscopy, 118, 23–34.CrossRefGoogle Scholar
Schröter, W., Queisser, I. and Kronewitz, J. (1989). Capacitance transient spectroscopy of dislocations in semiconductors. In Structure and Properties of Dislocations in Semiconductors 1989. Conference Series No. 104 (Bristol: Institute of Physics), pp. 75–84.Google Scholar
Schröter, W., Kronewitz, J., Gnauert, U., Riedel, F. and Seibt, M. (1995). Bandlike and localized states at extended defects in silicon. Physical Review, B52, 13726–9.CrossRefGoogle Scholar
Schröter, W., Kveder, V. and Hedemann, H. (2002a). Electrical effects of point defect clouds at dislocations in silicon, studied by deep level transient spectroscopy. Solid State Phenomena, 82–84, 213–18.Google Scholar
Schröter, W., Hedemann, H., Kveder, V. and Riedel, F. (2002b). Measurements of energy spectra of extended defects. Journal of Physics: Condensed Matter, 14, 13047–59.Google Scholar
Schumann, P. A. and Rideout, A. J. (1964). Reduction of the turn-off delay of a germanium NPN mesa by plastic deformation. Solid State Electronics, 7, 849–51.CrossRefGoogle Scholar
Seager, C. H. (1985). Grain boundaries in polycrystalline silicon. Annual Review of Materials Science, 15, 271–302.CrossRefGoogle Scholar
Seager, C. H. and Ginley, D. S. (1979). Passivation of grain boundaries in polycrystalline silicon. Applied Physics Letters, 34, 337–40.CrossRefGoogle Scholar
Seager, C. H., Ginley, D. S. and Zook, J. D. (1980). Improvement of polycrystalline silicon solar cells with grain-boundary hydrogenation techniques. Applied Physics Letters, 36, 831–3.CrossRefGoogle Scholar
Seager, C. H. and Ginley, D. S. (1981). Studies of the hydrogen passivation of silicon grain boundaries. Journal of Applied Physics, 52, 1050–5.CrossRefGoogle Scholar
Seaton, J. and Leach, C. (2004). Conductive mode imaging of thermistor grain boundaries. Journal of the European Ceramic Society, 24, 1191–4.CrossRefGoogle Scholar
Seifert, W. and Kittler, M. (1987). Negative (bright) EBIC contrast at oxygen induced defects in silicon. Physica Status Solidi, A99, K11–K14.CrossRefGoogle Scholar
Seifert, W., Knobloch, K. and Kittler, M. (1997). Modification of the recombination activity of dislocations in silicon by hydrogenation, phosphorous diffusion and heat treatments. Solid State Phenomena, 57–8, 287–92.CrossRefGoogle Scholar
Shaw, D. A. and Thornton, P. R. (1968). Cathodoluminescent studies of laser quality GaAs. Journal of Materials Science, 3, 507–18.CrossRefGoogle Scholar
Shaw, D. A., Hughes, K. A., Neve, N. F. B., Sulway, D. V., Thornton, P. R. and Gooch, C. (1966). Crystal mosaic structures and the lasing properties of GaAs laser diodes. Solid State Electronics, 9, 664–5.CrossRefGoogle Scholar
Shockley, W. (1953). Dislocations and edge states in the diamond crystal structure. Physical Review, 91, 228.Google Scholar
Shockley, W. (1961). Problems related to p-n junctions in silicon. Solid State Electronics, 2, 35–67.CrossRefGoogle Scholar
Shreter, Y. G. and Rebane, Y. T. (1996). Dislocation-related luminescence in GaN. In 23rd International Conference on the Physics of Semiconductors, 1996, pt. 4, pp. 2937–40.Google Scholar
Shreter, Yu. G., Rebane, Yu. T. and Peaker, A. R. (1993). Optical properties of dislocations in silicon crystals. Physica Status Solidi, A138, 681–6.CrossRefGoogle Scholar
Shreter, Y. G., Rebane, Y. T., Klyavin, O. V.et al. (1996a). Dislocation-related absorption and photoluminescence in deformed n-ZnSe crystals. Journal of Crystal Growth, 159, 883–8.CrossRefGoogle Scholar
Shreter, Yu. G., Rebane, Y. T., Klyavin, , O. V. et al. (1996b). Dislocation-related absorption, photoluminescence and birefringence in deformed n-ZnSe crystals. Diffusion and Defect Data Part B (Solid State Phenomena), 51–52, 93–8.CrossRefGoogle Scholar
Shreter, Y. G., Rebane, Y. T., Davis, T. J. et al. (1997). Dislocation luminescence in wurtzite GaN. In III-V Nitrides, eds. Ponce, F. A., Moustakas, T. D., Akasaki, I. and Monemar, B. A., Materials Research Society Symposium Proceedings 449 (Pittsburgh: Materials Research Society), pp. 683–8.Google Scholar
Simpkins, B. S., Yu, E. T., Waltereit, P. and Speck, J. S. (2003). Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride. Journal of Applied Physics, 94, 1448–53.CrossRefGoogle Scholar
Skowronski, M., Liu, J. Q., Vetter, W. M.et al. (2002). Recombination-enhanced defect motion in forward-biased 4H–SiC p-n diodes. Journal of Applied Physics, 92, 4699–704.CrossRefGoogle Scholar
Smith, S., Zhang, P., Gessert, T. and Mascarenhas, A. (2004). Near-field optical beam-induced currents in CdTe/CdS solar cells: Direct measurement of enhanced photoresponse at grain boundaries. Applied Physics Letters, 85, 3854–6.CrossRefGoogle Scholar
Snyman, L. W., Aharoni, H., du Plessis, M. and Gouws, R. B. J. (1998). Increased efficiency of silicon light-emitting diodes in a standard 1.2 μm silicon complementary metal oxide semiconductor technology. Optical Engineering, 37, 2133–41.CrossRefGoogle Scholar
Sobolev, N. A., Emel'yanov, A. M., Shek, E. I. and Vdovin, V. I. (2004). Influence of extended structural defects on the characteristics of electroluminescence in efficient silicon light-emitting diodes. Solid State Phenomena, 95–96, 283–8.Google Scholar
Sosnowski, L. (1959). Electronic properties at grain boundaries. Journal of Physics and Chemistry of Solids, 8, 142–6.CrossRefGoogle Scholar
Steckenborn, A., Munzel, H. and Bimberg, D. (1981). Cathodoluminescence lifetime pattern of GaAs surfaces around dislocations. Journal of Luminescence, 24/25, 351–4.CrossRefGoogle Scholar
Steeds, J. W. (1989). High spatial resolution cathodoluminescence from dislocations in semiconductors studied in a TEM. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford. Conf. Series No. 104 (Bristol: Institute of Physics), pp. 199–202.Google Scholar
Steeds, J. W., Batstone, J. L., Rebane, Yu. T. and Schreter, Yu. G. (1991). Dislocation luminescence in zinc selenide. In Polycrystalline Semiconductors II. Springer Proc. In Phys.54, eds. Werner, J. H. and Strunk, H. P. (Berlin: Springer-Verlag), pp. 45–9.CrossRefGoogle Scholar
Steele, B. C. H. (ed.) (1991). Electronic Ceramics. London: Elsevier Applied Science.Google Scholar
Stevenson, J. L., Skeats, A. P. and Heckingbottom, R. (1980). EBIC microscopy of double heterostructure laser materials and devices. Journal of Microscopy, 118, 321–7.CrossRefGoogle Scholar
Stowe, D. J., Galloway, S. A., Senkader, S.et al. (2003). Near-band gap luminescence at room temperature from dislocations in silicon. Physica, B340–342, 710–13.CrossRefGoogle Scholar
Stringfellow, G. B., Lindquist, P. F., Cass, T. R. and Burmeister, R. A. (1974). Dislocations in vapour phase epitaxial gaP. Journal of Electronic Materials, 3, 497–515.CrossRefGoogle Scholar
Suezawa, M. and Sumino, K. (1989). Electron spin resonance study of deformation-induced Si-Kl centers in silicon. Journal of the Physical Society of Japan, 58, 2463–71.CrossRefGoogle Scholar
Sugiura, L. (1997). Comparison of degradation caused by dislocation motion in compound semiconductor light-emitting devices. Applied Physics Letters, 70, 1317–19.CrossRefGoogle Scholar
Sumida, N. and Lang, A. R. (1981). Cathodoluminescence evidence of dislocation interactions in diamond. Philosophical Magazine, A43, 1277–87.CrossRefGoogle Scholar
Sumino, K. (2003). Basic aspects of impurity gettering. Microelectronics Engineering, 66, 268–80.CrossRefGoogle Scholar
Sumino, K. and Yonenaga, I. (2002). Interactions of impurities with dislocations: Mechanical effects. Solid State Phenomena, 85–86, 145–76.Google Scholar
Sun, X. L., Brillson, L. J., Chiang, Y. M. and Luo, J. (2002). Microcathodoluminescence spectroscopy of defects in Bi2O3-doped ZnO grains. Journal of Applied Physics, 92, 5072–6.CrossRefGoogle Scholar
Susa, N., Yamauchi, Y. and Ando, H. (1982). Effects of imperfections in InP avalanche photodiodes with vapour phase epitaxially grown p+-n junctions. Journal of Applied Physics, 53, 7044–50.Google Scholar
Sutton, A. P. and Balluffi, R. W. (1995). Interfaces in Crystalline Materials. Oxford: Oxford University Press.Google Scholar
Sze, S. M. (1985). Semiconductor Devices. Physics and Technology. New York: Wiley.Google Scholar
Tarbaev, N. I. (1998). Low-temperature photoluminescence determination of dislocation slip systems in CdSe single crystals. Physics of the Solid State, 40, 1672–5.Google Scholar
Tarbaev, N. I. and Shepelskii, G. A. (1998). One-dimensional structures formed by low-temperature slip of dislocations that act as sources of dislocation absorption and emission in II–VI semiconductor crystals. Semiconductors, 32, 580–6.CrossRefGoogle Scholar
Tarbaev, N. I., Schreiber, J. and Shepelskii, G. A. (1988). Physical properties of AIIBVI semiconductor crystals after plastic deformation at low temperature. Physica Status Solidi, A110, 97–106.CrossRefGoogle Scholar
Taylor, W. E., Odell, N. H. and Fan, H. Y. (1952). Grain boundary barriers in germanium. Physical Review, 88, 867–75.CrossRefGoogle Scholar
Temkin, H., Zipfel, C. L. and Keramidas, V. G. (1981). High-temperature degradation of InGaAsP/InP light emitting diodes. Journal of Applied Physics, 52, 5377–80.CrossRefGoogle Scholar
Thornton, P. R. (1963). Electrical effects of dislocations in high resistivity GaAs. Solid State Electronics, 6, 677–8.CrossRefGoogle Scholar
Toriumi, A., Yoshimi, M., Iwase, M., Akiyama, Y. and Taniguchi, K. (1987). A study of photon-emission from n-channel MOSFETS. IEEE Transactions on Electron Devices, 34, 1501–8.CrossRefGoogle Scholar
Toth, A. L. (1981). Measurement of EBIC Contrast and Resolution of Dislocations in Silicon. Microscopy of Semiconducting Materials 1981. Conf. Series no. 60 (Bristol: Institute of Physics), pp. 221–2.
Tretola, A. R. and Irvin, J. C. (1968). Correlation of the physical location of crystal defects with electrical imperfections in GaAs p-n junctions. Journal of Applied Physics, 39, 3563–8.CrossRefGoogle Scholar
Tringe, J. W. and Plummer, J. D. (2000). Electrical and structural properties of polycrystalline silicon. Journal of Applied Physics, 87, 7913–26.CrossRefGoogle Scholar
Tweet, A. G. (1954). Grain boundary conduction in gold-doped Ge. Physical Review, 96, 828.Google Scholar
Tweet, A. G. (1955). Properties of grain boundaries in gold-doped germanium. Physical Review, 99, 1182–9.CrossRefGoogle Scholar
Ueda, O. (1996). Reliability and Degradation of III–V Optical Devices. Boston: Artech House.Google Scholar
Ueda, O. (1999). Reliability issues in III–V compound semiconductor devices: optical devices and GaAs-based HBTs. Microelectronics Reliability, 39, 1839–55.CrossRefGoogle Scholar
Ueda, O., Isozumi, S., Kotani, T. and Yaoki, T. (1977). Defect structure of 〈100〉 dark lines in the active region of a rapidly degraded Ga1-xAlxAs LED. Journal of Applied Physics, 48, 3950–2.CrossRefGoogle Scholar
Ueda, O., Imai, H., Kotani, T., Wakita, K. and Saito, H. (1979). TEM observation of catastrophically degraded Ga1–xAlxAs double-heterostructure lasers. Journal of Applied Physics, 50, 6643–7.CrossRefGoogle Scholar
Unger, K. (1968). Theoretical study of the filamentary radiation and the surface damage of junction lasers. In Proceedings of the Ninth International Conference on Physica of Semiconductors, Moscow (Leningrad: Nauka), I, pp. 537–9.Google Scholar
Urbieta, S., Fernandez, P., Piqueras, J., Vasco, E. and Zaldo, C. (2004). Nanoscopic study of ZnO films by electron beam induced current in the scanning tunneling microscope. Journal of Optoelectronics and Advanced Materials, 6, 183–8.Google Scholar
Krol, R. and Tuller, H. L. (2002). Electroceramics – the role of interfaces. Solid State Ionics, 150, 167–79.CrossRefGoogle Scholar
Vanderschaeve, G., Levade, C. and Caillard, D. (2001). Dislocation mobility and electronic effects in semiconductor compounds. Journal of Microscopy, 203, 72–83.CrossRefGoogle ScholarPubMed
Walle, C. G. (2001). Defect analysis and engineering in ZnO. Physica, B308–310, 899–903.CrossRefGoogle Scholar
Vasnyov, S., Schreiber, J. and Hoering, L. (2004). A quantitative evaluation of the dynamic cathodoluminescence contrast of gliding dislocations in semiconductor crystals. Journal of Physics: Condensed Matter, 16, S269–S277.Google Scholar
Vavilov, V. S., Gippius, A. A., Zaitsev, A. M.et al. (1980). Investigation of the cathodoluminescence of epitaxial diamond films. Soviet Physics Semiconductors, 14, 1078–9.Google Scholar
Visoly-Fisher, I., Cohen, S. R. and Cahen, D. (2003). Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements. Applied Physics Letters, 82, 556–8.CrossRefGoogle Scholar
Visoly-Fisher, I., Cohen, S. R., Ruzin, A. and Cahen, D. (2004). How polycrystalline devices can outperform single-crystal ones: Thin film CdTe/CdS solar cells. Advanced Materials, 16, 879–83.CrossRefGoogle Scholar
Kanel, H. and Meyer, T. (1998). Recent progress on BEEM. Ultramicroscopy, 73, 175–83.CrossRefGoogle Scholar
Kanel, H. and Meyer, T. (2000). Nano-scale defect analysis by BEEM. Journal of Crystal Growth, 210, 401–7.CrossRefGoogle Scholar
Vyvenko, O. F., Krüger, O. and Kittler, M. (2000). Cross-sectional electron-beam-induced current analysis of the passivation of extended defects in cast multicrystalline silicon by remote hydrogen plasma treatment. Applied Physics Letters, 76, 697–9.CrossRefGoogle Scholar
Vyvenko, O. F., Buonassisi, T., Istratov, A. A.et al. (2002a). X-ray beam induced current – a synchrotron radiation based technique for the in situ analysis of recombination properties and chemical nature of metal clusters in silicon. Journal of Applied Physics, 91, 3614–17.CrossRefGoogle Scholar
Vyvenko, O. F., Buonassisi, T., Istratov, A. A.et al. (2002b). Application of synchrotron-radiation-based x-ray microprobe techniques for the analysis of recombination activity of metals precipitated at Si/SiGe misfit dislocations. Journal of Physics: Condensed Matter, 14, 13079–86.Google Scholar
Vyvenko, O. F., Buonassisi, T., Istratov, A. A. and Weber, E. R. (2004). X-ray beam induced current/microprobe x-ray fluorescence: synchrotron radiation based x-ray microprobe techniques for analysis of the recombination activity and chemical nature of metal impurities in silicon. Journal of Physics: Condensed Matter, 16, S141–S151.Google Scholar
Wakefield, B. (1979). Strain-enhanced luminescence degradation in GaAs-GaAlAs double-heterostructure lasers revealed by photoluminescence. Journal of Applied Physics, 50, 7914–16.CrossRefGoogle Scholar
Wakefield, B., Leigh, P. A., Lyons, M. H. and Elliott, C. R. (1984). Characterization of semi-insulating liquid encapsulated Czochralski GaAs by cathodoluminescence. Applied Physics Letters, 45, 66–8.CrossRefGoogle Scholar
Wang, G., Ogawa, T., Soga, T., Jimbo, T. and Umeno, M. (2001). Passivation of dislocations in GaAs grown on Si substrates by phosphine (PH3) plasma exposure. Applied Physics Letters, 78, 3463–5.CrossRefGoogle Scholar
Warwick, C. A. and Brown, G. T. (1985). Spatial distribution of 0.68-eV emission from undoped semi-insulating gallium arsenide revealed by high resolution luminescence imaging. Applied Physics Letters, 46, 574–6.CrossRefGoogle Scholar
Warwick, C. A., Gill, S. S., Wright, P. J. and Cullis, A. G. (1985). Spatial variation of dopant concentration in Si implanted Czochralski and metal organic vapour phase epitaxial GaAs. In Microscopy of Semiconducting Materials 1985. Conf. Series No 76 (Bristol: Institute of Physics), pp. 365–72.Google Scholar
Waser, R. and Hagenbeck, R. (2000). Grain boundaries in dielectric and mixed-conducting ceramics. Acta Materialia, 48, 797–825.CrossRefGoogle Scholar
Watson, C. C. R. and Durose, K. (1993). Cathodoluminescence microscopy of bulk CdTe crystals. Journal of Crystal Growth, 126, 325–9.CrossRefGoogle Scholar
Weber, J. (1994). Correlation of structural and electronic properties from dislocations in semiconductors. Solid State Phenomena, 37–38, 13–24.CrossRefGoogle Scholar
Weber, E. R. and Alexander, H. (1983). EPR of dislocations in silicon. Journal de Physique, C4, 319–28.Google Scholar
Wederoth, M., Gregor, M. J. and Ulbrich, R. G. (1992). Luminescence from gold-passivated gallium arsenide surfaces excited with a scanning tunneling microscope. Solid State Communications, 83, 535–7.CrossRefGoogle Scholar
Weimann, N. G., Eastman, L. F., Doppalapudi, D., Ng, H. M. and Moustakas, T. D. (1998). Scattering of electrons at threading dislocations in GaN. Journal of Applied Physics, 83, 3656–9.CrossRefGoogle Scholar
Werkhoven, C., Opdorp, C. and Vink, A. T. (1977). Non-radiative recombination in n-Type LPE GaP. In GaAs and Related Compounds 1976. Conf. Series No. 33A (Bristol: Institute of Physics), pp. 317–25.Google Scholar
Werkhoven, C., Opdorp, C. and Vink, A. T. (1978/79). Influence of crystal defects on the luminescence. Philips Technical Review, 38, 41–50.Google Scholar
Werner, M., Weber, E. R., Bartsch, M. and Messerschmidt, U. (1995). Carrier injection enhanced dislocation glide in silicon. Physica Status Solidi, A150, 337–41.CrossRefGoogle Scholar
Wertheim, G. K. and Pearson, G. L. (1957). Recombination in plastically deformed germanium. Physical Review, 107, 694–8.CrossRefGoogle Scholar
Wessel, K. and Alexander, H. (1977). On the mobility of partial dislocations in silicon. Philosophical Magazine, 35, 1523–36.CrossRefGoogle Scholar
Wilshaw, P. R. and Booker, G. R. (1985). New results and an interpretation for SEM EBIC contrast arising from individual dislocations in silicon. In Microscopy of Semiconducting Materials, 1985. Conf. Series No. 76 (Bristol: Institute of Physics), pp. 329–36.Google Scholar
Wilshaw, P. R. and Booker, G. R. (1987). The theory of recombination at dislocations in silicon and an interpretation of EBIC results in terms of fundamental dislocation parameters. Bulletin of the Academy of Sciences of the USSR Division of Physical Science, 51, 109–13.Google Scholar
Wilshaw, P. R. and Fell, T. S. (1989). The electronic properties of dislocations in silicon. In Structure and Properties of Dislocations in Semiconductors, 1989. Conf. Series No. 104 (Bristol: Institute of Physics), pp. 85–96.Google Scholar
Wilshaw, P. R. and Fell, T. S. (1991). The electrical activity of dislocations in the presence of transition metal contaminants. In Polycrystalline Semiconductors II, eds. Werner, J. H. and Strunk, H. P. (Berlin: Springer-Verlag), pp. 77–83.CrossRefGoogle Scholar
Wilshaw, P. R. and Fell, T. S. (1995). Electron beam induced current investigations of transition metal impurities at extended defects in silicon. Journal of the Electrochemical Society, 142, 4298–304.CrossRefGoogle Scholar
Wilshaw, P. R., Fell, T. S. and Booker, G. R. (1989). Recombination at dislocations in silicon and gallium arsenide. In Point and Extended Defects in Semiconductors, eds. Benedek, G., Cavallini, A. and Schroter, W., Nato ASI Series B Physics, 202 (New York: Plenum), pp. 243–56.CrossRefGoogle Scholar
Wilshaw, P. R., Fell, T. S. and Coteau, M. D. (1991). EBIC contrast of defects in semiconductors. Journal de Physique, C6, 3–14.Google Scholar
Wilshaw, P. R., Blood, A. M. and Braban, C. F. (1997). Carrier recombination at defects in silicon: the effect of transition metals and hydrogen passivation. In Microscopy of Semiconducting Materials, Conf. Ser. No. 157 (Bristol: Inst. Phys.), pp. 623–8.Google Scholar
Wolff, P. A. (1960). Theory of optical radiation from breakdown avalanches in germanium. Journal of Physics and Chemistry of Solids, 16, 184–90.CrossRefGoogle Scholar
Woods, G. S. and Lang, A. R. (1975). Cathodoluminescence, optical absorption and x-ray topographic studies of synthetic diamonds. Journal of Crystal Growth, 28, 215–26.CrossRefGoogle Scholar
Wosinski, T. and Figielski, T. (1989). Electronic properties of dislocations and associated point-defects in GaAs. Institute of Physics Conference Series (104), pp. 151–62.Google Scholar
Wosinski, T., Figielski, T., Makosa, A.et al. (2002). Quantum effects associated with misfit dislocations in GaAs-based heterostructures. Materials Science and Engineering, B91–92, 367–70.CrossRefGoogle Scholar
Yacobi, B. G. and Holt, D. B. (1990). Cathodoluminescence Microscopy of Inorganic Solids. New York: Plenum Press.CrossRefGoogle Scholar
Yacobi, B. G., Lebens, J., Vahala, K. J., Badzian, A. R. and Badzian, T. (1993). Preferential incorporation of defects in monocrystalline diamond films. Diamond and Related. Materials 2, 92–9.CrossRefGoogle Scholar
Yakimov, E. B., Eremenko, V. G. and Nikitenko, V. I. (1976). Photoconductivity of silicon with dislocations. Soviet Physics Semiconductors, 10, 231–2.Google Scholar
Yamaguchi, M. and Amano, C. (1985). Efficiency calculations of thin-film GaAs solar cells on Si substrates. Journal of Applied Physics, 58, 3601–6.CrossRefGoogle Scholar
Yamaguchi, M., Yamamoto, A. and Itoh, Y. (1986). Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates. Journal of Applied Physics, 59, 1751–3.CrossRefGoogle Scholar
Yamaguchi, M., Yamamoto, A. and Itoh, Y. (1986). Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates. Journal of Applied Physics, 59, 1751–3.CrossRefGoogle Scholar
Yamaguchi, M., Amano, C. and Itoh, Y. (1989). Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates. Journal of Applied Physics, 66, 915–19.CrossRefGoogle Scholar
Yamamoto, N., Spence, J. C. H. and Fathy, D. (1984). Cathodoluminescence and polarization studies from individual dislocations in diamond. Philosophical Magazine, 49, 609–29.CrossRefGoogle Scholar
Yarykin, N. and Steinman, E. (2003). Comparative study of the plastic deformation- and implantation-induced centres in silicon. Physica, B340–342, 756–9.CrossRefGoogle Scholar
Yastrubchak, O., Wosinski, T., Makosa, A., Figielski, T. and Toth, A. L. (2001). Capture kinetics at deep-level defects in lattice-mismatched GaAs-based heterostructures. Physica, B308, 757–60.CrossRefGoogle Scholar
Yonenaga, I., Werner, M., Bartsch, M., Messerschmidt, U. and Weber, E. R. (1999). Recombination-enhanced dislocation motion in SiGe and Ge. Physica Status Solidi, A171, 35–40.3.0.CO;2-A>CrossRefGoogle Scholar
Zaretskii, A. V., Osipiyan, Yu. A., Petrenko, V. F. and Strukova, G. K. (1977). Experimental determination of dislocation charges in CdS. Fizika Tverdogo Tela, 19, 418–23.Google Scholar
Zhang, M., Pirouz, P. and Lendenmann, H. (2003). Transmission electron microscopy investigation of dislocations in forward-biased 4H-SiC p–i–n diodes. Applied Physics Letters, 83, 3320–2.CrossRefGoogle Scholar
Zhuang, Y. Q. and Du, L. (2002). 1/f noise as a reliability indicator for subsurface Zener diodes. Microelectronics Reliability, 42, 355–60.CrossRefGoogle Scholar
Zimin, D., Alchalabi, K. and Zogg, H. (2002). Heteroepitaxial PbTe-on-Si pn-juction IR-sensors: correlations between material and device preperties. Physica, E13, 1220–3.CrossRefGoogle Scholar
Zozime, A. and Castaing, J. (1996). Effect of hydrogenation on the properties of extended defects in semiconductors. Materials Science and Engineering, B42, 57–62.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×