Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T07:32:43.996Z Has data issue: false hasContentIssue false

4 - Core structures and mechanical effects of extended defects specific to semiconductors

Published online by Cambridge University Press:  10 September 2009

D. B. Holt
Affiliation:
Imperial College of Science, Technology and Medicine, London
B. G. Yacobi
Affiliation:
University of Toronto
Get access

Summary

Atomic core structure of dislocations

Extended defects disturb the crystal structure over many atomic distances in one or more dimensions. Those that continue to be of practical importance are interfaces and dislocations.

Extended defect cores in semiconductors are of relatively high energy due to the directional character of tetrahedral covalent bonds. If such a bond is bent from its tetrahedral direction by the displacement of the neighbouring atom, the bond energy rises rapidly. Hence sp3 bonds resist bending as if they were elastically stiff. If the neighbour atom is too far off the tetrahedral direction or at too great a distance, the bond energy would be too high and a broken or ‘dangling’ bond occurs. Hence, extended semiconductor defects can be modelled using plastic spheres with tetrahedrally drilled holes or protrusions and wire or plastic straws to connect them. Since such connections are also stiff and brittle, ball-and-wire (or caltrop-and-spoke) models can give insight, through their ease or difficulty of construction, into the likelihood of occurrence of particular atomic core arrangements in dislocations and grain boundaries. Such modelling was introduced by Hornstra (1958, 1959, 1960).

The high energetic cost of broken and strained bonds leads to a tendency for dislocations and grain boundaries to be crystallographically aligned to minimize the number of such bonds in the core. This contrasts with the curved or arbitrarily directed defects seen in many metals. Thus, dislocations in covalently bonded semiconductors are constrained to lie in deep crystallographic Peierls troughs (see Section 2.5.2 and Fig. 2.24).

Type
Chapter
Information
Extended Defects in Semiconductors
Electronic Properties, Device Effects and Structures
, pp. 163 - 411
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T. (2000). The formation mechanism of grown-in defects in CZ silicon crystals based on thermal gradients measured by thermocouples near growth interfaces. Materials Science and Engineering, B73, 16–29.CrossRefGoogle Scholar
Abrahams, M. S. and Buiocchi, C. J. (1967). Twins and stacking faults in vapor grown GaAs. Journal of Physics and Chemistry of Solids, 28, 927.CrossRefGoogle Scholar
Abrahams, M. S. and Ekstrom, L. (1960). Dislocations and brittle fracture in elemental and compound semiconductors. Acta Metallurgica, 8, 654–62.CrossRefGoogle Scholar
Abrahams, M. S. and Dreeben, A. (1965). Formation of dislocations around precipitates in single crystals of (Zn, Cd)S:Er. Journal of Applied Physics, 36, 1688–92.CrossRefGoogle Scholar
Abrahams, M. S. and Buiocchi, C. J. (1970). Mechanism of thermal annihilation of stacking faults in GaAs. Journal of Applied Physics, 41, 2358–65.CrossRefGoogle Scholar
Abrahams, M. S., Blanc, J. and Buiocchi, C. J. (1972). Like-sign asymmetric dislocations in zinc-blende structure. Applied Physics Letters, 21, 185–6.CrossRefGoogle Scholar
Ahearn, J. S., Mills, J. J. and Westwood, A. R. (1978a). Effect of electrolyte pH and bias voltage on the hardness of the (0001) ZnO Surface. Journal of Applied Physics, 49, 96–102.CrossRefGoogle Scholar
Ahearn, J. S., Mills, J. J. and Westwood, A. R. (1978b). Effect of bias voltage on the hardness of {101̄0} ZnO surfaces immersed in an electrolyte. Journal of Applied Physics, 49, 614–17.CrossRef
Ahearn, J. S., Mills, J. J. and Westwood, A. R. (1979). Chemomechanical effects in ZnO. Journal de Physique, C6, 173–6.Google Scholar
Ahlquist, C. N., Carrel, M. J. and Stroempl, P. (1972). The photoplastic effect in wurtzite and sphalerite structure II-VI compounds. Journal of Physics and Chemistry of Solids, 33, 337–42.CrossRefGoogle Scholar
Alexander, E., Kalman, Z. H., Mardix, S. and Steinberger, I. T. (1970). The mechanism of poytype formation in vapor-phase grown ZnS crystals. Philosophical Magazine, 21, 1237–46.CrossRefGoogle Scholar
Alexander, H. (1976). On the dislocation core structure in silicon and III-V compounds. In Electron Microscopy 1976, Vol. I, Proc. Sixth European Electron Microscopy Conference, Jerusalem (Israel: Tal Int. Publ.), pp. 208–11.Google Scholar
Alexander, H. (1979). Models of the dislocation structure. Journal de Physique, C6, 1–6.Google Scholar
Alexander, H. (1986). Dislocations in covalent crystals. In Dislocations in Solids, Vol. 7, ed. Nabarro, (Amsterdam: North-Holland), pp. 113–234.Google Scholar
Alexander, H. (1991). Dislocations in semiconductors. In Poycrystalline Semiconductors II Proc. In Phys., 54, eds. Werner, J. H. and Strucnk, H. P., pp. 2–12.Google Scholar
Alexander, H. and Haasen, P. (1968). Dislocations and plastic flow in the diamond structure. Solid State Physics, 22, 27–158.CrossRefGoogle Scholar
Alexander, H. and Haasen, P. (1972). Dislocations in nonmetals. Annual Review of Materials Science, 2, 291–312.CrossRefGoogle Scholar
Alexander, H. and Teichler, H. (1991). Dislocations. In Materials Science and Technology, 4, ed. Schroter, W. (Weinheim: VCH), pp. 249–319.Google Scholar
Allen, J. W. (1957). On the mechanical properties of indium antimonide. Philosophical Magazine, 2, 1475–81.CrossRefGoogle Scholar
Amelinckx, S. (1979). Dislocations in particular structures. In Dislocations in Solids, 2, ed. Nabarro, F. R. (Amsterdam: North-Holland), pp. 67–460.Google Scholar
Amelinckx, S. and Dekeyser, W. (1959). The structure and properties of grain boundaries. Solid State Physics, 8, 325–499.CrossRefGoogle Scholar
Amelinckx, S., Strumane, G. and Webb, W. W. (1960). Dislocations in silicon carbide. Journal of Applied Physics, 31, 1359–70.CrossRefGoogle Scholar
Arlt, G. and Quadriflieg, P. (1968). Piezoelectricity in III-V compounds with a phenomenological analysis of the piezoelectric effect. Physica Status Solidi, 25, 323–30.CrossRefGoogle Scholar
Augustine, G., Hobgood, McD., Balakrishna, V., Dunne, G. and Hopkins, R. H. (1997). Physical vapor transport growth and properties of SiC monocrystals of 4H polytype. Physica Status Solidi, B202, pp. 137–48.3.0.CO;2-Y>CrossRefGoogle Scholar
Augustus, P. D., Stirland, D. J. and Yates, M. (1983). Microstructure of grappe defects in InP. Journal of Crystal Growth, 64, 121–8.CrossRefGoogle Scholar
Austerman, S. B. and Gehman, W. G. (1966). The inversion twin: Prototype in BeO. Journal of Materials Science, 1, 249–60.CrossRefGoogle Scholar
Aven, M. and Prener, J. S. (1967). Physics and Chemistry of II-VI Compounds. Amsterdam: North-Holland.
Balluffi, R. W., Brokman, A. and King, A. H. (1982). CSL/DSC lattice model for general crystal boundaries and their line defects. Acta Metallurgica, 30, 1453–70.CrossRefGoogle Scholar
Barber, H. D. and Heasell, E. L. (1965a). Polarity effects in InSb alloyed p-n junctions. Journal of Applied Physics, 36, 176–80.CrossRefGoogle Scholar
Barber, H. D. and Heasell, E. L. (1965b). A technique for making alloy p-n junctions in InSb. Solid State Electronics, 8, 113–17.CrossRefGoogle Scholar
Bartels, W. J. and Nijman, W. (1977). Asymmetry of misfit dislocations in heteroepitaxial layers on (001) GaAs substrates. Journal of Crystal Growth, 37, 204–14.CrossRefGoogle Scholar
Beanland, R. (1995). Dislocation multiplication mechanisms in low-misfit strained epitaxial layers. Journal of Applied Physics, 77, 6217–22.CrossRefGoogle Scholar
Beanland, R., Dunstan, D. J. and Goodhew, P. J. (1996). Plastic relaxation and relaxed buffer layers for semiconductor epitaxy. Advances in Physics, 45, 87–146.CrossRefGoogle Scholar
Beaumont, B., Vennéguès, , Ph, . and Gibart, P. (2001). Epitaxial lateral overgrowth of GaN. Physica Status Solidi, B227, 1–43.3.0.CO;2-Q>CrossRefGoogle Scholar
Bell, R. L. and Willoughby, A. R. (1966). Etch-pit studies of dislocations in InSb. Journal of Materials Science, 1, 219–28.CrossRefGoogle Scholar
Bell, R. L. and Willoughby, A. R. (1970). The effect of plastic bending on the electrical properties of indium antimonide 2. Four-point bending of n-type material. Journal of Materials Science, 5, 198–217.CrossRefGoogle Scholar
Berghezan, A., Fourdeux, A. and Amelinckx, S. (1961). Transmission electron microscopy studies of dislocations and stacking faults in a hexagonal metal-zinc. Acta Metallurgica, 9, 464–90.CrossRefGoogle Scholar
Berlincourt, D., Jaffe, H. and Shiozawa, L. R. (1963). Electroelastic properties of the sulfides, selenides and tellurides of zinc and cadmium. Physical Review, 129, 1009–17.CrossRefGoogle Scholar
Berner, K. and Alexander, H. (1967). Versetzungsdichte und lokale abgleitung in germanium-einkristallen. Acta Metallurgica, 15, 933–41.CrossRefGoogle Scholar
Bigger, J. R., McInnes, D. A., Sutton, A. P.et al. (1992). Atomic and electronic-structures of the 90-degree partial dislocation in silicon. Physical Review Letters, 69, 2224–7.CrossRefGoogle Scholar
Binsma, J. J., Giling, L. J. and Bloem, J. (1980). Phase relations in the system Cu2S–In2S3. Journal of Crystal Growth, 50, 429–36.CrossRefGoogle Scholar
Binsma, J. J., Giling, L. J. and Bloem, J. (1981). Order-disorder behavior and tetragonal distortion of chalcopyrite compounds. Physica Status Solidi, A63, 595–603.CrossRefGoogle Scholar
Black, J. F. and Jungbluth, E. D. (1967). Decorated dislocations and sub-surface defects induced in GaAs by the In-diffusion of zinc. Journal of the Electrochemical Society, 114, 188–92.CrossRefGoogle Scholar
Blanc, J. (1975). Thermodynamics of ‘glide’ and ‘shuffle’ dislocations in the diamond lattice. Philosophical Magazine, 32, 1023–32.CrossRefGoogle Scholar
Blank, H., Delavignette, P. and Amelinckx, S. (1962). Dislocations and wide stacking faults in wurtzite type crystals: zinc sulfide and aluminium nitride. Physica Status Solidi, 2, 1660–9.CrossRefGoogle Scholar
Blank, H., Delavignette, P., Gevers, R. and Amelinckx, S. (1964). Fault structures in wurzite. Physica Status Solidi, 7, 747–64.CrossRefGoogle Scholar
Blech, I. A., Meieran, E. S. and Sello, H. (1965). X-ray surface topography of diffusion-generated dislocations in silicon. Applied Physics Letters, 7, 176–8.CrossRefGoogle Scholar
Blistanov, A. A. and Geras'kin, V. V. (1970). Dislocations in single crystals with the wurtzite structure. Soviet Physics Crystallography, 14, 550–3.Google Scholar
Bobb, L. C., Holloway, H., Maxwell, K. H. and Zimmerman, E. (1966). Oriented growth of semiconductors. III. Growth of gallium arsenide on germanium. Journal of Applied Physics, 37, 4687–93.CrossRefGoogle Scholar
Bollmann, W. (1967a). On the geometry of grain and phase boundaries. I. General theory. Philosophical Magazine, 16, 363–81.CrossRefGoogle Scholar
Bollmann, W. (1967b). On the geometry of grain and phase boundaries. II. Applications of general theory. Philosophical Magazine, 16, 383–99.CrossRefGoogle Scholar
Bollmann, W. (1970). Crystal Defects and Crystalline Interfaces. Berlin: Springer-Verlag.CrossRef
Bollmann, W. (1972). The basic concepts of the O-lattice theory. Surface Science, 31, 1–11.CrossRefGoogle Scholar
Bollmann, W. (1974). Classification of crystalline interfaces by means of the O-lattice method. Journal of Microscopy, 102, 233–9.CrossRefGoogle Scholar
Booker, G. R. (1962). Growth structure difference on opposite {111} faces of a GaAs dendrite. Journal of Applied Physics, 33, 75.CrossRefGoogle Scholar
Booker, G. R. (1964). Crystallographic imperfections in Si. Discussions of the Faraday Society, 38, 298–304.CrossRefGoogle Scholar
Booker, G. R. (1965). Tripyramids and associated defects in epitaxial layers. Philosophical Magazine, 11, 1007–20.CrossRefGoogle Scholar
Booker, G. R. (1966). Stacking fault defects in epitaxial silicon layers. Journal of Applied Physics, 37, 441–2.CrossRefGoogle Scholar
Booker, G. R. and Howie, A. (1963). Intrinsic-extrinsic stacking-fault pairs in eitaxially grown silicon layers. Applied Physics Letters, 3, 156–7.CrossRefGoogle Scholar
Booker, G. R. and Joyce, B. A. (1966). A study of nucleation in chemically grown epitaxial silicon films using molecular beam techniques. II. Initial growth behaviour on clean carbon-contaminated silicon substrates. Philosophical Magazine, 14, 301–15.CrossRefGoogle Scholar
Booker, G. R. and Stickler, R. (1962). Crystallographic imperfections in epitaxially grown silicon. Journal of Applied Physics, 33, 3281–90.CrossRefGoogle Scholar
Booker, G. R. and Stickler, R. (1965). 2-dimensional defects in silicon after annealing in wet oxygen. Philosophical Magazine, 12, 1303.CrossRefGoogle Scholar
Booker, G. R. and Tunstall, W. J. (1966). Diffraction contrast analysis of 2-dimensional defects present in silicon after annealing. Philosophical Magazine, 13, 71.CrossRefGoogle Scholar
Booyens, H., Vermaak, J. S. and Proto, G. R. (1978). The asymmetric deformation of GaAs single crystals. Journal of Applied Physics, 49, 5435–40.CrossRefGoogle Scholar
Bourret, A., Thibault-Desseaux, J. and Lancon, F. (1983). The core structure of dislocations in Cz silicium studied by electron microscopy. Journal de Physique, 44, C4–15 to C4–24.Google Scholar
Brack, K. (1965). X-ray method for the determination of polarity of SiC crystals. Journal of Applied Physics, 36, 3560–2.CrossRefGoogle Scholar
Braga, N., Buczkowski, A., Kirk, H. R. and Rozgonyi, G. A. (1994). Formation of cylindrical n/p junction diodes by arsenic enhanced diffusion along interfacial misfit dislocations in p-type epitaxial Si/Si(Ge). Applied Physics Letters, 64, 1410–12.CrossRefGoogle Scholar
Brafman, O., Alexander, E., Fraenkel, B. S., Kalman, Z. H. and Steinberger, I. T. (1964). Polar properties of ZnS crystals and the anomalous photovoltaic effect. Journal of Applied Physics, 35, 1855–9.CrossRefGoogle Scholar
Brandon, D. G., Ralph, B., Ranganathan, S. and Wald, M. S. (1964). A field ion microscope study of atomic configuration at grain boundaries. Acta Metallurgica, 12, 813–21.CrossRefGoogle Scholar
Brantley, W. A. and Harrison, D. A. (1973). Localized plastic-deformation of GaP and GaAs generated by thermocompression bonding. Journal of the Electrochemical Society, 120, 1281–4.CrossRefGoogle Scholar
Braun, C. and Helberg, H. W. (1986). Surface damage of CdTe produced during preparation and determination of dislocation types near microhardness indentations. Philosophical Magazine, A53, 277–84.CrossRefGoogle Scholar
Bredikhin, S. I. and Shmurak, S. Z. (1974). Deformation-stimulated emission of ZnS crystals. JETP Letters, 19, 367–8.Google Scholar
Bredikhin, S. I. and Shmurak, S. Z. (1975a). Effect of electric field on deformation induced light emission of ZnS crystals. JETP Letters, 21, 156–7.Google Scholar
Bredikhin, S. I. and Shmurak, S. Z. (1975b). Deformation-stimulated electric-signal peaks produced by ZnS crystals. Soviet Physics Solid State, 17, 1628–9.Google Scholar
Bredikhin, S. I., Osipiyan, Yu. A. and Shmurak, S. Z. (1975c). Effect of light on strain-stimulated light emission in ZnS crystals. Soviet Physics JETP, 41, 373–5.Google Scholar
Bredikhin, S. I. and Shmurak, S. Z. (1977). The luminescence and electrical characteristics of ZnS crystals undergoing plastic deformation. Soviet Physics JETP, 46, 768–73.Google Scholar
Bredikhin, S. I. and Shmurak, S. Z. (1979). Interaction of charged dislocations with luminescence centers in ZnS crystals. Soviet Physics JETP, 49, 520–5.Google Scholar
Bredikhin, S. I., Osipiyan, Yu. A. and Shmurak, S. Z. (1975). Effect of light on strain-stimulated light emission in ZnS crystals. Soviet Physics JETP, 41, 373–5.Google Scholar
Brongersma, H. H. and Mull, P. M. (1973). Absolute configuration assignment of molecules and crystals in discussion. Chemical Physics Letters, 19, 217–20.CrossRefGoogle Scholar
Brown, G. T., Cockayne, B., Elliott, C. R.et al. (1984). A detailed microscopic examination of dislocation clusters in LEC InP. Journal of Crystal Growth, 67, 495–506.CrossRefGoogle Scholar
Bulatov, V. V. (2001). Bottomless complexity of core structure and kink mechanisms of dislocation motion in silicon. Scripta Materialia, 45, 1247–52.CrossRefGoogle Scholar
Bulatov, V. V., Justo, J. F., Cai, W. and Yip, S. (1997). Kink asymmetry and multiplicity in dislocation cores. Physical Review Letters, 79, 5042–5.CrossRefGoogle Scholar
Bullough, R. and Newman, R. C. (1963). The interaction of impurities with dislocations in silicon and germanium. In Progress in Semiconductors, eds. Gibson, A. F. and Burgess, R. E., 7 (London: Heywood), pp. 100–34.Google Scholar
Bullough, R. and Newman, R. C. (1970). The kinetics of migration of point defects to dislocations. Reports on Progress in Physics, 33, 101–48.CrossRefGoogle Scholar
Bullough and Tewari (1979). Lattice theories of dislocations. In Dislocations in Solids, 2, ed. Nabarro, F. R. (Amsterdam: North-Holland), pp. 1–65.Google Scholar
Burr, K. F. and Woods, J. (1971). The anomalous dispersion of x-rays by single crystal ZnSe. Journal of Materials Science, 6, 1007–11.CrossRefGoogle Scholar
Cai, W., Bulatov, V. V., Chang, J., Li, J. and Yip, S. (2004). Dislocation core effects on mobility. In Dislocations in Solids, 12, ed. Nabarro, F. R. (Amsterdam: North-Holland), pp. 2–117.Google Scholar
Carlsson, L. (1971). Orientation and temperature dependence of the photoplastic effect in ZnO. Journal of Applied Physics, 42, 676–80.CrossRefGoogle Scholar
Carlsson, L. and Ahlquist, C. N. (1972). Photoplastic behaviour of CdTe. Journal of Applied Physics, 43, 2529–36.CrossRefGoogle Scholar
Carlsson, L. and Svensson, C. (1969). Increase of flow stress in ZnO under illumination. Solid State Communications, 7, 177–9.CrossRefGoogle Scholar
Carlsson, L. and Svensson, C. (1970). Photoplastic effect in ZnO. Journal of Applied Physics, 41, 1652–6.CrossRefGoogle Scholar
Caveney, R. J. (1968). Hg diffusion-induced defects in CdS crystals. Philosophical Magazine, 18, 939–44.CrossRefGoogle Scholar
Cerva, H. (1997). Defects below mask edges in silicon induced by amorphizing implantations. Defect Diffusion Forum, 148, 103–21.CrossRefGoogle Scholar
Cerva, H., Engelhardt, M., Hierlemann, M., Pölzl, M. and Thenikl, T. (2001). Misfortune, challenge, and success: defects in processed semiconductor devices. Physica B: Condensed Matter, 308–310, 13–17.CrossRefGoogle Scholar
Chadderton, L. T., Fitzgerald, A. G. and Yoffe, A. D. (1963). Stacking faults in zinc sulphide. Philosophical Magazine, 8, 167–73.CrossRefGoogle Scholar
Chadderton, L. T., Fitzgerald, A. G. and Yoffe, A. D. (1964). Disordering of defects in single crystals of zinc sulfide. Journal of Applied Physics, 35, 1582–6.CrossRefGoogle Scholar
Charig, R. M., Joyce, B. A., Stirland, D. J. and Bicknell, R. W. (1962). Growth mechanism and defect structures in epitaxial silicon. Philosophical Magazine, 7, 1847–60.CrossRefGoogle Scholar
Chase, B. D. and Holt, D. B. (1972). Transmission electron microscope observations on GaP electroluminescent diode materials. Journal of Materials Science, 7, 265–78.CrossRefGoogle Scholar
Chaudhuri, A. R., Patel, J. R. and Rubin, L. G. (1962). Velocities and densities of dislocations in germanium and other semiconductor crystals. Journal of Applied Physics, 33, 2736–46.CrossRefGoogle Scholar
Chaudhuri, A. R., Patel, J. R. and Rubin, L. G. (1963). Correction. Journal of Applied Physics, 34, 240.CrossRefGoogle Scholar
Chen, J., Sekiguchi, T., Yang, D.et al. (2004). Electron-beam-induced current study of grain boundaries in multicrystalline silicon. Journal of Applied Physics, 96, 5490–5.CrossRefGoogle Scholar
Cherns, D. (2000). The structure and optoelectronic properties of dislocations in GaN. Journal of Physics: Condensed Matter, 12, 10205–12.Google Scholar
Chikawa, J. (1964). Faults in wurtzite type CdS crystals. Japanese Journal of Applied Physics, 3, 229–30.CrossRefGoogle Scholar
Chikawa, J. and Nakayama, T. (1964). Dislocation structure and growth mechanism of cadmium sulfide crystals. Journal of Applied Physics, 35, 2493–501.CrossRefGoogle Scholar
Chikawa, J. I. and Austerman, S. B. (1968). X-ray diffraction contrast of inversion twin boundaries in BeO crystals. Journal of Applied Crystallography, 1, 165–71.CrossRefGoogle Scholar
Chisholm, M. F., Maiti, A., Pennycook, S. J. and Pantelides, S. T. (1998). Atomic configurations and energetics of arsenic impurities in a silicon grain boundary. Physical Review Letters, 81, 132–5.CrossRefGoogle Scholar
Chisholm, M. F., Buczko, R., Mostoller, M.et al. (1999). Atomic structure and properties of extended defects in silicon. Solid State Phenomina, 67–8, 3–13.CrossRefGoogle Scholar
Choi, S. K. and Mihara, M. (1972). Impurity effects on the dislocation velocity in gallium arsenide. Journal of the Physical Society of Japan, 32, 1154.CrossRefGoogle Scholar
Choi, S. K., Mihara, M. and Ninomiya, T. (1977). Dislocation velocities in GaAs. Japanese Journal of Applied Physics, 16, 737–45.CrossRefGoogle Scholar
Choi, S. K., Mihara, M. and Ninomiya, T. (1978). Dislocation velocities in InAs and GaSb. Japanese Journal of Applied Physics, 17, 329–33.CrossRefGoogle Scholar
Churchill, J. N. and Watt, L. A. (1969). Polarity effects in the heat treatment of InSb. Journal of Applied Physics, 40, 3872–3.CrossRefGoogle Scholar
Churchman, A. T., Geach, G. A. and Winton, J. (1956). Deformation twinning in materials of the A4 (diamond) structure. Proceedings of the Royal Society, A238, 194–203.CrossRefGoogle Scholar
Claesson, A. (1979). Effect of disorder and long-range strain field on the electron-states. Journal de physique, 40, Suppl. 6, 39–41.Google Scholar
Claeys, C. and Vanhellemont, J. (1993). Recent progress in the understanding of crystallographic defects in silicon. Journal of Crystal Growth, 126, 41–62.CrossRefGoogle Scholar
Cline, C. F. and Kahn, J. S. (1963). Microhardness of single crystals of BeO and other wurzite compounds. Journal of the Electrochemical Society, 110, 773–5.CrossRefGoogle Scholar
Cockayne, D. J. and Hons, A. (1979). Dislocations in semiconductors as studied by weak-beam electron microscopy. Journal de Physique, C6, 11–18.Google Scholar
Cockayne, D. J., Hons, A. and Spence, J. C. (1980). Gliding dissociated dislocations in hexagonal CdS. Philosophical Magazine, A42, 773–81.CrossRefGoogle Scholar
Coster, D., Knol, K. S. and Prins, J. A. (1930). Unterschide in der intensitaet der rontgenstrahlen reflexion an den beiden 111-flaechen der zinblende. Zeitschrift fur Physik, 63, 345–69.CrossRefGoogle Scholar
Cottrell, A. H. and Bilby, B. A. (1949). Dislocation theory of yielding and strain ageing of iron. Proceedings of the Physical Society, A62, 49–62.CrossRefGoogle Scholar
Csányi, G., Ismail-Beigi, S. and Arias, T. A. (1998). Paramagnetic structure of the soliton of the 30 degree partial dislocation in silicon. Physical Review Letters, 80, 3984–7.CrossRefGoogle Scholar
Cullis, A. G. (1973). Transmission electron-microscope observations of extended and unextended dislocation nodes in Si and Ge/Si layers using weak-beam technique. Journal of Microscopy, 98, 191–5.CrossRefGoogle Scholar
Cullis, A. G., Robbins, D. J., Barnett, S. J. and Pidduck, A. J. (1994). Growth ripples upon strained SiGe epitaxial layers on Si and misfit dislocation interactions. Journal of Vacuum Science and Technology, 12, 1924–31.CrossRefGoogle Scholar
Cullis, A. G., Pidduck, A. J. and Emeny, M. T. (1995). Misfit dislocation sources at surface ripple troughs in continuous heteroepitaxial layers. Physical Review Letters, 75, 2368–71.CrossRefGoogle ScholarPubMed
Czaja, W. (1966a). Conditions for the generation of slip by diffusion of phosphorus into silicon. Journal of Applied Physics, 37, 3441–6.CrossRefGoogle Scholar
Czaja, W. (1966b). Response of Si and GaP p-n junctions to a 5- to 40-keV electron beam. Journal of Applied Physics, 37, 4236–48.CrossRefGoogle Scholar
Czaja, W. and Wheatley, G. H. (1964). Simultaneous observation of diffusion-induced dislocation slip patterns in Si with electron beam scanning and optical means. Journal of Applied Physics, 35, 2782–3.CrossRefGoogle Scholar
Czernuska, J. T. (1989). Effect of surface charge on the dislocation mobility in semiconductors. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford Conference Series No. 104 (Bristol: Institute of Physics), pp. 315–19.Google Scholar
Dangor, A. E. and Holt, D. B. (1962). Direct observations of the geometry of defects in germanium. Philosophical Magazine, 8, 1921–35.Google Scholar
D'Aragona, F. S., Delavignette, P. and Amelinckx, S. (1966). Direct evidence for the mechanism of the phase transition wurtzite-sphalerite. Physica Status Solidi, 14, K115–K118.CrossRefGoogle Scholar
Darling, D. F. and Field, B. O. (1973). Molecular orientation by surface forces. 2. On prediction of orientation of crystal overgrowths. Surface Science, 36, 630–40.CrossRefGoogle Scholar
Das, B. N. and Weinstein, M. (1967). Crystal imperfections in vapor-grown CdS. In II-VI Semiconducting Compounds, 1967. Proceedings of International Conference, ed. Thomas, D. G. (New York: Benjamin), pp. 147–66.Google Scholar
Dash, W. C. (1957). The observation of dislocations in silicon. In Dislocations and Mechanical Properties of Crystals, eds. Fisher, J. C., Johnston, W. G., Thomson, R. and Vreeland, Jr T. (New York: Wiley), pp. 57–68.Google Scholar
Dash, W. C. (1958). The growth of silicon crystals free from dislocations. In Growth and Perfection of Crystals, eds. Doremus, R. H., Roberts, B. W. and Turnbull, D. (New York: Wiley), pp. 361–85.Google Scholar
Datta, S., Yacobi, B. G. and Holt, D. B. (1977). Scanning electron-microscope studies of local variations in cathodoluminescence in striated ZnS platelets. Journal of Materials Science, 12, 2411–20.CrossRefGoogle Scholar
Delavignette, P., Kirkpatrick, H. B. and Amelinckx, S. (1961). Dislocations and stacking faults in aluminium nitride. Journal of Applied Physics, 32, 1098–100.CrossRefGoogle Scholar
Delin, A., Ravindran, P., Eriksson, O. and Wills, J. M. (1998). Full-potential optical calculations of lead chalcogenides. International Journal of Quantum Chemistry, 69, 349–58.3.0.CO;2-Y>CrossRefGoogle Scholar
Dewald, J. F. (1957). The kinetics and mechanism of formation of anode films on single-crystal InSb. Journal of the Electrochemical Society, 104, 244–51.CrossRefGoogle Scholar
Dewald, J. F. (1960). The charge and potential distributions at the zinc oxide electrode. Bell System Technical Journal, 39, 615–39.CrossRefGoogle Scholar
Dillon, J. A. (1960). The interaction of oxygen with silicon carbide surfaces. In Silicon Carbide, eds. O'Connor, J. R. and Smiltens, J. (Oxford: Pergamon), pp. 235–40.Google Scholar
Dillon, J. A. (1962). Assymetries in the surface properties of the (111) and (1̄1̄1̄) faces of ZnTe. Journal of Applied Physics, 33, 669–72.CrossRef
Dingley, D. J., Randle, V. and Baba-Kishi, K. Z. (1993). Atlas of Backscattering Patterns. Bristol: Adam Hilger.Google Scholar
Dmitriev, V., Rendakova, S., Kuznetsov, N.et al. (1999). Large area silicon carbide devices fabricated on SiC wafers with reduced micropipe density. Materials Science and Engineering, B61–2, 446–9.CrossRefGoogle Scholar
Dodson, B. W. and Tsao, J. Y. (1987). Relaxation of strained layer semiconductor structures by plastic flow. Applied Physics Letters, 51, 1325–7.CrossRefGoogle Scholar
Dornberger, E., Virbulis, J., Hanna, B.et al. (2001). Silicon crystals for future requirements of 300 mm wafers. Journal of Crystal Growth, 229, 11–16.CrossRefGoogle Scholar
Drum, C. M. (1965). Intersecting faults on basal and prismatic planes in aluminium nitride. Philosophical Magazine, 11, 313–34.CrossRefGoogle Scholar
Drum, C. M. and Gelder, W. (1972). Stacking-faults in (100) epitaxial silicon caused by HF and thermal oxidation and effects on p-n-junctions. Journal of Applied Physics, 43, 4465.CrossRefGoogle Scholar
Dudley, M., Huang, X. R., Huang, W.et al. (1999). The mechanism of micropipe nucleation at inclusions in silicon carbide. Applied Physics Letters, 75, pp. 784–6.CrossRefGoogle Scholar
Duesbery, M. S. (1989). The dislocation core and plasticity. In Dislocations in Solids, 8, ed. Nabarro, F. R. (Amsterdam: North-Holland), pp. 67–173.Google Scholar
Duesbery, M. S. and Richardson, G. Y. (1991). The dislocation core in crystalline materials. CRC Critical Reviews in Solid State and Materials Science, 17, 1–46.CrossRefGoogle Scholar
Dunstan, D. J. (1997). Strain and strain relaxation in semiconductors. Journal of Materials Science: Materials Electronics, 8, 337–75.Google Scholar
Durose, K. and Russell, G. J. (1987). Lateral twins in the sphalerite structure. In Microscopy of Semiconducting Materials 1987. Conference Series No. 87 (Bristol: Institute of Physics), pp. 327–32.Google Scholar
Durose, K. and Russell, G. J. (1990). Twinning in CdTe. Journal of Crystal Growth, 101, 246–50.CrossRefGoogle Scholar
Eaglesham, D. J., Kvam, E. P., Maher, D. M., Humphreys, C. J. and Bean, J. C. (1989). Dislocation nucleation near the critical thickness in GeSi/Si strained layers. Philosophical Magazine, A59, 1059–73.CrossRefGoogle Scholar
Ebina, A. and Takahashi, T. (1967). Crystal structure and stacking disorder of ZnS single crystals grown from the melt. Journal of Applied Physics, 38, 3079–86.CrossRefGoogle Scholar
Ehrenreich, H. and Hirth, J. P. (1985). Mechanism for dislocation density reduction in GaAs crystals by indium addition. Applied Physics Letters, 46, 668–70.CrossRefGoogle Scholar
Elliott, C. R. and Regnault, J. C. (1981). Birefringence studies of defects in III-V semiconductors. In Microscopy of Semiconducting Materials 1981. Conference Series No. 60 (Bristol: Institute of Physics), pp. 365–70.Google Scholar
Elliott, C. R., Regnault, J. C. and Wakefield, B. (1982). Applications of polarised infrared microscopy in the evaluation of InP and related compounds. In Proceedings of the International Symposium on GaAs and Related Compounds, Conference Series No. 65 60 (Bristol: Institute of Physics), pp. 553–60.Google Scholar
Ellis, S. G. (1959). On the growth of gallium arsenide crystals from the melt. Journal of Applied Physics, 30, 947–8.CrossRefGoogle Scholar
Ellis, W. C. and Treuting, R. G. (1951). Atomic relationships in the cubic twinned state. Transactions of the AIME, 189, 53–5.Google Scholar
Eremenko, V. G. and Fedorov, A. V. (1995). New effect of interaction between moving dislocation and point defects in silicon. Materials Science Forum, 196/201, 1219–23.CrossRefGoogle Scholar
Eremenko, V., Abrosimov, N. and Fedorov, A. (1999). The origin and properties of new extended defects revealed by etching in plastically deformed Si and SiGe. Physica Status Solidi, A171, 383–8.3.0.CO;2-M>CrossRefGoogle Scholar
Erofeeva, S. A. and Osipiyan, Yu. A. (1973). Mobility of dislocations with the sphalerite lattice. Soviet Physics Solid State, 15, 538–40.Google Scholar
Erofeev, V. N. and Nikitenko, V. I. (1971). Velocity of single dislocations in germanium single crystals. Soviet Physics Solid State, 13, 241.Google Scholar
Erofeev, V. N., Nikitenko, V. I. and Osvenskii, V. B. (1969). Effect of impurities on the individual dislocation mobility in silicon. Physica Status Solidi, 35, 79–88.CrossRefGoogle Scholar
Ewing, R. E. and Greene, P. E. (1964). Influence of vapour composition on the growth rate and morphology of GaAs epitaxial films. Journal of the Electrochemical Society, 111, 1266–9.CrossRefGoogle Scholar
Fahey, P. M., Mader, S. R., Stiffler, S. R.et al. (1992). Stress-induced dislocations in silicon integrated-circuits. IBM Journal of Research and Development, 36, 158–82.CrossRefGoogle Scholar
Falster, R. and Voronkov, V. V. (2000). The engineering of intrinsic point defects in silicon wafers and crystals. Materials Science and Engineering, B73, 87–94.CrossRefGoogle Scholar
Farvacque, J. L., Bougrioua, Z. and Moerman, I. (2001). Free-carrier mobility in GaN in the presence of dislocation walls. Physical Review, B63, 115202 (8 pages).Google Scholar
Faust, J. W. and Sagar, A. (1960). Effect of the polarity of the III-V intermetallic compounds on etching. Journal of Applied Physics, 31, 331–3.CrossRefGoogle Scholar
Faust, J. W. and John, H. F. (1962). Growth facets on III-V intermetallic compounds. Journal of Physics and Chemistry of Solids, 23, 1119–22.CrossRefGoogle Scholar
Faust, J. W. and John, H. F. (1964). The growth of semiconductor crystals from solution using the twin-plane re-entrant-edge mechanism. Journal of Physics and Chemistry of Solids, 25, 1407–15.CrossRefGoogle Scholar
Feklisova, O. V., Yakimov, E. B. and Yarykin, N. (2003). Contribution of the disturbed dislocation planes to the electrical properties of plastically deformed silicon. Physica, B340–342, 1005–8.CrossRefGoogle Scholar
Feklisova, O. V., Pichaud, B. and Yakimov, E. B. (2005). Annealing effect on the electrical activity of extended defects in plastically deformed p-Si with low dislocation density. Physica Status Solidi, A202, 896–900.CrossRefGoogle Scholar
Figielski, T. (1965). Dislocations as traps for holes in germanium. Physica Status Solidi, 9, 555.CrossRefGoogle Scholar
Finch, R. H., Queisser, H. J., Thomas, G. and Washburn, J. (1963). Structure and origin of stacking faults in epitaxial silicon. Journal of Applied Physics, 34, 406–15.CrossRefGoogle Scholar
Fisher, A. W. and Amick, J. A. (1966). Defect structure on silicon surfaces after thermal oxidation. Journal of the Electrochemical Society, 113, 1054–60.Google Scholar
Fitzgerald, E. A. (1991). Dislocations in strained-layer epitaxy – theory, experiment, and applications. Materials Science Reports, 7, 91–142.CrossRefGoogle Scholar
Fitzgerald, E. A., Watson, G. P., Proano, R. E.et al. (1989). Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area. Journal of Applied Physics, 65, 2220–37.CrossRefGoogle Scholar
Fitzgerald, A. G. and Mannami, M. (1966). The analysis of defects by observation of Moiré fringes from overlapping crystals – Application to zinc sulphide crystals. Proceedings of the Royal Society, A293, 469–78.CrossRefGoogle Scholar
Fitzgerald, A. G., Mannami, M., Pogson, E. N. and Yoffe, A. D. (1966). Structure of zinc selenide crystals and defects introduced during growth. Philosophical Magazine, 14, 197–200.CrossRefGoogle Scholar
Fitzgerald, A. G., Mannami, M., Pogson, E. N. and Yoffe, A. D. (1967). Crystal growth and defect structure of zinc sulfide and zinc selenide platelets. Journal of Applied Physics, 38, 3303–10.CrossRefGoogle Scholar
Fletcher, N. H. (1967). Structure and energy of crystal interfaces. 2. A simple explicit calculation. Philosophical Magazine, 16, 159–64.CrossRefGoogle Scholar
Fletcher, N. H. (1969). General principles governing the structure and energy of interfaces between crystals. In Interfaces, Proceedings of the International Conference, ed. Gifkins, R. C. (Melbourne: Butterworths), pp. 1–18.Google Scholar
Fletcher, N. H. and Adamson, P. L. (1966). Structure and energy of crystal interfaces. I. Formal development. Philosophical Magazine, 14, 99–110.CrossRefGoogle Scholar
Fletcher, N. H. and Lodge, K. W. (1975). Energies of Interfaces between crystals: an Ab Initio approach. In Epitaxial Growth Part B, ed. Matthews, J. W. (New York: Academic Press), pp. 529–57.Google Scholar
Frank, F. C. (1949). Answer by Frank in discussion of a paper by N. F. Mott that introduced what became known as Frank's rule. Physica, 15, 131–3.Google Scholar
Frank, F. C. (1951). Capillary equilibria of dislocated crystals. Acta Crystallographica, 4, 497–501.CrossRefGoogle Scholar
Frank, F. C. and Nicholas, J. F. (1953). Stable dislocations in the common crystal lattices. Philosophical Magazine, 44, 1213–35.Google Scholar
Frank, F. C. and Read, W. T. (1950). Multiplication processes for slow moving dislocations. Physical Review, 79, 722–3.CrossRefGoogle Scholar
Frank, F. C. and Merwe, J. H. (1949a). One-dimensional dislocations. 1. Static theory. Proceedings of the Royal Society London Series, A198, pp. 205–16.CrossRefGoogle Scholar
Frank, F. C. and Merwe, J. H. (1949b). One-dimensional dislocations. 2. Misfitting monolayers and oriented overgrowth. Proceedings of the Royal Society London Series, A198, 216–25.CrossRefGoogle Scholar
Frank, F. C. and Turnbull, D. (1956). Mechanism of diffusion of copper in germanium. Physical Review, 104, 617–18.CrossRefGoogle Scholar
Franzosi, P., Salviati, G., Cocito, M., Taiariol, F. and Ghezzi, C. (1984). Inclusion-like defects in Czochralski grown InP single-crystals. Journal of Crystal Growth, 69, 388–98.CrossRefGoogle Scholar
Freund, L. B. (1990). The driving force for glide of a threading dislocation in a strained epitaxial layer on a substrate. Journal of the Mechanics and Physics of Solids, 38, 657–79.CrossRefGoogle Scholar
Friedel, G. (1926). Lecons de cristallographie (Paris: Berger Levrault), pp. 250–2.
Frisch, H. J. and Patel, J. R. (1967). Chemical influence of holes and electrons on dislocation velocity in semiconductors. Physical Review Letters, 18, 784–7.CrossRefGoogle Scholar
Gai, P. L. and Howie, A. (1974). Dissociation of dislocations in GaP. Philosophical Magazine, 30, 939–43.CrossRefGoogle Scholar
Gatos, H. C. and Lavine, M. C. (1960a). Characteristics of the {111} surfaces of the III-V intermetallic compounds. Journal of the Electrochemical Society, 107, 327–433.CrossRefGoogle Scholar
Gatos, H. C. and Lavine, M. C. (1960b). Etching and inhibition of the {111} surfaces of the III-V intermetallic compounds: InSb. Journal of Physics and Chemistry of Solids, 14, 169–74.CrossRefGoogle Scholar
Gatos, H. C. and Lavine, M. C. (1965). Chemical behaviour of semiconductors: Etching characteristics. In Progress in Semiconductors, 9, eds. Gibson, A. F. and Burgess, R. E. (New York: Heywood), pp. 1–45.Google Scholar
Gatos, H. C., Moody, P. L. and Lavine, M. C. (1960). Growth of InSb crystals in the 〈111〉 polar direction. Journal of Applied Physics, 31, 212–13.CrossRefGoogle Scholar
Gatos, H. C., Lavine, M. C. and Warekois, E. P. (1961). Characteristics of the {111} surfaces of the III-V intermetallic compounds. II. Surface damage. Journal of the Electrochemical Society, 108, 645–49.CrossRefGoogle Scholar
George, A. (1997). Plastic deformation of semiconductors: some recent advances and persistent challenges. Materials Science and Engineering, A233, 88–102.CrossRefGoogle Scholar
George, A. and Yip, S. (2001). Preface to the viewpoint set on: dislocation mobility in silicon. Scripta Materialia, 45, 1233–8.CrossRefGoogle Scholar
George, A. and Rabier, J. (1987). Dislocations and plasticity in semiconductors. I – Dislocation structures and dynamics. Revue de Physique Appliquee, 22, 941–66.CrossRefGoogle Scholar
George, A., Schröter, W., Escaravage, C. and Champier, G. (1972). Velocities of screw and 60 degrees dislocations in silicon. Physica Status Solidi, B53, 483.CrossRefGoogle Scholar
Gezci, S. and Woods, J. (1972). Dislocation etch pits in zinc selenide. Journal of Materials Science, 7, 603–8.CrossRefGoogle Scholar
Ghezzi, C. and Servidori, M. (1974). X-ray study of heterogeneous nucleation of dislocations in P-diffused silicon. Journal of Materials Science, 9, 1797–802.CrossRefGoogle Scholar
Gilman, J. J. (1959). Plastic anisotropy of LiF and other rocksalt-type crystals. Acta Metallurgica, 7, 608–13.CrossRefGoogle Scholar
Gilman, J. J. (1961). Nature of dislocations. In Mechanical Behaviour of Materials at Elevated Temperatures, ed. Dorn, J. E. (New York: McGraw-Hill), pp. 17–44.Google Scholar
Gilman, J. J. (1969). Micromechanics of Flow in Solids. New York: McGraw-Hill.Google Scholar
Giri, P. K., Coffa, S., Raineri, V., et al. (2001). Photoluminescence and structural studies on extended defect evolution during high-temperature processing of ion-implanted epitaxial silicon. Journal of Applied Physics, 89, 4310 –17.CrossRefGoogle Scholar
Gleichmann, R., Frigeri, C. and Pelosi, C. (1990). Hillock formation in InP epitaxial layers: a mechanism based on dislocation/stacking fault interactions. Philosophical Magazine, A62, 103–14.CrossRefGoogle Scholar
Gomez, A. M. and Hirsch, P. B. (1977). On the mobility of dislocations in germanium and silicon. Philosophical Magazine, 36, 169–79.CrossRefGoogle Scholar
Gomez, A. M. and Hirsch, P. B. (1978). Dissociation of dislocations in GaAs. Philosophical Magazine, A38, 733–7.CrossRefGoogle Scholar
Gomez, A., Cockayne, D. J., Hirsch, P. B. and Vitek, V. (1975). Dissociation of near-screw dislocations in germanium and silicon. Philosophical Magazine, 31, 105–13.CrossRefGoogle Scholar
Gosling, T. J., Jain, S. C. and Harker, A. H. (1994). The kinetics of strain relaxation in lattice-mismatched semiconductor layers. Physica Status Solidi, A146, 713–34.CrossRefGoogle Scholar
Gottschalk, H., Patzer, G. and Alexander, H. (1978). Stacking fault energy and ionicity of cubic III-V compounds. Physica Status Solidi, A45, 207–17.CrossRefGoogle Scholar
Grimmer, H., Bollmann, W. and Warrington, D. H. (1974). Coincidence-site lattices and complete pattern-shift lattices in cubic crystals. Acta Crystallographica, A30, 197 –207.Google Scholar
Grovenor, C. R. (1985). Grain boundaries in semiconductors. Journal of Physics, C18, 4079–119.Google Scholar
Guruswamy, S., Rai, R. S., Faber, K. T., et al. (1989). Influence of solute doping on the high-temperature deformation behavior of GaAs. Journal of Applied Physics, 65, 2508–12.CrossRefGoogle Scholar
Gutkin, M. Yu., Sheinerman, A. G., Argunova, T. S., et al. (2003). Micropipe evolution in silicon carbide. Applied Physics Letters, 83, 2157–9.CrossRefGoogle Scholar
Gutmanas, E. Y. and Haasen, P. (1979a). Photoplastic effect in CdTe. Journal de Physique, C6, 169–72.Google Scholar
Gutmanas, E. Y., Travitzky, N. and Haasen, P. (1979b). Negative and positive photoplastic effect in CdTe. Physica Status Solidi, A51, 435–44.CrossRefGoogle Scholar
Haasen, P. (1957a). Twinning in indium antimonide. Transactions of the AIME, 209, 30–3.Google Scholar
Haasen, P. (1957). On the plasticity of germanium and indium antimonide. Acta Metallurgica, 5, 598.CrossRefGoogle Scholar
Haasen, P. (1975). Kinkenbildung in geladenen versetzungen. Physica Status Solidi, A28, 145–55.CrossRefGoogle Scholar
Haasen, P. (1979). Kink formation and migration as dependent on the Fermi level. Journal de Physique, C6, 111–16.Google Scholar
Haasen, P. and Seeger, A. (1958). In Halbleiterprobleme IV, ed. Schottky, W. (Braunschweig: Vieweg), pp. 68–118.Google Scholar
Haasen, P. and Alexander, H. (1968). Dislocations and plastic flow in the diamond structure. Solid State Physics, 22, 27–158.Google Scholar
Haasen, P. and Alexander, H. (1972). Dislocations in nonmetals. Annual Review of Materials Science, 2, 291–312.Google Scholar
Hah, S. R. and Fischer, T. E. (1998). Tribochemical polishing of silicon nitride. Journal of the Electrochemical Society, 145, 1708–14.CrossRefGoogle Scholar
Hall, R. N. (1968). Photomechanical and electomechanical effects in semiconductors. In Proceedings of Ninth International Conference on Physics of Semiconductors, I (Leningrad: Nauka).Google Scholar
Haneman, D. (1960). Behaviour of InSb surfaces during heat treatment. Journal of Applied Physics, 31, 217–18.CrossRefGoogle Scholar
Haneman, D. (1962a). Free bonds in semiconductors. In Reports on Conference on Physics of Semiconductors, Exeter (London: Institute of Physics), pp. 842–7.Google Scholar
Haneman, D. (1962b). Behaviour of InSb surfaces during heat treatment. In Semiconducting Compounds, I, Preparation of III-V Compounds, eds. Willardson, R. K. and Goering, H. L. (New York: Reinhold), pp. 432–5.Google Scholar
Haneman, D., Russel, G. J. and Ip, H. K. (1964). Bonding and decomposition in III-V compounds. In Proceedings of International Conference on Semiconductors, Paris (Paris: Dunod), pp. 1141–5.Google Scholar
Hanneman, R. E. and Jorgenson, P. J. (1967). On the existence of electromechanical and photomechanical effects in semiconductors. Journal of Applied Physics, 38, 4099–100.CrossRefGoogle Scholar
Hanneman, R. E. and Westbrook, J. H. (1968). Effects of adsorption on the indentation deformation of non-metallic solids. Philosophical Magazine, 18, 73–88.CrossRefGoogle Scholar
Hanneman, R. E., Ginn, M. C. and Gatos, H. C. (1962). Elastic strain energy associated with the ‘A’ surfaces of the III-V compounds. Journal of Physics and Chemistry of Solids, 23, 1554–6.CrossRefGoogle Scholar
Hartmann, H., Mach, R. and Selle, B. (1982). Wide gap II–VI compounds as electronic materials. In Current Topics in Materials Science, 9, ed. Kaldis, E.. Amsterdam: North Holland.Google Scholar
Hashimoto, H., Shibayama, H., Masaki, H. and Ishikawa, H. (1976). Annihilation of stacking-faults in silicon by impurity diffusion. Journal of the Electrochemical Society, 123, 1899–902.CrossRefGoogle Scholar
Häussermann, F. and Schaumburg, H. (1973). Extended dislocations in germanium. Philosophical Magazine, 27, 745–51.CrossRefGoogle Scholar
Heggie, M. I., Jones, R., Lister, G. M. and Umerski, A. (1989). Interaction of impurities with dislocation cores in silicon. Institute of Physics Conference Series, 104, 43–6.Google Scholar
Heiland, G. and Kunstmann, P. (1969). Polar surfaces of ZnO crystals. Surface Science, 13, 72–84.CrossRefGoogle Scholar
Heindl, J., Strunk, H. P., Heydemann, V. D. and Pensl, G. (1997). Micropipes: hollow tubes in silicon carbide. Physica Status Solidi, A162, 251–62.3.0.CO;2-7>CrossRefGoogle Scholar
Heindl, J., Dorsch, W., Strunk, H. P., et al. (1998). Dislocation content of micropipes in SiC. Physical Review Letters, 80, pp. 740–1.CrossRefGoogle Scholar
Henneke, H. L. (1965). Comment on ‘Polarity Effects in InSb-Alloyed p-n Junctions’. Journal of Applied Physics, 36, 2967–8.CrossRefGoogle Scholar
Herrera Zaldivar, M., Fernández, P. and Piqueras, J. (2001). Study of growth hillocks in GaN:Si films by electron beam induced current imaging. Journal of Applied Physics, 90, 1058–60.CrossRefGoogle Scholar
Hinkley, E. D., Rediker, R. H. and Lavine, M. C. (1964). Inversion of {111} surfaces in single crystal regrowth during interface-alloying of intermetallic compounds. Applied Physics Letters, 5, 110–12.CrossRefGoogle Scholar
Hirsch, P. B. (1980). Structure and electrical properties of dislocations in semiconductors. Journal of Microscopy, 118, 3–12.CrossRefGoogle Scholar
Hirsch, P. B. (1981). Electronic and mechanical properties of dislocations in semiconductors. In Defects in Semiconductors, Proceedings of the Materials Research Society 1980 (New York: North-Holland), pp. 257–71.Google Scholar
Hirsch, P. B. (1985). Dislocations in semiconductors. Materials Science and Technology, 1, 666–77.CrossRefGoogle Scholar
Hirsch, P. B., Pirouz, P., Roberts, S. G. and Warren, P. D. (1985). Indentation hardness and polarity of hardness on {111} faces of GaAs. Philosophical Magazine, B52, 759–84.CrossRefGoogle Scholar
Hirth, J. P. and Lothe, J. (1968). Theory of Dislocations. New York: McGraw-Hill.Google Scholar
Hofmann, D., Bickermann, M., Eckstein, R., et al. (1999). Sublimation growth of silicon carbide bulk crystals: experimental and theoretical studies on defect formation and growth rate augmentation. Journal of Crystal Growth, 198–199, 1005–10.CrossRefGoogle Scholar
Holt, D. B. (1960). Filled and empty dangling bonds in III-V compounds. Journal of Applied Physics, 31, 2231–2.CrossRefGoogle Scholar
Holt, D. B. (1962). Defects in the sphalerite structure. Journal of Physics and Chemistry of Solids, 23, 1353–62.CrossRefGoogle Scholar
Holt, D. B. (1964). Grain boundaries in the sphalerite structure. Journal of Physics and Chemistry of Solids, 25, 1385–95.CrossRefGoogle Scholar
Holt, D. B. (1966). Misfit dislocations in semiconductors. Journal of Physics and Chemistry of Solids, 27, 280–95.CrossRefGoogle Scholar
Holt, D. B. (1969). Antiphase boundaries in semiconducting compounds. Journal of Physics and Chemistry of Solids, 27, 1053–67.CrossRefGoogle Scholar
Holt, D. B. (1974). The growth and structure of epitaxial films and heterojunctions of II-VI compounds. Thin Solid Films, 24, 1–53.CrossRefGoogle Scholar
Holt, D. B. (1996). The role of defects in semiconductor materials and devices. Scanning Microscopy, 10, 1047–78.Google Scholar
Holt, D. B. and Dangor, A. E. (1963). Direct observations of defects in germanium. Philosophical Magazine, 8, 1921–36.CrossRefGoogle Scholar
Holt, D. B. and Culpan, M. (1970). Scanning electron microscope studies of striations in ZnS. Journal of Materials Science, 5, 546–56.CrossRefGoogle Scholar
Holt, D. B. and Brada, Y. (1997). EBIC studies of the electrical barriers in striated ZnS platelets exhibiting the anomalous photovoltaic effect. In Microscopy of Semiconducting Materials 1997, Conference Series No. 157 (Bristol: Institute of Physics), pp. 629–34.Google Scholar
Holt, D. B. and Salviati, G. (1990). Twinning and impurity segregation in Cr-doped and Fe-doped LEC InP. Journal of Crystal Growth, 100, 497–507.CrossRefGoogle Scholar
Holt, D. B. and Salviati, G. (1993). Twins in SI InP. Microscopy of Semiconducting Materials (1993), Institute of Physics Conference Series (134), pp. 739–42.
Holt, D. B. and Wilcox, D. M. (1971). Crystallographic defects in epitaxial layers of cadmium sulphide. Journal of Crystal Growth, 9, 193.CrossRefGoogle Scholar
Holt, D. B. and Wilcox, D. M. (1972). The effect of substrate orientation on the structure of epitaxial films of II-VI compounds. Thin Solid Films, 10, 141–7.CrossRefGoogle Scholar
Holt, D. B., Abdalla, M. I., Gejji, F. H. and Wilcox, D. M. (1976). Crystallography of the phase transfomed structures in epitaxial (110) films of CdS, CdSe and CdTe and ordering in II-VI compounds. I. The domain-form structure. Thin Solid Films, 37, 91–107.CrossRefGoogle Scholar
Holt, D. B., Hardingham, C., Lazzarini, L.et al. (1996). Properties and structure of antiphase boundaries in GaAs/Ge solar cells. Materials Science and Engineering, B42, 204–7.CrossRefGoogle Scholar
Hornstra, J. (1958). Dislocations in the diamond lattice. Journal of Physics and Chemistry of Solids, 5, 129–41.CrossRefGoogle Scholar
Hornstra, J. (1959). Models of grain boundaries in the diamond lattice. I. Tilt about 〈110〉. Physica, 25, 409–22.CrossRefGoogle Scholar
Hornstra, J. (1960). Models of grain boundaries in the diamond lattice. II. Tilt about 〈001〉 and theory. Physica, 26, 198–208.CrossRefGoogle Scholar
Houghton, D. C. (1991). Strain relaxation kinetics in Si1-xGex/Si heterostructures. Journal of Applied Physics, 70, 2136–51.CrossRefGoogle Scholar
Hourai, M., Kajita, E., Nagashima, T.et al. (1995). Growth parameters determining the type of grown-in defects in Czochralski silicon crystals. Materials Science Forum, 196–201, 1713–18.CrossRefGoogle Scholar
Hu, S. M. (1974). Formation of stacking faults and enhanced diffusion in the oxidation of silicon. Journal of Applied Physics, 45, 1567–73.CrossRefGoogle Scholar
Hu, S. M. (1991). Stress-related problems in silicon technology. Journal of Applied Physics, 70, R53–R80.CrossRefGoogle Scholar
Huff, H. R. (2002). An electronics division retrospective (1952–2002) and future opportunities in the twenty-first century. Journal of the Electrochemical Society, 149, S35–S58.CrossRefGoogle Scholar
Hull, R. (1999). Misfit strain and accommodation in SiGe heterostructures. In Germanium Silicon: Physics and Materials, eds. Hull, R. and Bean, J. C.. This is volume 56 in the series Semiconductors and Semimetals, eds. Willardson, R. K. and Beer, A. C. (San Diego: Academic Press), pp. 101–67.Google Scholar
Hull, R., Bean, J. C. and Buescher, C. (1989). A phenomenological description of strain relaxation in GexSi1–x/Si(100) heterostructures. Journal of Applied Physics, 66, 5837–43.CrossRefGoogle Scholar
Hull, R., Gray, J., Wu, C. C., Atha, S. and Floro, J. A. (2002). Interaction between surface morphology and misfit dislocations as strain relaxation modes in lattice-mismatched heteroepitaxy. Journal of Physics: Condensed Matter, 14, 12829–41.Google Scholar
Hulme, K. F. and Mullin, J. B. (1962). InSb: A review of its preparation, properties and device applications. Solid State Electronics, 5, 211–47.CrossRefGoogle Scholar
Humphreys, C. J., Maher, D. M., Eaglesham, D. J., Kvam, E. P. and Salisbury, I. G. (1991). The origin of dislocations in multilayers. Journal de Physique (III), 1, 1119–30.Google Scholar
Hurle, D. T. and Rudolph, P. (2004). A brief history of defect formation, segregation, faceting and twinning in melt-grown semiconductors. Journal of Crystal Growth, 264, 550–64.CrossRefGoogle Scholar
Igarashi, O. (1971). Crystallographic orientations and interfacial mismatches of single-crystal CdS films deposited on various faces of zinc-blende-type crystals. Journal of Applied Physics, 42, 4035–42.CrossRefGoogle Scholar
Imai, M. and Sumino, K. (1983). In situ x-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals. Philosophical Magazine, A47, 599–621.Google Scholar
Iunin, Yu. L. and Nikitenko, V. I. (2001). Modes of kink motion on dislocations in semiconductors. Scripta Materialia, 45, 1239–46.CrossRefGoogle Scholar
Jaccodine, R. J. and Drum, C. M. (1966). Extrinsic stacking faults in silicon after heating in wet oxygen. Applied Physics Letters, 8, 29.CrossRefGoogle Scholar
Jagodzinski, H. (1949). Acta Crystallographica, 2, 201–7.CrossRef
Jain, S. C., Willander, M. and Maes, H. (1996). Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors. Semiconductor Science and Technology, 11, 641–71.CrossRefGoogle Scholar
Jain, S. C., Willander, M., Narayan, J. and Overstraeten, R. (2000). III–nitrides: Growth, characterization, and properties. Journal of Applied Physics, 87, 965–1006.CrossRefGoogle Scholar
James, R. W. (1948). The Optical Principles of the Diffraction of X-Rays. London: G. Bell and Sons.
Jepps, N. W. and Page, T. F. (1983). Polytypic transformations in silicon carbide. Progress in Crystal Growth and Characterization, 7, 259–307.CrossRefGoogle Scholar
Jesser, W. A. and Merwe, J. H. (1994). An assessment of the roles of climb and glide in misfit strain relief. Journal of Applied Physics, 75, 872–8.CrossRefGoogle Scholar
Jesson, D. E., Chen, K. M., Pennycook, S. J., Thundat, T. and Warmack, R. J. (1995). Crack-like sources of dislocation nucleation and multiplication in thin films. Science, 268, 1161–3.CrossRefGoogle ScholarPubMed
Jones, R. (1979). Theoretical calculations of electron states associated with dislocations. Journal de Physique, C6, 33–8.Google Scholar
Jones, R. (2000). Do we really understand dislocations in semiconductors?Materials Science and Engineering, B71, 24–9.CrossRefGoogle Scholar
Jones, R. and Blumenau, A. T. (2001). Interaction of dislocations in Si with intrinsic defects. Scripta Materialia, 45, 1253–8.CrossRefGoogle Scholar
Jones, R., Umerski, A., Stitch, P., Heggie, M. I. and Oberg, S. (1993). Density-functional calculations of the structure and properties of impurities and dislocations in semiconductors. Physica Status Solidi, A138, 369–81.CrossRefGoogle Scholar
Joshi, M. L. (1965). Effect of fast cooling on diffusion-induced imperfections in silicon. Journal of the Electrochemical Society, 112, 912–16.CrossRefGoogle Scholar
Joshi, M. L. and Wilhelm, F. (1965). Diffusion induced imperfections in silicon. Journal of the Electrochemical Society, 112, 185–8.CrossRefGoogle Scholar
Jowett, C. E. (1979). Failure mechanisms and analysis procedures for semiconductor devices. Microelectronics Journal, 9, 5–13.Google Scholar
Jungbluth, E. D. and Wang, P. (1965). Process-introduced structural defects and junction characteristics in npn Si epitaxial planar transistors. Journal of Applied Physics, 36, 1967–73.CrossRefGoogle Scholar
Justo, J. F., Koning, M., Cai, W. and Bulatov, V. V. (2000). Vacancy interaction with dislocations in silicon: The shuffle-glide competition. Physical Review Letters, 84, 2172–5.CrossRefGoogle ScholarPubMed
Kabler, M. N. (1963). Dislocation mobility in germanium. Physical Review, 131, 54.CrossRefGoogle Scholar
Kamata, I., Tsuchida, H., Jikimoto, T., Miyanagi, T. and Izumi, K. (2003). Conditions for micropipe dissociation by 4H-SiC CVD growth. Materials Science Forum, 433–436, 261–4.CrossRefGoogle Scholar
Kamiya, T., Durrani, Z. A. and Ahmed, H. (2002). Control of grain-boundary tunneling barriers in polycrystalline silicon. Applied Physics Letters, 81, 2388–90.CrossRefGoogle Scholar
Kannan, V. C. and Washburn, J. (1970). Direct dislocation velocity measurement in silicon by x-ray topography. Journal of Applied Physics, 41, 3589.CrossRefGoogle Scholar
Karstensen, F. (1957). Preferential diffusion of Sb along small angle boundaries in Ge and the dependence of this effect on the direction of the dislocation lines in the boundary. Journal of Electronics and Control, 3, 305–7.CrossRefGoogle Scholar
Kazmerski, L. L. (1982). Chemical, compositional, and electrical properties of semiconductor grain boundaries. Journal of Vacuum Science and Technology, 20, 423–9.CrossRefGoogle Scholar
Kazmerski, L. L. (1993). Microcharacterization to nanocharacterization of semiconductor grain boundaries. Surface Science Reports, 19, 169–89.CrossRefGoogle Scholar
Kazmerski, L. L. (1994). Auger electron spectroscopy. In Microanalysis of Solids, eds. Yacobi, B. G., Holt, D. B. and Kazmerski, L. L. (New York: Plenum Press), pp. 99–146.CrossRefGoogle Scholar
Kazmerski, L. L. and Dick, J. R. (1984). Determination of grain boundary impurity effects in polycrystalline silicon. Journal of Vacuum Science and Technology, A2, 1120–2.CrossRefGoogle Scholar
Kazmerski, L. L., Ireland, P. J. and Ciszek, T. F. (1980). Evidence for the segregation of impurities to grain boundaries in multigained silicon using AES and SIMS. Applied Physics Letters, 36, 323–5.CrossRefGoogle Scholar
Khlebnikov, I., Madangarli, V. P., Khan, M. A. and Sudarshan, T. S. (1998). Thick film SiC epitaxy for "filling up' micropipes. Materials Science Forum, 264–2, 167–70.CrossRefGoogle Scholar
Kimerling, L. C. (1978). Recombination enhanced defect reactions. Solid State Electronics, 21, 1391–1401.CrossRefGoogle Scholar
Kimerling, L. C. and Patel, J. R. (1985). Silicon defects: Structures, chemistry, and electrical properties. In VLSI Electronics Microstructure Science, 12, eds. Einspruch, N. G. and Huff, H. (New York: Academic Press), pp. 223–67.Google Scholar
Kirichenko, L. G., Petrenko, V. F. and Uimin, G. V. (1978). Nature of the dislocation charge in ZnSe. Soviet Physics JETP, 47, 389–94.Google Scholar
Kishino, S., Isomae, S., Tamura, M. and Maki, M. (1978). Suppression of oxidation-stacking-fault generation by preannealing in N2 atmosphere. Applied Physics Letters, 32, 1–3.CrossRefGoogle Scholar
Kittler, M., Seifert, W., Stemmer, M. and Palm, J. (1995). Interaction of iron with a grain boundary in boron-doped multicrystalline silicon. Journal of Applied Physics, 77, 3725–8.CrossRefGoogle Scholar
Knippenberg, W. F. (1963). Growth phenomena in silicon carbide. Philips Research Reports, 18, 161–274.Google Scholar
Kohn, J. A. (1958 ). Twinning in diamond-type structures – a proposed boundary-structure model. American Mineralogist, 43, 263–84.Google Scholar
Kolar, H. R., Spence, J. C. and Alexander, H. (1996). Observation of moving dislocation kinks and unpinning. Physical Review Letters, 77, 4031–4.CrossRefGoogle ScholarPubMed
Kolbesen, B. O. and Strunk, H. P. (1985). Analysis, electrical effects, and prevention of process-induced defects in silicon integrated circuits. In VLSI Electronics Microstructure Science, 12, eds. Einspruch, N. G. and Huff, H. (New York: Academic Press), pp. 143–222.Google Scholar
Kolbesen, B. O., Bergholz, W., Cerva, H.et al. (1989). Effects of extended lattice defects on silicon semiconductor devices. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford, Conference Series No. 104 (Bristol: Institute of Physics), pp. 421–30.Google Scholar
Kolbesen, B. O., Bergholz, W., Cerva, H., et al. (1991). Process-induced defects in VLSI. Nuclear Instrumentation and Methods in Physics Research, B55, 124–31.CrossRefGoogle Scholar
Kolbesen, B., Cerva, H. and Zoth, G. (2001). Defects and contamination in microelectronic device production: State-of-the-art and prospects. Solid State Phenomena, 76–77, 1–6.CrossRefGoogle Scholar
Kressel, H. (1975). The application of heterojunction structures to optical devices. Journal of Electronic Materials, 4, 1081–141.CrossRefGoogle Scholar
Krivanek, O. L., Isoda, S. and Kobayashi, K. (1977). Lattice imaging of a grain boundary in crystalline germanium. Philosophical Magazine, 36, 931–40.CrossRefGoogle Scholar
Kroemer, H. (1987). Sublattice allocation and antiphase domain suppression in polar-on-nonpolar nucleation. Journal of Vacuum Science and Technology, B5, 1150–4.CrossRefGoogle Scholar
Krüger, O., Seifert, W., Kittler, M. and Vyvenko, O. F. (2000). Extension of hydrogen passivation of intragrain defects and grain boundaries in cast multicrystalline silicon. Physica Status Solidi, B222, 367–78.3.0.CO;2-E>CrossRefGoogle Scholar
Ku, S. M. (1963). The preparation and properties of vapour-grown GaAs-GaP alloys. Journal of the Electrochemical Society, 110, 992–5.CrossRefGoogle Scholar
Kubo, I. and Tomiyama, N. (1971). Polarity of ZnO crystal. III Inversion twin boundaries on {101̄0}. Japanese Journal of Applied Physics, 10, 952.CrossRef
Küsters, K. H. and Alexander, H. (1983). Photoplastic effect in silicon. Physica, 116B, 594–9.Google Scholar
Laister, D. and Jenkins, G. M. (1968). Stacking-faults in tellurium-doped gallium arsenide. Journal of Materials Science, 3, 584–9.CrossRefGoogle Scholar
Laister, D. and Jenkins, G. M. (1969). Image contrast of triple loops in tellurium-doped gallium arsenide. Philosophical Magazine, 20, 361.CrossRefGoogle Scholar
Laister, D. and Jenkins, G. M. (1971). Electrical and electron microscope studies of annealing of tellurium-doped gallium arsenide. Philosophical Magazine, 23, 1077–1100; 4 layer stacking faults in gallium arsenide. Philosophical Magazine, 24, 705.CrossRefGoogle Scholar
Laister, D. and Jenkins, G. M. (1973). Deformation of single crystals of gallium arsenide. Journal of Materials Science, 8, 1218–32.CrossRefGoogle Scholar
Latanision, , , R. M. and Fourie, , , J. T. (eds.) (1977). Surface effects in crystal plasticity (NATO Advanced Study Institutes Series, Series E: Applied Science No. 17) (Leyden: Nordhoff).
Lavine, M. C., Rosenberg, A. J. and Gatos, H. C. (1958). Influence of crystal orientation of the surface behaviour of InSb. Journal of Applied Physics, 29, 1131–2.CrossRefGoogle Scholar
Leamy, H. J., Frye, R. C., Ng, K. K.et al. (1982). Direct observation of grain boundary effects in polycrystalline silicon thin-film transistors. Applied Physics Letters, 40, 598–600.CrossRefGoogle Scholar
Lee, D. B. (1974). The push-out effect in silicon n-p-n diffused transistors. Philips Research Reports Supplement, 5, 1–131.Google Scholar
Leipner, H. S., Hubner, C. G., Staab, T. E. M.et al. (2000). Vacancy clusters in plastically deformed semiconductors. Journal of Physics: Condensed Matter, 12, 10071–8.Google Scholar
Leipner, H. S., Wang, Z., Gu, H.et al. (2004). Defects in silicon plastically deformed at room temperature. Physica Status Solidi, A201, 2021–8.CrossRefGoogle Scholar
Levine, E. and Tauber, R. N. (1968). The preparation and examination of PbTe by transmission electron microscopy. Journal of the Electrochemical Society, 115, 107–8.CrossRefGoogle Scholar
Levine, E., Washburn, J. and Thomas, G. (1967a). Diffusion-induced defects in silicon. I. Journal of Applied Physics, 38, 81–7.CrossRefGoogle Scholar
Levine, E., Washburn, J. and Thomas, G. (1967b). Diffusion-induced defects in silicon. II. Journal of Applied Physics, 38, 87–95.CrossRefGoogle Scholar
Likhtman, V. I., Rebinder, P. A. and Karpenko, G. V. (1958). Effect of a surface active medium on the deformation of metals. (London: H. M. O.).Google Scholar
Lilienthal-Weber, Z., Chen, Y., Ruvimov, S., Swider, W. and Washburn, J. (1997). Nano-tubes in GaN. InMaterials Research Society Symposium Proceedings, 449, 417–22.CrossRefGoogle Scholar
Liliental-Weber, Z., Chen, Y., Ruvimov, S. and Washburn, J. (1997). Nanotubes and pinholes in GaN and their formation mechanism. Materials Science Forum, 258–2, 1659–64.CrossRefGoogle Scholar
Liu, X. W., Hopgood, A. A., Usher, B. F., Wang, H. and Braithwaite, N. St. J. (1999). Formation of misfit dislocations during growth of InxGa1-xAs/GaAs strained-layer heterostructures. Semiconductor Science and Technology, 14, 1154–60.CrossRefGoogle Scholar
Liu, X. W., Hopgood, A. A., Usher, B. F., Wang, H. and Braithwaite, N. St. J. (2003). Formation of misfit dislocations in strained-layer GaAs/InxGa1–xAs/GaAs heterostructures during postfabrication thermal processing. Journal of Applied Physics, 94, 7496–501.CrossRefGoogle Scholar
Lo, Y. H. (1991). New approach to grow pseudomorphic structures over the critical thickness. Applied Physics Letters, 59, 2311–13.CrossRefGoogle Scholar
Look, D. C. and Sizelove, J. R. (1999). Dislocation scattering in GaN. Physical Review Letters, 82, 1237–40.CrossRefGoogle Scholar
Look, D. C., Stutz, C. E., Molnar, R. J., Saarinen, K. and Liliental-Weber, Z. (2001). Dislocation-independent mobility in lattice-mismatched epitaxy: application to GaN. Solid State Communications, 117, 571–75.CrossRefGoogle Scholar
Lopatin, S., Pennycook, S. J., Narayan, J. and Duscher, G. (2002). Z-contrast imaging of dislocation cores at the GaAs/Si interface. Applied Physics Letters, 81, 2728–30.CrossRefGoogle Scholar
Louchet, F. and Thibault-Desseaux, J. (1987). Dislocation cores in semiconductors. From the ‘shuffle or glide’ dispute to the ‘glide and shuffle’ partnership. Review de Physique Appliquee, 22, 207–19.CrossRefGoogle Scholar
Louchet, F. and Thibault, J. (1989). On the shuffle-glide controversy. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford. Conference Series No. 104 (Bristol: Institute of Physics), pp. 47–8.
Lu, G. and Cockayne, D. J. (1983). Dislocation-structures and motion in II-VI semiconductors. Physica, 116 B&C, 646–49.Google Scholar
Lu, J., Wagener, M., Rozgonyi, G., Rand, J. and Jonczyk, R. (2003). Effects of grain boundary on impurity gettering and oxygen precipitation in polycrystalline sheet silicon. Journal of Applied Physics, 94, 140–4.CrossRefGoogle Scholar
Madelung, O., Schulz, M. and Weiss, H. (eds.) (1985). Landolt Börnstein New Series (Berlin: Springer) 17h, pp. 27 and 68.Google Scholar
Maeda, K. and Sakamoto, K. (1977). Reversible hardening induced by electron-beam irradiation in CdS single-crystals. Journal of the Physical Society of Japan, 42, 1914–17.CrossRefGoogle Scholar
Maeda, K., Ueda, O., Murayama, Y. and Sakamoto, K. (1977). Mechanical properties and photomechanical effect in GaP single crystals. Journal of Physics and Chemistry of Solids, 38, 1173–9.CrossRefGoogle Scholar
Maeda, K., Nakagawa, K., Takeuchi, S. and Sakamoto, K. (1981). Cathodoluminescence studies of dislocation-motion in IIB-VIB compounds deformed in SEM. Journal of Materials Science, 16, 927–34.CrossRefGoogle Scholar
Maeda, K., Suzuki, K., Yamashita, Y. and Mera, Y. (2000). Dislocation motion in semiconducting crystals under the influence of electronic perturbations. Journal of Physics: Condensed Matter, 12, 10079–91.Google Scholar
Mahajan, S. (1989). Growth and processing-induced defects in semiconductors. Progress in Materials Science, 33, 1–84.CrossRefGoogle Scholar
Mahajan, S. (1997). Defects in epitaxial layers of compound semiconductors grown by OMVPE and MBE techniques. Progress in Materials Science, 42, 341–55.CrossRefGoogle Scholar
Mahajan, S. (2000). Defects in semiconductors and their effects on devices. Acta Materialia, 48, 137–49.CrossRefGoogle Scholar
Mahajan, S. (2002). Origins of micropipes in SiC crystals. Applied Physics Letters, 80, 4321–3.CrossRefGoogle Scholar
Mahajan, S., Rozgonyi, G. A. and Brasen, D. (1977). Model for formation of stacking-faults in silicon. Applied Physics Letters, 30, 73–5.CrossRefGoogle Scholar
Mardix, S. (1984). The formation of macroscopic polytypic regions in ZnS crystals. Journal of Applied Crystallography, 17, 328–30.CrossRefGoogle Scholar
Mardix, S. (1986). Polytypism: A controlled thermodynamic phenomenon. Physical Review, B33, 8677–84.CrossRefGoogle Scholar
Mardix, S. (1991). Symmetry and martensitic transformations in ZnS crystals. Acta Crystallographica, A47, 177–80.CrossRefGoogle Scholar
Mardix, S. and Steinberger, I. T. (1970). Tilt and structure transformation in ZnS. Journal of Applied Physics, 41, 5339–41.CrossRefGoogle Scholar
Mardix, S., Kalman, Z. H. and Steinberger, I. T. (1968). Periodic slip processes and the formation of polytypes in zinc sulphide crystals. Acta Crystallographica, A24, 464–9.CrossRefGoogle Scholar
Mariano, A. N. and Hanneman, R. E. (1963). Crystallographic polarity of ZnO crystals. Journal of Applied Physics, 34, 384–8.CrossRefGoogle Scholar
Marklund, S. (1979). Electron states associated with partial dislocations in silicon. Physica Status Solidi, B92, 83–9.CrossRefGoogle Scholar
Mathis, S. K., Wu, X. H., Romanov, A. E. and Speck, J. S. (1999). Threading dislocation reduction mechanisms in low-temperature-grown GaAs. Journal of Applied Physics, 86, 4836–42.CrossRefGoogle Scholar
Mathis, S. K., Romanov, A. E., Chen, L. F.et al. (2000). Modeling of threading dislocation reduction in growing GaN layers. Physica Status Solidi, A179, 125–45.3.0.CO;2-2>CrossRefGoogle Scholar
Matsui, J. and Kawamura, T. (1972). Spotty defects in oxidized floating-zoned dislocation-free silicon crystals. Japanese Journal of Applied Physics, 11, 197.CrossRefGoogle Scholar
Matthews, J. W. (1966). Accommodation of misfit across interface between single-crystal films of various face-centred cubic metals. Philosophical Magazine, 13, 1207–12.CrossRefGoogle Scholar
Matthews, J. W. (1975). Defects associated with the accommodation of misfit between crystals. Journal of Vacuum Science and Technology, 12, 126–33.CrossRefGoogle Scholar
Matthews, J. W. (1979). Misfit dislocations. In Dislocations in Solids, 2, ed. Nabarro, F. R. (Amsterdam: North-Holland), pp. 461–545.Google Scholar
Matthews, J. W. and Isebeck, K. (1963). Dislocations in evaporated lead sulphide films. Philosophical Magazine, 8, 469–85.CrossRefGoogle Scholar
Matthews, J. W. and Blakeslee, A. E. (1974). Defects in epitaxial multilayers. 1. Misfit dislocations. Journal of Crystal Growth, 27, 118–25.Google Scholar
Matthews, J. W., Mader, S. and Light, T. B. (1970). Accommodation of misfit across interface between crystals of semiconducting elements or compounds. Journal of Applied Physics, 41, 3800–4.CrossRefGoogle Scholar
Maurice, J.-L. and Colliex, C. (1989). Fast diffusers Cu and Ni as the origin of electrical activity in a silicon grain boundary. Applied Physics Letters, 55, 241–3.CrossRefGoogle Scholar
McHugo, S. A. and Sawyer, W. D. (1993). Impurity decoration of defects in float zone and polycrystalline silicon via chemomechanical polishing. Applied Physics Letters, 62, 2519–21.CrossRefGoogle Scholar
Meieran, E. S. (1965). Transmission electron microscope study of gallium arsenide. Journal of Applied Physics, 36, 2544.CrossRefGoogle Scholar
Meingast, R. and Alexander, H. (1973). Dissociated dislocations in germanium. Physica Status Solidi, A17, 229–36.CrossRefGoogle Scholar
Mendelson, S. (1964a). Stacking fault nucleation in epitaxial silicon on variously oriented silicon substrates. Journal of Applied Physics, 35, 1507–81.CrossRefGoogle Scholar
Mendelson, S. (1964b). Growth and imperfections in epitaxially grown silicon on variously oriented silicon substrates. In Single Crystal Films, eds. Francombe, M. H. and Sato, H. (Oxford: Pergamon), pp. 251–81.Google Scholar
Mendelson, S. (1967). Defect formation in epitaxial films on native and foreign substrates. Surface Science, 6, 233–45.CrossRefGoogle Scholar
Merz, W. J. (1958). Photovoltaic effect in striated ZnS single crystals. Helvetica Physica Acta, 31, 625–35.Google Scholar
Mihara, M. and Ninomiya, T. (1968). Dislocation velocity in indium antimonide. Journal of the Physical Society of Japan, 25, 1198.CrossRefGoogle Scholar
Mihara, M. and Ninomiya, T. (1975). Dislocation velocities in indium antimonide. Physica Status Solidi, A32, 43–52.CrossRefGoogle Scholar
Millea, M. F. and Kyser, D. F. (1965). Thermal decomposition of GaAs. Journal of Applied Physics, 36, 308–13.CrossRefGoogle Scholar
Miller, D. P., Harper, J. G. and Perry, T. R. (1961). High temperature oxidation and vacuum dissociation studies on the A{111} and B{1̄1̄1̄} surfaces of GaAs. Journal of the Electrochemical Society, 108, 1123–6.CrossRef
Miller, D. P., Watelski, S. B. and Moore, C. R. (1963). Structure defects in pyrolytic silicon epitaxial fillms. Journal of Applied Physics, 34, 2813–21.CrossRefGoogle Scholar
Minamoto, M. T. (1962). Significance of crystallographic polarity in the fabrication of junctions in InSb. Journal of Applied Physics, 33, 1826–29.CrossRefGoogle Scholar
Möller, H. J. (1993). Semiconductors for Solar Cells. Boston: Artech House.Google Scholar
Monson, T. K. and Vechten, J. A. (1999). On the origins of oxidation-induced stacking faults in silicon. Journal of the Electrochemical Society, 146, 741–3.CrossRefGoogle Scholar
Moody, P. L., Gatos, H. C. and Lavine, M. C. (1960). Growth of GaAs crystals in the 〈111〉 polar direction. Journal of Applied Physics, 31, 1696–7.CrossRefGoogle Scholar
Mooney, P. M. (1996). Strain relaxation and dislocations in SiGe/Si structures. Materials Science and Engineering, R17, 105–46.CrossRefGoogle Scholar
Mooney, P. M. and Chu, J. O. (2000). SiGe technology: Heteroepitaxy and high-speed microelectronics. Annual Review of Materials Science, 30, 335–62.CrossRefGoogle Scholar
Morizane, K. (1977). Antiphase domain-structures in GaP and GaAs epitaxial layers grown on Si and Ge. Journal of Crystal Growth, 38, 249–54.CrossRefGoogle Scholar
Morizumi, T. and Takahashi, K. (1970). Epitaxial vapour growth of ZnTe on InAs. Japanese Journal of Applied Physics, 9, 849–50.CrossRefGoogle Scholar
Moustakas, T. D., Iliopoulos, E., Sampath, A. V.et al. (2001). Growth and device applications of III-nitrides by MBE. Journal of Crystal Growth, 227–228, 13–20.CrossRefGoogle Scholar
Mueller, R. K. and Jacobson, R. L. (1961). Growth twins in indium antimonide. Journal of Applied Physics, 32, 550–1.CrossRefGoogle Scholar
Mugge, O. (1914). Neues JB, 1, 48.
Murarka, S. P., Levinstein, H. J., Marcus, R. B. and Wagner, R. S. (1977). Oxidation of silicon without formation of stacking faults. Journal of Applied Physics, 48, 4001–3.CrossRefGoogle Scholar
Muratov, V. A. and Fischer, T. E. (2000). Tribochemical polishing. Annual Review of Matetials Science, 30, 27–51.CrossRefGoogle Scholar
Nabarro, F. R., Basinski, Z. S. and Holt, D. B. (1964). The plasticity of pure single crystals. Advances in Physics, 13, 192–323.CrossRefGoogle Scholar
Nadeau, J. S. (1964). The photomechanical effects in alkali halide crystals. Journal of Applied Physics, 35, 669–77.CrossRefGoogle Scholar
Nagai, H. (1972). Anisotropic bending during epitaxial growth of mixed crystals on GaAs substrates. Journal of Applied Physics, 43, 4254–6.CrossRefGoogle Scholar
Narayan, J. and Oktyabrsky, S. (2002). Formation of misfit dislocations in thin film heterostructures. Journal of Applied Physics, 92, 7122–7.CrossRefGoogle Scholar
Neave, J. H., Larsen, P. K., Joyce, B. A., Gowers, J. P. and Veen, J. F. (1983). Some observations on Ge:GaAs(001) and GaAs:Ge(001) interfaces and films. Journal of Vacuum Science and Technology, BI, 668–75.CrossRefGoogle Scholar
Negrii, V. D. and Osipyan, Y. A. (1978). Influence of dislocations on radiative recombination processes in cadmium-sulfide. Soviet Physics Solid State, 20, 432–6.Google Scholar
Negrii, V. D. and Osipiyan, Yu. A. (1979). Dislocation emission in CdS. Physica Status Solidi, A55, 583–8.CrossRefGoogle Scholar
Negrii, V. D. and Osipiyan, Yu. A. (1982). Distinctive features of the luminescence of cadmium sulfide deformed at low temperatures. Soviet Physics Solid State, 24, 197–9.Google Scholar
Nickel, N. H. (1999). Hydrogen in semiconductors II. In Semiconductors and Semimetals, Volume 61, eds. Willardson, R. K., Beer, A. C. and Weber, E. R. (San Diego: Academic Press).Google Scholar
Nicolaeva, A. Z., Tonoyan, A. A., Semeneva, L. A. and Dolomanov, L. A. (1975). Differences in the depth of the damage layer on polar faces of GaAs single crystals. (As abstracted in Diffusion and Defect Data 12, 208.)
Nikitenko, V. I., Farber, B. Ya. and Iunin, Yu. L. (1987). Formation kinetics and behaviour for nonlinear excitations limiting dislocation mobility in semiconductor single crystals. Bulletin of the Academy of Sciences of the USSR Division of Physical Science, 51, 81–6.Google Scholar
Ninomiya, T. (1979). Velocities and internal-friction of dislocations in III-V compounds. Journal de Physique, 40, Suppl. 6, 143–5.Google Scholar
Ohashi, T., Sato, M., Maruizumi, T. and Kitagawa, I. (2003). Simulation of dislocation accumulation in ULSI cells with STI structure. Applied Surface Science, 216, 340–6.CrossRefGoogle Scholar
Ohtani, N., Fujimoto, T., Katsuno, M., Aigo, T. and Yashiro, H. (2001). Surface step model for micropipe formation in SiC. Journal of Crystal Growth, 226, 254–60.CrossRefGoogle Scholar
Ohtani, N., Fujimoto, T., Katsuno, M., Aigo, T. and Yashiro, H. (2002). Growth of large high-quality SiC single crystals. Journal of Crystal Growth, 237–239, 1180–6.CrossRefGoogle Scholar
Oldham, W. G. and Milnes, A. G. (1964). Interface states in abrupt semiconductor heterojunctions. Solid State Electronics, 7, 153–65.CrossRefGoogle Scholar
Olsen, A. and Spence, J. C. (1981). Distinguishing dissociated glide and shuffle set dislocations by high-resolution electron-microscopy. Philosophical Magazine, A43, 945–65.CrossRefGoogle Scholar
Olsen, G. H., Abrahams, M. S. and Zamerowski, T. J. (1974). Assymmetric cracking in III-V compounds. Journal of the Electrochemical Society, 121, 1650–6.CrossRefGoogle Scholar
Osipiyan, Yu. A. (1989). Electrical and optical phenomena of II-VI semiconductors associated with dislocations. In International Symposium on Structural Properties of Dislocations in Semiconductors, Oxford 1989 Cof. Series No. 104 (Institute of Physics: Bristol), pp. 109–18.Google Scholar
Osipiyan, Yu. A. and Petrenko, V. F. (1973a). Nature of the photoplastic effect. Soviet Physics JETP, 36, 916–20.Google Scholar
Osipiyan, Yu. A. and Petrenko, V. F. (1973b). Experimental observation of the influence of an electric field on the plastic deformation of ZnSe crystals. JETP Letters, 17, 399–400.Google Scholar
Osipiyan, Yu. A. and Petrenko, V. F. (1976a). The effect of illumination on the deformation currents in ZnS. Soviet Physics Doklady, 21, 87–8.Google Scholar
Osipiyan, Yu. A. and Petrenko, V. F. (1976b). Short-circuit effect in plastic deformation of ZnS and motion of charged dislocations. Soviet Physics JETP, 42, 695–9.Google Scholar
Osipiyan, Yu. A. and Savchenko, I. B. (1968). Experimental observation of the influence of light on plastic deformation of cadmium sulphide. JETP Letters, 7, 100–2.Google Scholar
Osipiyan, Yu. A. and Savchenko, I. B. (1973). Kinetics of the photoplastic effect and its dependence on orientation. Soviet Physics Solid State, 14, 1723–5.Google Scholar
Osipiyan, Yu. A. and Shikhsaidov, M. Sh. (1973). Negative photoplastic effect in cadmium sulfide. Soviet Physics Solid State, 15, 2475–6.Google Scholar
Osipiyan, Yu. A. and Smirnova, I. S. (1968). Perfect dislocations in the wurtzite lattice. Physica Status Solidi, 30, 19–29.CrossRefGoogle Scholar
Osipiyan, Yu. A. and Smirnova, I. S. (1971). Partial dislocations in the wurtzite lattice. Journal of Physics and Chemistry of Solids, 32, 1521–30.CrossRefGoogle Scholar
Osipiyan, Yu. A., Petrenko, V. F. and Savchenko, I. B. (1968). Infrared quenching of the photoplastic effect in cadmium sulphide. JETP Letters, 13, 442–4.Google Scholar
Osipiyan, Yu. A., Petrenko, V. F. and Strukova, G. K. (1973). Study of the photoplastic effect at α and β dislocations in CdS. Soviet Physics Solid State, 15, 1172–4.Google Scholar
Osipiyan, Yu. A., Petrenko, V. F. and Shikhsaidov, M. Sh. (1974). Impurity photoplastic effect in ZnS:Al single crystals. JETP Letters, 20, 163–4.Google Scholar
Osipiyan, Yu. A., Petrenko, V. F., Zaretskii, A. V. and Whitworth, R. W. (1986). Properties of II-VI semiconductors associated with moving dislocations. Advances in Physics, 35, 115–88.CrossRefGoogle Scholar
Osvenskii, V. B. and Kholodnyi, L. P. (1972). Mobility of single dislocations in GaAs. Fizika Tverdogo Tela, 14, 3330.Google Scholar
Osvenskii, V. B., Kholodnyi, L. P. and Milvidskii, M. G. (1969). Effect of doping impurities on the anisotropy of plastic deformation in GaAs single crystals. Soviet Physics Doklady, 14, 144–6.Google Scholar
Osvenskii, V. B., Kholodnyi, L. P. and Milvidskii, M. G. (1973). Influence of dopants on the velocity of dislocations in GaAs single crystals. Soviet Physics Solid State, 15, 661–2.Google Scholar
Ourmazd, A., Hull, R. and Tung, R. T. (1991). Interfaces. In Materials Science and Technology, Vol. 4 Electronic Structure and Properties of Semiconductors, ed. Schroter, W. (Weinheim: VCH), pp. 379–448.Google Scholar
Packeiser, G. and Haasen, P. (1977). Constrictions in the stacking faults of dislocations in germanium. Philosophical Magazine, 35, 821–7.CrossRefGoogle Scholar
Pandey, D. and Krishna, P. (1983). The origin of polytype structures. Progress in Crystal Growth and Characterization, 7, 213–58.CrossRefGoogle Scholar
Pankove, J. I. (1999). GaN: from fundamentals to applications. Materials Science and Engineering, B61–62, 305–9.CrossRefGoogle Scholar
Pankove, J. I. and Johnson, N. M. (1991). Hydrogen in semiconductors. In Semiconductors and Semimetals, 34, eds. Willardson, R. K. and Beer, A. C. (San Diego: Academic Press).Google Scholar
Pashley, D. W. (1956). The study of epitaxy in thin surface films. Advances in Physics, 5, 173.CrossRefGoogle Scholar
Pashley, D. W. (1965). The nucleation, growth, structure and epitaxy of thin surface films. Advances in Physics, 14, 327–416.CrossRefGoogle Scholar
Patel, J. R. (1970). Burgers vector of dislocations generated for dislocation velocity measurements in semiconductors. Journal of Applied Physics, 41, 2814.CrossRefGoogle Scholar
Patel, J. R. and Chaudhuri, A. R. (1966). Charged impurity effects on the deformation of dislocation-free germanium. Physical Review, 143, 601–8.CrossRefGoogle Scholar
Patel, J. R. and Freeland, P. E. (1967). Change of dislocation velocity with Fermi level in silicon. Physical Review Letters, 18, 833–5.CrossRefGoogle Scholar
Patel, J. R. and Freeland, P. E. (1970). Burgers vector of dislocations generated for dislocation velocity measurements in semiconductors. Journal of Applied Physics, 41, 2814.CrossRefGoogle Scholar
Patel, J. R. and Testardi, L. R. (1977a). Electronic effects on dislocation velocities in heavily doped germanium. Applied Physics Letters, 30, 3–5.CrossRefGoogle Scholar
Patel, J. R. and Testardi, L. R. (1977b). Reply to comments on ‘Electronic effects on dislocation velocities in heavily doped silicon’. Physical Review, B15, 4124–5.CrossRefGoogle Scholar
Patel, J. R., Testardi, L. R. and Freeland, P. E. (1976). Electronic effects on dislocation velocities in heavily doped silicon. Physical Review, B13, 2548–3557.Google Scholar
Partridge, P. G. (1967). The crystallography and deformation modes of hexagonal close-packed metals. International Metal Reviews, No. 118, pp. 169–94.CrossRefGoogle Scholar
Pashinkin, A. S., Tishchenko, I. V., Korneeva, and Ryzhenko, B. N. (1960). Concerning the polymorphism of some chalcogenides of zinc and cadmium. Soviet Physics Crystallography, 5, 243–8.Google Scholar
Pearton, S. J., Corbett, J. W. and Stavola, M. (1992). Hydrogen in Crystalline Semiconductors. Berlin: Springer.CrossRef
Peierls, R. E. (1940). The size of a dislocation. Proceedings of the Physical Society London, 52, 34–7.CrossRefGoogle Scholar
Peissker, E., Haasen, P. and Alexander, H. (1961). Anisotropic plastic deformation of indium antimonide. Philosophical Magazine, 7, 1279–303.CrossRefGoogle Scholar
Pennycook, S. J. and Jesson, D. E. (1991). High-resolution Z-contrast imaging of crystals. Ultramicroscopy, 37, 14–38.CrossRefGoogle Scholar
Pennycook, S. J., Chisholm, M. F., Yan, Y., Duscher, G. and Pantelides, S. T. (1999). A combined experimental and theoretical approach to grain boundary structure and segregation. Physica, B273–274, 453–7.CrossRefGoogle Scholar
Perovic, D. D. and Houghton, D. C. (1993). Spontaneous nucleation of misfit dislocations in strained epitaxial layers. Physica Status Solidi, A138, 425–30.CrossRefGoogle Scholar
Perovic, D. D. and Houghton, D. C. (1995). The introduction of dislocations in low misfit epitaxial systems. In Microscopy of Semiconducting Materials 1995, Inst. Phys. Conf. Ser. 146 (Bristol: Institute of Physics), pp. 117–34.Google Scholar
Perovic, D. D., Weatherly, G. C., Baribeau, J. M. and Houghton, D. C., D. C. (1989). Heterogeneous nucleation sources in molecular beam epitaxy-grown GexSi1-x/Si strained layer superlattices. Thin Solid Films, 183, 141–56.CrossRefGoogle Scholar
Petrenko, V. F. and Whitworth, R. W. (1980). Charged dislocations and the plastic deformation of II-VI compounds. Philosophical Magazine, 41, 681–99.CrossRefGoogle Scholar
Petrenko, V. F., Kiriichenko, L. G. and Strukova, G. K. (1982). Unpublished, quoted by Osipiyan et al. (1986).
Phillips, J. C. (1973). Bonds and Bands in Semiconductors. New York: Academic Press.Google Scholar
Pichaud, B., Putero, M. and Burle, N. (1999). Elemental dislocations mechanisms involved in the relaxation of heteroepitaxial semiconducting systems. Physica Status Solidi, A171, 251–65.3.0.CO;2-9>CrossRefGoogle Scholar
Pirouz, P. (1987). Deformation mode in silicon, slip or twinning?Scripta Metallurgica, 21, 1463–8.CrossRefGoogle Scholar
Pirouz, P. (1989a). Dislocation Mechanisms for Twinning and Polytypic Transformations in Semiconductors. InStructure and Properties of Dislocations in Semiconductors 1989. Conf. Series No. 104 (Bristol: Institute of Physics), pp. 49–56.Google Scholar
Pirouz, P. (1989b). On twinning and polymorphic transformations in compound semiconductors. Scripta Metallurgica, 25, 401–6.CrossRefGoogle Scholar
Pirouz, P. (1998). On micropipes and nanopipes in SiC and GaN. Philosophical Magazine, A78, 727–36.CrossRefGoogle Scholar
Pizzini, S. (1999). Chemistry and physics of segregation of impurities at extended defects in silicon. Physica Status Solidi, 171, 123–32.3.0.CO;2-H>CrossRefGoogle Scholar
Pizzini, S. (2002). Chemistry and physics of defect interaction in semiconductors. Solid State Phenomena, 85–86, 1–66.Google Scholar
Pizzini, S., Borsani, F., Sandrinelli, A. and Narducci, D. (1989). Effect of impurity segregation on the electrical properties of grain boundaries in polycrystalline silicon. In Point and Extended Defects in Semiconductors, eds. Benedek, G., Cavallini, A. and Schroter, W., Nato ASI Series Series B Physics, 202 (New York: Plenum), pp. 105–21.CrossRefGoogle Scholar
Ponce, F. A. (1997). Defects and interfaces in GaN epitaxy. MRS Bulletin, 22, 51–7.CrossRefGoogle Scholar
Pond, R. C. (1985). The geometrical character of extended interfacial defects in semiconducting materials. In Polycrystalline Semiconductors, ed. Harbecke, G. (Berlin: Springer-Verlag), pp. 27–45.CrossRefGoogle Scholar
Pond, R. C. (1989a). Line defects in interfaces. In Dislocations in Solids, Vol. 8, ed. Nabarro, F. R. (Amsterdam: North-Holland), pp. 1–66.Google Scholar
Pond, R. C. (1989b). Symmetry and crystallography: Implications for structure. InInternational Symposium on Structural Properties of Dislocations in Semiconductors, Oxford Conf. Series No. 104, pp. 25–36.Google Scholar
Pond, R. C. and Bollmann, W. (1979). The symmetry and interfacial structure of bicrystals. Proceedings of the Royal Society, A292, 449–72.Google Scholar
Pond, R. C. and Vlachavas, D. S. (1983). Bicrystallography. Proceedings of the Royal Society, A386, 5–143.Google Scholar
Pond, R. C. and Bastaweesy, A. (1984). The theory of crystallographic defects in periodic interfaces. Journal de Physique, C4, 225–30.Google Scholar
Pond, R. C., Gowers, J. P., Holt, D. B.et al. (1984). A general treatment of antiphase domain formation and identification at polar-nonpolar semiconductor interfaces. InMaterials Research Society Symposium Proceedings, 25, pp. 273–8.CrossRefGoogle Scholar
Poust, B. D., Koga, T. S., Sandhu, R.et al. (2003). SiC substrate defects and III-N heteroepitaxy. Journal of Physics, D36, A102–A106.Google Scholar
Powell, A. R., Iyer, S. S. and LeGoues, F. K. (1994). New approach to the growth of low dislocation relaxed SiGe material. Applied Physics Letters, 64, 1856–8.CrossRefGoogle Scholar
Prussin, S. (1961). Generation and distribution of dislocations by solute diffusion. Journal of Applied Physics, 32, 1876–81.CrossRefGoogle Scholar
Pugh, E. N., Westwood, A. R. and Hitch, T. T. (1966). Effects of liquid metals on the fracture strength of germanium. Physica Status Solidi, 15, 291–7.CrossRefGoogle Scholar
Qian, W., Rohrer, G. S., Skowronski, M.et al. (1995). Open-core screw dislocations in GaN epilayers observed by scanning force microscopy and high-resolution transmission electron microscopy. Applied Physics Letters, 67, 2284–6.CrossRefGoogle Scholar
Queisser, H. J. (1969). Observations and properties of lattice defects in silicon. In Semiconductor Silicon, ed. Haberecht, R. R. and Kern, E. L. (New York: Electrochemical Society), pp. 585–95.Google Scholar
Queisser, H. J., Hubner, K. and Shockley, W. (1961). Diffusion along small-angle grain boundaries in silicon. Physical Review, 123, 1245–54.CrossRefGoogle Scholar
Queisser, H. J., Finch, R. H. and Washburn, J. (1962). Stacking faults in epitaxial silicon. Journal of Applied Physics, 33, 1536–7.CrossRefGoogle Scholar
Queisser, H. J. and Loon, P. G. G. (1964). Growth of lattice defects in silicon during oxidation. Journal of Applied Physics, 35, 3066–7.CrossRefGoogle Scholar
Queisser, H. J. and Haller, E. E. (1998). Defects in semiconductors: Some fatal, some vital. Science, 281, 945–50.CrossRefGoogle ScholarPubMed
Randle, V. (1993). The Measurement of Grain Boundary Geometry. Bristol: Adam-Hilger.Google Scholar
Randle, V. (2001). The coincidence site lattice and the ‘Sigma Enigma’. Materials Characterization, 47, 411–16.CrossRefGoogle Scholar
Randle, V. and Engler, O. (2000). Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. Amsterdam: Gordon and Breach.Google Scholar
Ranganathan, S. (1966). On geometry of coincidence-site lattices. Acta Crystallographica, 21, 197–9.CrossRefGoogle Scholar
Ravi, K. V. (1972). Generation of dislocations and stacking-faults at surface heterogeneities in silicon. Journal of Applied Physics, 43, 1785.CrossRefGoogle Scholar
Ravi, K. V. (1974). Annihilation of oxidation induced stacking-faults in silicon. Philosophical Magazine, 30, 1081–90.CrossRefGoogle Scholar
Ravi, K. V. (1975). Orientation dependance of stacking-fault nucleation in silicon. Philosophical Magazine, 31, 405–10.CrossRefGoogle Scholar
Ravi, K. V. (1981). Imperfections and Impurities in Semiconductor Silicon. New York: Wiley.Google Scholar
Ravi, K. V. and Varker, C. J. (1974). Oxidation-induced stacking-faults in silicon.1. Nucleation phenomenon. Journal of Applied Physics, 45, 263–71.CrossRefGoogle Scholar
Ray, I. L. F. and Cockayne, D. J. H. (1970). The observation of dissociated dislocations in silicon. Philosophical Magazine, 22, 853–6.CrossRefGoogle Scholar
Ray, I. L. F. and Cockayne, D. J. H. (1971). The dissociation of dislocations in silicon. Proceedings of the Royal Society, A325, 543–54.CrossRefGoogle Scholar
Ray, I. L. F. and Cockayne, D. J. H. (1973). Investigation of dislocation geometries in the diamond cubic structure. Journal of Microscopy, 98, 170–3.CrossRefGoogle Scholar
Raza, B. (1994). Ph.D. Thesis, University of London.
Raza, B. and Holt, D. B. (1991). EBIC contrast of grain boundaries in polycrystalline solar cells. In Polycrystalline Semiconductors II. Springer Proceedings in Physics, 54, eds. Werner, J. H. and Strunk, H. P. (Berlin: Springer-Verlag), pp. 72–6.CrossRefGoogle Scholar
Raza, B. and Holt, D. B. (1995). EBIC studies of grain boundaries. In Microscopy of Semiconducting Materials 1995. Conference Series No. 146 (Bristol: Institute of Physics), pp. 107–10.Google Scholar
Read, W. T. (1954). Theory of dislocations in germanium. Philosophical Magazine, 45, 775–96.Google Scholar
Rebinder, P. A. (1928). In Proceedings of Sixth Physics Conference (Moscow: State Press), p. 29 as quoted by Westwood et al. (1981).
Rebinder, P. A., Schreiner, L. A. and Zhigach, K. F. (1944). Hardness reducers in drilling (Acad. Sci. USSR: Moscow).
Rendakova, S., Ivantsov, V. and Dmitirev, V. (1998a). High quality 6H- and 4H-SiC pn structures with stable electric breakdown grown by liquid phase epitaxy. Materials Science Forum, 264–268, 163–6.CrossRefGoogle Scholar
Rendakova, S. V., Nikitina, I. P., Tregubova, A. S. and Dmitriev, V. A. (1998b). Micropipe and dislocation density reduction in 6H-SiC and 4H-SiC structures grown by liquid phase epitaxy. Journal of Electronic Materials, 27, 292–5.CrossRefGoogle Scholar
Reppich, B., Haasen, P. and Ilschner, B. (1964). Kreichen von silizium-einkristallen. Acta Metallurgica, 12, 1283–8.CrossRefGoogle Scholar
Romanov, A. E., Pompe, W., Beltz, G. E. and Speck, J. S. (1996). Modeling of threading dislocation density reduction in heteroepitaxial layers. 1. Geometry and crystallography. Physica Status Solidi, B198, 599–613.CrossRefGoogle Scholar
Romanov, A. E., Pompe, W., Beltz, G. E. and Speck, J. S. (1997). Modeling of threading dislocation density reduction in heteroepitaxial layers. 2. Effective dislocation kinetics. Phys. Status Solidi, B199, 33–49.3.0.CO;2-U>CrossRefGoogle Scholar
Romanov, A. E., Pompe, W., Mathis, S., Beltz, G. E. and Speck, J. S. (1999). Threading dislocation reduction in strained layers. Journal of Applied Physics, 85, 182–92.CrossRefGoogle Scholar
Rosner, S. J., Carr, E. C., Ludowise, M. J., Girolami, G. and Erikson, H. (1997). Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition. Applied Physics Letters, 70, 420–2.CrossRefGoogle Scholar
Rozgonyi, G. A. and Foster, N. F. (1967). Orientation inversions in polycrystalline CdS bulk crystals and thin films. Journal of Applied Physics, 38, 5172–6.CrossRefGoogle Scholar
Sagar, A., Lehman, W. and Faust, J. W. (1968). Etchants for ZnSe. Journal of Applied Physics, 39, 5336–8.CrossRefGoogle Scholar
Sakai, A., Sunakawa, H. and Usui, A. (1997). Defect structure in selectively grown GaN films with low threading dislocation density. Applied Physics Letters, 71, 2259–61.CrossRefGoogle Scholar
Sanders, I. R. and Dobson, P. S. (1969). Oxidation, defects and vacancy diffusion in silicon. Philosophical Magazine, 20, 881.CrossRefGoogle Scholar
Sato, M. and Sumino, K. (1977). In situ tensile tests of silicon crystals at elevated temperatures in a high voltage electron microscope. InProceedings Fifth International Conference on High Voltage Electron Microscopy, Kyoto, pp. 459–62.Google Scholar
Sazhin, N. P., Milvidskii, M. G., Osvenskii, V. B. and Stolyarov, O. G. (1966). Influence of doping on the plastic deformation of GaAs single crystals. Soviet Physics Solid State, 8, 1223–7.Google Scholar
Schäfer, S. (1967). Messung von versetzungsgeschwindigkeiten in germanium. Physica Status Solidi, 19, 297.CrossRefGoogle Scholar
Schaumburg, H. (1970). Velocities measurements on screw-dislocations and 60 degrees-dislocations in germanium. Physica Status Solidi, K1.CrossRefGoogle Scholar
Schaumburg, H. (1972). Velocities of screw-dislocations and 60 degrees dislocations in germanium. Philosophical Magazine, 25, 1429.CrossRefGoogle Scholar
Schlossberger, F. (1955). Controlled preparation and x-ray investigation of cadmium sulfide. Journal of the Electrochemical Society, 102, 22–6.CrossRefGoogle Scholar
Schmidt, W., Pilgermann, B., Kuehn, G. and Fischer, P. (1973). Kristallographische polaritaet von AIIIBV-kristallen. Kristall und Technik, 8, 913–21.CrossRefGoogle Scholar
Schreiber, J., Höring, L., Uniewski, H., Hildebrandt, S. and Leipner, H. S. (1999). Recognition and distribution of A(g) and B(g) disloctions in indentation deformation zones on {111} and {110} surfaces of CdTe. Physica Status Solidi, A171, 89–97.3.0.CO;2-D>CrossRefGoogle Scholar
Schröter, W. (1980). Electric and dynamic properties of dislocations in the elemental and compound semiconductors. In Electronic Structure of Crystal Defects and Disordered Systems, Summer School, Aussois, 1980 (Les Ulis Cedex: Les Editions de Physique), pp. 129–74.Google Scholar
Schröter, W. and Haasen, P. (1977). The chemomechanical effect in semiconductors. In NATO Advanced Study Institutes Series, Series E: Applied Science No. 17. Surface Effects in Crystal Plasticity, eds. Latanision, R. M. and Fourie, J. F., pp. 681–8.Google Scholar
Schröter, W. and Cerva, H. (2002). Interaction of point defects with dislocations in silicon and germanium: Electrical and optical effects. Solid State Phenomena, 85–86, 67–143.Google Scholar
Schröter, W., Labusch, R. and Haasen, P. (1977). Comment on ‘Electronic effects on dislocation velocities in heavily doped silicon’ by J. R. Patel, L. R. Testardi and P. E. Freeland. Physical Review, B15, 4121–3.CrossRefGoogle Scholar
Schwarz, K. W. and Chidambarrao, D. (1999). Dislocation dynamics near film edges and corners in silicon. Journal of Applied Physics, 85, 7198–208.CrossRefGoogle Scholar
Schwuttke, G. H. (1970). Silicon material problems in semiconductor device technology. Microelectronics and Reliability, 9, 397–412.CrossRefGoogle Scholar
Schwuttke, G. H. and Queisser, H. J. (1962). X-ray observations of diffusion-induced dislocations in silicon. Journal of Applied Physics, 33, 1540–2.CrossRefGoogle Scholar
Schwuttke, G. H. and Rupprecht, H. (1966). X-Ray analysis of diffusion-induced defects in gallium arsenide. Journal of Applied Physics, 37, 167.CrossRefGoogle Scholar
Schwuttke, G. H., Brack, K. and Hearn, E. W. (1971). Influence of stacking faults on leakage currents of FET devices. Microelectronics and Reliability, 10, 467.CrossRefGoogle Scholar
Seager, C. H. (1985). Grain boundaries in polycrystalline silicon. Annual Review of Materials Science, 15, 271–302.CrossRefGoogle Scholar
Seager, C. H. and Ginley, D. S. (1979). Passivation of grain boundaries in polycrystalline silicon. Applied Physics Letters, 34, 337–40.CrossRefGoogle Scholar
Seager, C. H., Ginley, D. S.and Zook, J. D, . (1980). Improvement of polycrystalline silicon solar cells with grain-boundary hydrogenation techniques. Applied Physics Letters, 36, 831–3.CrossRefGoogle Scholar
Seager, C. H. and Ginley, D. S. (1981). Studies of the hydrogen passivation of silicon grain boundaries. Journal of Applied Physics, 52, 1050–5.CrossRefGoogle Scholar
Secco D'Aragona, F. and Delavignette, P. (1966). Fautes de croissance dans la wurtzite. Journal de Physique, C3, 121–7.Google Scholar
Secco D'Aragona, F., Delavignette, P. and Amelinckx, S. (1966). Direct evidence for the mechanism of the phase transition wurtzite-sphalerite. Physica Status Solidi, 14, K115–K118.Google Scholar
Seidensticker, R. G. and Hamilton, D. R. (1963). The dendrite growth of InSb. Journal of Physics and Chemistry of Solids, 24, 1585–91.CrossRefGoogle Scholar
Seifert, W., Morgenstern, G. and Kittler, M. (1993). Influence of dislocation density on recombination at grain boundaries in multicrystalline silicon. Semiconductor Science and Technology, 8, 1687–91.CrossRefGoogle Scholar
Seki, Y., Matsui, J. and Watanabe, H. (1976). Impurity effect on the growth of dislocation-free InP single crystals. Journal of Applied Physics, 47, 3374–6.CrossRefGoogle Scholar
Seki, Y., Watanabe, H. and Matsui, J. (1978). Impurity effect on grown-in dislocation density of InP and GaAs crystals. Journal of Applied Physics, 49, 822–8.CrossRefGoogle Scholar
Seltzer, M. S. (1966). Influence of charged defects on mechanical properties of lead sulphide. Journal of Applied Physics, 37, 4780–4.CrossRefGoogle Scholar
Shachar, G. and Brada, Y. (1968). Negative differential photovoltages in ZnS crystals. Journal of Applied Physics, 39, 1701–4.CrossRefGoogle Scholar
Shay, J. L. and Wernick, J. H. (1975). Ternary Chalocpyrite Semiconductors: Growth, Electronic Properties and Applications. Oxford: Pergamon.Google Scholar
Sheftal, N. N. and Magumedov, Kh. A. (1967). Morphological aspects of epitaxial growth of GaAs crystals in the polar direction. In Crystal Growth. Proceedings International Conference on Crystal Growth, Boston, ed. Peiser, H. S. (Oxford: Pergamon), pp. 533–6.Google Scholar
Sheinerman, A. G. and Gutkin, M. Y. (2003). Elastic fields of a screw superdislocation with a hollow core (pipe) perpendicular to the free crystal surface. Physics of the Solid State, 45, 1694–700.CrossRefGoogle Scholar
Sheldon, P., Jones, K. M., Al-Jassim, M. M. and Yacobi, B. G. (1988). Dislocation density reduction through annihilation in lattice-mismatched semiconductors grown by MBE. Journal of Applied Physics, 63, 5609–11.CrossRefGoogle Scholar
Shimizu, H. and Sumino, K. (1970). Anisotropy in hardness on (111) and (1̄1̄1̄) surfaces in InSb. Journal of the Physical Society of Japan, 29, 1096.CrossRef
Shimura, F., Tsuya, H. and Kawamura, T. (1980). Surface-micro-defect and inner-micro-defect in annealed silicon-wafer containing oxygen. Journal of Applied Physics, 51, 269–73.CrossRefGoogle Scholar
Shiraki, H. (1974). Silicon wafer annealing effect in loop defect generation. Japanese Journal of Applied Physics, 13, 1514–23.CrossRefGoogle Scholar
Shockley, W. (1953). Dislocations and edge states in the diamond crystal structure. Physical Review, 91, 228.Google Scholar
Shockley, W. and Read, W. T. (1949). Quantitative predictions from dislocation models of crystal grain boundaries. Physical Review, 75, 692.CrossRefGoogle Scholar
Shockley, W. and Read, W. T. (1950). Dislocation models of crystal grain boundaries. Physical Review, 78, 275–89.Google Scholar
Shoeck (1980). Thermodynamics and thermal activation of dislocations. In Dislocations in Solids, 3, ed. Nabarro, F. R. N. (Amsterdam: North-Holland), pp. 63–163.Google Scholar
Siethoff, H. (1970). The effect of charged impurities on the yield point of silicon. Physica Status Solidi, 40, 153–61.CrossRefGoogle Scholar
Siethoff, H. and Brion, H. G. (2003). The interaction of boron and phosphorus with dislocations in silicon. Materials Science and Engineering, A355, 311–14.CrossRefGoogle Scholar
Sinno, T., Dornberger, E., Ammon, W., Brown, R. A. and Dupret, F. (2000). Defect engineering of Czochralski single-crystal silicon. Materials Science and Engineering, R28, 149–98.CrossRefGoogle Scholar
Sirtl, E. and Adler, A. (1961). Chromsaeure-fluszsaeure als spezifisches system zur aetzgrubenentwicklung auf silizium. Zeitschrift fur Metallkunde, 52, 529–31.Google Scholar
Smith, D. A. and Pond, R. C. (1976). Bollmann's O-lattice theory: A geometrical approach to interface structure. International Metals Reviews, 21, 61–74.CrossRefGoogle Scholar
Speake, C. C., Smith, P. J., Lomer, T. R. and Whitworth, R. W. (1978). The glide plane of dislocations in zinc sulphide. Philosophical Magazine, A38, 603–6.CrossRefGoogle Scholar
Speck, J. S., Brewer, M. A., Beltz, G., Romanov, A. E. and Pompe, W. (1996). Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers. Journal of Applied Physics, 80, 3808–16.CrossRefGoogle Scholar
Speck, J. S. and Rosner, S. J. (1999). The role of threading dislocations in the physical properties of GaN and its alloys. Physica, B273–274, 24–32.CrossRefGoogle Scholar
Spence, J. and Koch, C. (2001). Experimental evidence for dislocation core structures in silicon. Scripta Materialia, 45, 1273–8.CrossRefGoogle Scholar
Steinberger, I. T. (1983). Polytypism in zinc sulphide. Progress in Crystal Growth and Characterization, 7, 7–53.CrossRefGoogle Scholar
Steinberger, I. T. and Mardix, S. (1967). Polytypism in ZnS crystals. In II-VI Semiconducting Compounds, ed. Thomas, D. G. (New York: Benjamin), pp. 167–78.Google Scholar
Steinberger, I. T., Kiflawi, I., Kalman, Z. H. and Mardix, S. (1973). The stacking faults and partial dislocations involved in structure transformations of ZnS crystals. Philosophical Magazine, 27, 159–75.CrossRefGoogle Scholar
Steinhard, H. and Shäfer, S. (1971). Dislocation velocities in indium antimonide. Acta Metallurgica, 19, 65–70.CrossRefGoogle Scholar
Steinmann, A. and Zimmerli, U. (1963). Growth peculiarities of GaAs single crystals. Solid State Electronics, 6, 597–604.CrossRefGoogle Scholar
Stevens, R. (1972a). Defects in silicon carbide. Journal of Materials Science, 7, 517–21.CrossRefGoogle Scholar
Stevens, R. (1972b). Neutron irradiation damage in SiC whiskers. Philosophical Magazine, 25, 523–8.CrossRefGoogle Scholar
Stevens, R. (1972c). Twin morphology in silicon carbide. Journal of Materials Science, 7, 723–6.CrossRefGoogle Scholar
Stickler, R. and Booker, G. R. (1963). Surface damage on abraded silicon specimens. Philosophical Magazine, 8, 859–76.CrossRefGoogle Scholar
Stirland, D. J., Hart, D. G., Clark, S., Regnault, J. C. and Elliott, C. R. (1983). Characterization of defects in InP substrates. Journal of Crystal Growth, 61, 645–57.CrossRefGoogle Scholar
Stirpe, M. B., Perovic, D. D., Lafontaine, H. L. and Goldberg, R. D. (1997). Controlling misfit dislocation generation in strained layer epitaxy by point defect injection. In Microscopy of Semiconducting Materials 1997, Conf. Ser. No. 157 (Bristol: Institute of Physics), pp. 127–30.Google Scholar
Stolwijk, N. A., Poisson, Ch. and Bernardini, J. (1996). Segregation-controlled kinetics of fast impurity diffusion in polycrystalline solids. Journal of Physics: Condensed Matter, 8, 5843–56.Google Scholar
Stowell, M. J. (1975). Defects in epitaxial deposits. In Epitaxial Growth Part B, ed. Matthews, J. W. (New York: Academic Press), pp. 437–92.Google Scholar
Strukova, G. K. (1977). Unpublished as quoted in Osipiyan et al. (1986).
Sturner, H. W. and Bleil, C. E. (1964). Optical studies of defect structures in cadmium sulfide and cadmium selenide. Applied Optics, 3, 1015–21.CrossRefGoogle Scholar
Sugahara, T., Sato, H., Hao, M.et al. (1998). Direct evidence that dislocations are non-radiative recombination centers in GaN. Japanese Journal of Applied Physics (Part 2) 37, L398–L400.CrossRefGoogle Scholar
Sugiura, L. (1997). Dislocation motion in GaN light-emitting devices and its effect on device lifetime. Journal of Applied Physics, 81, 1633–8.CrossRefGoogle Scholar
Sumino, K. (1987). Dislocations in GaAs crystals. In Defects and Properties of Semiconductors: Defect Engineering, eds. Chikawa, J., Sumino, K. and Wada, K. (Tokyo: KTC Publishers), pp. 3–24.Google Scholar
Sumino, K. (1997). Kinetic properties of dislocations in semiconductors revealed by x-ray topography. Il Nuovo Cimento, 19D, 137–46.CrossRefGoogle Scholar
Sumino, K. (1999). Impurity reaction with dislocations in semiconductors. Physica Status Solidi, A171, 111–22.3.0.CO;2-T>CrossRefGoogle Scholar
Sumino, K. (2003). Basic aspects of impurity gettering. Microelectronics Engineering, 66, 268–80.CrossRefGoogle Scholar
Sumino, K. and Harada, H. (1981). In situ x-ray topographic studies of the generation and the multiplication processes of dislocations in silicon crystals at elevated temperatures. Philosophical Magazine, A44, 1319–34.CrossRefGoogle Scholar
Sumino, K. and Shimizu, H. (1975a). Polarity in bending deformation of InSb crystals. I Experiments. Philosophical Magazine, 32, 123–42.CrossRefGoogle Scholar
Sumino, K. and Shimizu, H. (1975b). Polarity in bending deformation of InSb crystals. II Theory and supplementary experiments. Philosophical Magazine, 32, 143–57.CrossRefGoogle Scholar
Sumino, K. and Yonenaga, I. (2002). Interactions of impurities with dislocations: mechanical effects. Diffusion and Defect Data Part B (Solid State Phenomena), 85–86, 145–76.Google Scholar
Sumino, K., Kodaka, S. and Kojima, K. (1974). Dynamical state of dislocations in germanium crystals during deformation. Materials Science and Engineering, 13, 263–8.CrossRefGoogle Scholar
Sutton, A. P. and Balluffi, R. W. (1995). Interfaces in Crystalline Materials. Oxford: Oxford University Press.Google Scholar
Suzuki, H. (1952). Chemical interaction of solute atoms with dislocations. Science Reports of Research Institute, Tohoku University, A4, 455–63.Google Scholar
Suzuki, T. (2000). Relation between the suppression of the generation of stacking faults and the mechanism of silicon oxidation during annealing under argon containing oxygen. Journal of Applied Physics, 88, 1141–8.CrossRefGoogle Scholar
Swaminathan, V. (1982). Defects in GaAs. Bulletin of Materials Science (India), 4, 403–43.CrossRefGoogle Scholar
Swaminathan, B., Saraswat, K. C., Dutton, R. W. and Kamins, T. I. (1982). Diffusion of arsenic in polycrystalline silicon. Applied Physics Letters, 40, 795–8.CrossRefGoogle Scholar
Tachikawa, M. and Yamaguchi, M. (1990). Film thickness dependence of dislocation density reduction in GaAs-on-Si substrates. Applied Physics Letters, 56, 484–6.CrossRefGoogle Scholar
Takeuchi, S. and Suzuki, K. (1999). Stacking fault energies of tetrahedrally coordinated crystals. Physica Status Solidi, A171, 99–103.3.0.CO;2-B>CrossRefGoogle Scholar
Tersoff, J. and LeGoues, F. K. (1994). Competing relaxation mechanisms in strained layers. Physical Review Letters, 72, 3570–3.CrossRefGoogle ScholarPubMed
Theurer, H. C. (1961). Epitaxial silicon films by the hydrogen reduction of SiCl4. Journal of the Electrochemical Society, 108, 649–53.CrossRefGoogle Scholar
Thibault, J., Rouviere, J. L. and Bourret, A. (1991). Grain boundaries in semiconductors. In Materials Science & Technology, 4, Electronic Structure and Properties of Semiconductors, ed. Schroter, W. (Weinheim: VCH).Google Scholar
Thomas, D. J. D. (1963). Surface damage and Cu precipitation in Si. Physica Status Solidi, 3, 2261–73.CrossRefGoogle Scholar
Trigunayat, G. C. (1991). A survey of the phenomenon of polytypism in crystals. Solid State Ionics, 48, 3–70.CrossRefGoogle Scholar
Tsuchida, H., Kamata, I., Jikimoto, T., Miyanagi, T. and Izumi, K. (2003). 4H-SiC epitaxial growth for high-power devices. Materials Science Forum, 433–436, 131–6.CrossRefGoogle Scholar
Tuppen, C. G., Gibbings, C. J. and Hockly, M. (1989). The effects of misfit dislocation nucleation and propagation on Si/Si1-xGex critical thickness values. Journal of Crystal Growth, 94, 392–404.CrossRefGoogle Scholar
Tweet, A. G. and Gallagher, C. J. (1956). Structure sensitivity of Cu diffusion in Ge. Physical Review, 103, 828.CrossRefGoogle Scholar
Ueda, O. (1996). Reliability and Degradation of III-V Optical Devices. Boston: Artech House.Google Scholar
Ueda, O. (1999). Reliability issues in III-V compound semiconductor devices: optical devices and GaAs-based HBTs. Microelectronics Reliability, 39, 1839–55.CrossRefGoogle Scholar
Unvala, B. A. and Booker, G. R. (1964). Growth of epitaxial silicon layers by vacuum evaporation. I Experimental procedure and initial assessment. Philosophical Magazine, 9, 691–701.CrossRefGoogle Scholar
van der Merwe, J. H. and Ball, C. A. B. (1975). Energies of interfaces between crystals. In Epitaxial Growth, Part B, ed. Matthews, J. W. (New York: Academic Press), pp. 493–528.Google Scholar
Merwe, J. H. (2001). Interfacial energy: bicrystals of semi-infinite crystals. Progress in Surface Science, 67, 365–81.CrossRefGoogle Scholar
Merwe, J. H. (2002). Misfit dislocations in epitaxy. Metallurgical and Materials Transactions, A33, 2475–83.CrossRefGoogle Scholar
Vanhellemont, J., Gryse, O. and Clauws, P. (2004). Extended defects in silicon: an old and new story. Solid State Phenomena, 95–96, 263–72.Google Scholar
Landuyt, J. and Amelinckx, S. (1971). Stacking faults in silicon carbide (6H) as observed by means of transmission electron microscopy. Material Research Bulletin, 6, 613–20.CrossRefGoogle Scholar
Walt, C. M. and Sole, M. J. (1967). The plastic behaviour of crystals with the NaCl-structure. Acta Metallurgica, 15, 459–62.CrossRefGoogle Scholar
Vdovin, V. I. (1999). Misfit dislocations in epitaxial heterostructures: Mechanisms of generation and multiplication. Physica Status Solidi, A171, 239–50.3.0.CO;2-M>CrossRefGoogle Scholar
Venables, J. D. and Broudy, R. M. (1959). Photo-anodization of InSb. Journal of Applied Physics, 30, 1110–11.CrossRefGoogle Scholar
Venables, J. D. and Broudy, R. M. (1960). Anodization of InSb. Journal of the Electrochemical Society, 107, 296–8.CrossRefGoogle Scholar
Verma, A. J. and Krishna, P. (1966). Polymorphism and Polytypism in Crystals. New York: Wiley.Google Scholar
Ammon, W., Dornberger, E., Oelkrug, H. and Weidner, H. (1995). The dependence of bulk defects on the axial temperature gradient of silicon crystals during Czochralski growth. Journal of Crystal Growth, 151, 273–7.CrossRefGoogle Scholar
Voronkov, V. V. (1982). The mechanism of swirl defect formation in silicon. Journal of Crystal Growth, 59, 625–43.CrossRefGoogle Scholar
Vyvenko, O. F., Krüger, O. and Kittler, M. (2000). Cross-sectional electron-beam-induced current analysis of the passivation of extended defects in cast multicrystalline silicon by remote hydrogen plasma treatment. Applied Physics Letters, 76, 697–9.CrossRefGoogle Scholar
Walter, H. U. (1977). Generation and propagation of defects in indium antimonide. Journal of the Electrochemical Society, 124, 250–8.CrossRefGoogle Scholar
Walton, A. J. (1977). Triboluminescence. Advances in Physics, 26, 887–948.CrossRefGoogle Scholar
Warburton, W. K. and Turnbull, D. (1975). Fast diffusion in metals. In Diffusion in Solids: Recent Developments, eds. Nowick, A. S. and Burton, J. J.. New York: Academic Press, Chap. 4, pp. 171–229.Google Scholar
Warekois, E. P. and Metzger, P. H. (1959). X-ray method for the differentiation of {111} surfaces in III-V semiconducting compounds. Journal of Applied Physics, 30, 960–2.CrossRefGoogle Scholar
Warekois, E. P., Lavine, M. C. and Gatos, H. C. (1960). Damaged layers and crystalline perfection in the {111} surfaces of III-V intermetallic compounds. Journal of Applied Physics, 31, 1302–3.CrossRefGoogle Scholar
Warekois, E. P., Lavine, M. C., Mariano, A. N. and Gatos, H. C. (1962). Crystallographic polarity in the II-VI compounds. Journal of Applied Physics, 33, 690–6.CrossRefGoogle Scholar
Warren, P. D., Pirouz, P. and Roberts, S. G. (1984). Simultaneous observation of α- and β-dislocation movement and their effect on the fracture behaviour of GaAs. Philosophical Magazine, A50, L23 to L28.Google Scholar
Warren, P. D., Roberts, S. G. and Hirsch, P. B. (1987). Microhardness anisotropy and polarity in elemental semiconductors and in AIIIBV semiconductor compounds. Bulletin of the Academy of Sciences of the USSR Division of Physical Science, 51, 168–72.Google Scholar
Washburn, J., Thomas, G. and Queisser, H. J. (1964). Diffusion-induced dislocations in silicon. Journal of Applied Physics, 35, 1909–14.CrossRefGoogle Scholar
Weber, J. (1994). Correlation of structural and electronic properties from dislocations in semiconductors. Solid State Phenomena, 37–38, 13–24.CrossRefGoogle Scholar
Weertman, J. and Weertman, J. R. (1980). Moving Dislocations. In Dislocations in Solids, 3, ed. Nabarro, F. R. N. (Amsterdam: North-Holland), pp. 1–59.Google Scholar
Weinstein, M. and Wolff, G. A. (1967). Mechanisms of epitaxial growth of compound semiconductors. In Crystal Growth. Proceedings of International Conference on Crystal Growth, Boston, ed. Peiser, H. S. (Oxford: Pergamon), pp. 537–41.Google Scholar
Weinstein, M., Wolff, G. A. and Das, B. N. (1965). Growth of wurtzite CdTe and sphalerite type CdS single-crystal films. Applied Physics Letters, 6, 73.CrossRefGoogle Scholar
Weimann, N. G., Eastman, L. F., Doppalapudi, D., Ng, H. M. and Moustakas, T. D. (1998). Scattering of electrons at threading dislocations in GaN. Journal of Applied Physics, 83, 3656–9.CrossRefGoogle Scholar
Weiss, B. L. and Hartnagel, H. L. (1977). The influence of dopants on the hardening of GaAs. Journal of Applied Physics, 48, 3614–15.CrossRefGoogle Scholar
Wessel, K. and Alexander, H. (1977). Mobility of partial dislocations in silicon. Philosophical Magazine, 35, 1523–36.CrossRefGoogle Scholar
Westbrook, J. H. (1968). Surface effects on the mechanical properties of non-metals. In Surfaces and Interfaces, II (Syracuse, N. Y.: Syracuse University Press), pp. 3–138.Google Scholar
Westwood, A. R. C. (1974). Tewksbury lecture: Control and application of environment-sensitive fracture processes. Journal of Materials Science, 9, 1871–95.CrossRefGoogle Scholar
Westwood, A. R. C. and Latanision, R. M. (1976). Surface and environmental effects in deformation. Materials Science and Engineering, 25, 225–31.CrossRefGoogle Scholar
Westwood, A. R. C., Ahearn, J. S. and Mills, J. J. (1981). Developments in the theory and application of chemomechanical effects. Colloids and Surfaces, 2, 1–35.CrossRefGoogle Scholar
White, J. G. and Roth, W. C. (1959). Polarity of gallium arsenide crystals. Journal of Applied Physics, 30, 946–7.CrossRefGoogle Scholar
Whitworth, R. W. (1975). Charged dislocations in ionic crystals. Advances in Physics, 24, 203–304.CrossRefGoogle Scholar
Wilkes, P. (1969). Defects in epitaxial layers of ZnS on Si. Journal of Materials Science, 4, 91–3.CrossRefGoogle Scholar
Willis, J. R., Jain, S. C. and Bullough, R. (1990). The energy of an array of dislocations – implications for stain relaxation in semiconductor heterostructures. Philosophical Magazine, A62, 115–29.CrossRefGoogle Scholar
Willoughby, A. F. W. (1968). Anomalous diffusion effects in silicon (A review). Journal of Materials Science, 3, 89–98.CrossRefGoogle Scholar
Wilson, R. B. (1966). Variation of electromechanical coupling in hexagonal CdS. Journal of Applied Physics, 37, 1932–3.CrossRefGoogle Scholar
Wolfe, C. M., Nuese, C. J. and Holonyak, N. (1965). Growth and dislocation structure of single-crystal Ga(As1-xP x). Journal of Applied Physics, 36, 3790–801.CrossRefGoogle Scholar
Wolff, G. A., Frawley, J. and Hietanen, J. (1964). On the etching of II-VI and III-V compounds. Journal of the Electrochemical Society, 111, 22–7.CrossRefGoogle Scholar
Wong, C. Y., Grovenor, C. R. M., Batson, P. E. and Smith, D. A. (1985). Effect of arsenic segregation on the electrical properties of grain boundaries in polycrystalline silicon. Journal of Applied Physics, 57, 438–42.CrossRefGoogle Scholar
Woods, J. (1960). Etch pits and dislocations in cadmium sulphide crystals. British Journal of Applied Physics, 11, 296–302.CrossRefGoogle Scholar
Yacobi, B. G. and Holt, D. B. (1990). Cathodoluminescence Microscopy of Inorganic Solids. (New York: Plenum Press), pp. 214–19.CrossRefGoogle Scholar
Yagi, K., Takayanagi, K., Kobayashi, K. and Honjo, G. (1971). In situ observation of formation of misfit dislocations in pseudomorphic monolayer overgrowth of metals on non-metals. Journal of Crystal Growth, 9, 84–97.CrossRefGoogle Scholar
Yan, Y., Albin, D. and Al-Jassim, M. M. (2001). Do grain boundaries assist S diffusion in polycrystalline CdS/CdTe heterojunctions?Applied Physics Letters, 78, 171–3.CrossRefGoogle Scholar
Yarykin, N. and Steinman, E. (2003). Comparative study of the plastic deformation- and implantation-induced centres in silicon. Physica, B340–342, 756–9.CrossRefGoogle Scholar
Yonenaga, I. (1998). Dynamic behavior of dislocations in InAs: in comparison with III-V compounds and other semiconductors. Journal of Applied Physics, 84, 4209–13.CrossRefGoogle Scholar
Yonenaga, I. (2001). Dislocation behavior in heavily impurity doped Si. Scripta Materialia, 45, 1267–72.CrossRefGoogle Scholar
Yonenaga, I. (2003). Dislocation–impurity interaction in Si. Materials Science in Semiconductor Processing, 6, 355–8.CrossRefGoogle Scholar
Yoenaga, I. and Sumino, K. (1978). Dislocation dynamics in the plastic-deformation of silicon-crystals. 1. Experiments. Physica Status Solidi, A50, 685–93.CrossRefGoogle Scholar
Yonenaga, I. and Sumino, K. (1992). Impurity effects on the mechanical-behavior of GaAs crystals. Journal of Applied Physics, 71, 4249–57.CrossRefGoogle Scholar
Yonenaga, I. and Sumino, K. (1993). Effects of dopants on dynamic behavior of dislocations and mechanical strength in InP. Journal of Applied Physics, 74, 917–24.CrossRefGoogle Scholar
Yonenaga, I. and Sumino, K. (1996). Influence of oxygen precipitation along dislocations on the strength of silicon crystals. Journal of Applied Physics, 80, 734–8.CrossRefGoogle Scholar
Yonenaga, I., Sumino, K. and Hoshi, K. (1984). Mechanical strength of silicon crystals as a function of the oxygen concentration. Journal of Applied Physics, 56, 2346–50.CrossRefGoogle Scholar
Zare, R., Cook, W. R. and Shiozawa, L. R. (1961). X-ray correlation of the A-B layer order of CdSe with the sign of the polar axis. Nature, 189, 217–19.CrossRefGoogle Scholar
Zheleva, T. S., Nam, O. H., Bremser, M. D. and Davis, R. F. (1997). Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Applied Physics Letters, 71, 2472–4.CrossRefGoogle Scholar
Zimin, D., Alchalabi, K. and Zogg, H. (2002). Heteroepitaxial PbTe-on-Si pn-junction IR-sensors: correlations between material and device properties. Physica E: Low-Dimensional Systems and Nanostructures, 13, 1220–3.CrossRefGoogle Scholar
Zunger, A. (1987). Order-disorder transformation in ternary tetrahedral semiconductors. Applied Physics Letters, 50, 164–6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×