Skip to main content Accessibility help
  • Print publication year: 2007
  • Online publication date: September 2009

1 - Semiconducting materials


Materials development and crystal growth techniques

This chapter outlines the nature and importance of semiconductors. The industrially important semiconductors are tetrahedrally coordinated, diamond and related structure IVB, III-V and related materials. The sp3 tetrahedral covalent bonding is stiff and brittle, unlike the metallic bond, which merely requires closest packing to minimize the energy. The atomic core structures of extended defects in semiconductors depend on this stiff, brittle bonding and in turn give rise to the electrical and optical properties of defects.

The semiconductors' closely related adamantine (diamond-like) crystal structures and energy band diagrams are outlined. There are a large number of families of such semiconducting compounds and alloys, some of which are non-crystalline. However, only a few have been developed to the highest levels of purity and perfection so that single crystal wafers are available. Instead, with modern epitaxial growth techniques, thin films, quantum wells, wires and dots and artificial superlattices can be produced. This can be done with many semiconductor materials, including alloys of continuously variable composition, with the necessary quality on one of the few available types of wafer. These epitaxial materials have ‘engineered’ energy band structures and hence electronic and optoelectronic properties and can be designed for incorporation into devices to meet new needs. It is largely to this field that materials development has moved, except for the occasional development of an additional material like GaN.

The chapter closes with a brief account of the way that competitive materials development, responding to economic demand, determines which materials enter production.

Alferov, Zh. I., Andreev, V. M., Garbuzov, D. al. (1971). Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Soviet Physics Semiconductors, 4, 1573–75.
Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Physical Review, 109, 1492–505.
Aulich, H. and Schulze, F.-W. (2002). Silicon supply for solar PV. Renewable Energy World, 5, 49–59.
Aven, M. and Prener, J. S. (1967). Physics and Chemistry of II-VI Compounds. Amsterdam: North-Holland.
Austin, I. G., Goodman, C. H. L. and Pengelly, A. E. S. (1956). New semiconductors with the chalcopyrite structure. Journal of the Electrochemical Society, 103, 609–10.
Bachmann, K. J. (1995). The Materials Science of Microelectronics, Chapter 6. Weinheim: VCH.
Bergh, A. A. and Dean, P. J. (1976). Light Emitting Diodes, Oxford: Clarendon Press.
Blakemore, J. S. (1982). Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics, 53, R123–R181.
Blakemore, J. S. (1985). Solid State Physics, 2nd edn. Cambridge: Cambridge University Press.
Blakeslee, A. E. (1971). Vapor growth of a semiconductor superlattice. Journal of the Electrochemical Society, 118, 1459–63.
Borchers, H. and Maier, R. G. (1963). Uber die ternare halbleitende kristallart ZnSnAs2 und den aufbau des driestoffsystems Zinc – Zinn – Arsen. Metall, 17, 775–80; Quasibinaare zustandsdiagramme der halbleitenden kristallart InAs mit ZnSnAs2, ZnGeAs2 und CdGeAs2. Metall, 17, 1006–10.
Brice, J. C. (1986). Crystal Growth Processes. New York: Wiley.
Buerger, M. J. (1978). Elementary Crystallography. An Introduction to the Fundamental Geometrical Features of Crystals. Cambridge, Mass.: MIT Press.
Capasso, F. and Margaritondo, G. (eds.) (1987). Heterojunction Band Discontinuities: Physics and Device Applications. Amsterdam: North-Holland.
Capasso, F., Paiella, R., Martini, al. (2002). Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth and far-infrared emission. IEEE Journal of Quantum Electronics, 38, 511–32.
Chang, L. L. and Esaki, L. (1979). Semiconductor superlattices by MBE and their characterizaton. Progress in Crystal Growth and Characterization, 2, 3–14.
Chang, L. L. and Giessen, B. C. (eds.) (1985). Synthetic Modulated Structures. New York: Academic Press.
Chelikowsky, J. R. and Cohen, M. L. (1976). Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Physical Review, B 14, 556–82.
Cho, A. Y. (1995). Molecular beam epitaxy from research to manufacturing. MRS Bulletin, 20(4), 21–8.
Cho, A. Y., Sivco, D. L., Ng, H. al. (2001). Quantum devices, MBE technology for the 21st century. Journal of Crystal Growth, 227–228, 1–7.
Dash, W. C. (1958). The growth of silicon crystals free from dislocations. In Growth and Perfection of Crystals, eds. Doremus, R. H., Roberts, B. W. and Turnbull, D. (New York: Wiley), pp. 361–85.
Davies, G. J. and Williams, R. H. (eds.) (1994). Semiconductor Growth, Surfaces and Interfaces. London: Chapman & Hall.
Dingle, R. (1976). Optical properties of semiconductor superlattices. In Physics of Semiconductors ; Proc. 13th Internat. Conf. Rome, ed. Fumi, F.G. (Amsterdam: North-Holland), pp. 965–74.
Dingle, R. (ed.) (1987). Applications of multiquantum wells, selective doping and superlattices. In Semiconductors and Semimetals, Vol. 24. New York: Academic Press.
Dismukes, J. P. and Ekstrom, L. (1965). Homogenous solidification of Ge-Si alloys. Transactions of the Metallurgical Society of AIME, 233, 672–80.
Esaki, L. and Tsu, R. (1970). Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Development, 14, 61–5.
Faist, J., Capasso, F., Sivco, D. al. (1994). Quantum cascade laser. Science, 264, 553–6.
Finkelnburg, W. (1950). Atomic Physics. New York: McGraw-Hill.
Goodman, C. H. L. (1957). A new group of compounds with diamond-type (chalcopyrite) structure. Nature, 179, 828–9.
Goodman, C. H. L. and Douglas, R. W. (1954). New semiconducting compounds of diamond type structure. Physica, 20, 1107–9.
Goryunova, N. A. and Obuchov, A. P. (1951). Zhur. Tekh. Fiz., 21, 237.
Goryunova, N. A. (1965). The Chemistry of Diamond Like Semiconductors. Cambridge: The MIT Press.
Goryunova, N. A., Kesamanly, F. P. and Nasledov, D. N. (1968). Phenomena in solid solutions. In Semiconductors and Semimetals, Vol. 4, Physics of III-V Compounds, eds. Willardson, R. K. and Beer, A. C. (New York: Academic Press), pp. 413–58.
Hayashi, I., Panish, M. B., Foy, P. W. and Sumski, S. (1970). Junction lasers which operate continuously at room temperature. Applied Physics Letters, 17, 109–11.
Herman, M. A. and Sitter, H. (1989). Molecular Beam Epitaxy: Fundamentals and Current Status. New York: Springer-Verlag.
Holt, D. B. (1966). Misfit Dislocations in Semiconductors. Journal of Physics and Chemistry of Solids, 27, 280–95.
Huff, H. R. (2002). An electronics division retrospective (1952–2002) and future opportunities in the twenty-first century. Journal of the Electrochemical Society, 149, S35–S58.
Hume-Rothery, W. and Raynor, G. V. (1954). The Structure of Metals and Alloys. 3rd edn. London: Institute of Metals.
Hurle, D. T. J. and Rudolph, P. (2004). A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. Journal of Crystal Growth, 264, 550–64.
Ioffe, A. F. (1960). Physics of Semiconductors. London: Infosearch.
Ioffe, A. F. and Regel, A. R. (1960). Non-crystalline, amorphous and liquid electronic semiconductors. Progress in Semiconductors, 4, 237–91.
Jain, S. C. (2000). Compound Semiconductor Strained Layers and Devices. Boston: Kluwer Academic Publishers.
Jaros, M. (1989). Physics and Applications of Semiconductor Microstructures. Oxford: Clarendon Press.
Kazarinov, R. F. and Suris, R. A. (1971). Amplification of electromagnetic waves in a semiconductor superlattice. Soviet Physics Semiconductors, 5, 707–9.
Kelly, A. and Groves, G. W. (1970). Crystallography and Crystal Defects. London: Longman.
Kittel, C. (1996). Introduction to Solid State Physics, 7th edn. New York: Wiley.
Kleinman, W. and Phillips, J. C. (1960). Crystal potential and energy bands of semiconductors. III self-consistent calculations for silicon. Physical Review, 118, 1153–67.
Kolomiets, B. T. (1964). Vitreous semiconductors I. Physica Status Solidi, 7, 359–72; and Vitreous semiconductors II. Physica Status Solidi, 7, 713–31.
Kroemer, H. (1957). Quasi-electric and quasi-magnetic fields in nonuniform semiconductors. RCA Review, 18, 332–42.
Kroemer, H. (1963). A proposed class of heterojunction injection laser. Proceedings of the IEEE, 51, 1782–3.
Madelung, O. (1964). Physics of III-V Compounds. New York: Wiley.
Mahajan, S. (2004). The role of materials science in microelectronics: past, present and future. Progress in Materials Science, 49, 487–509.
Mahajan, S. and Sree Harsha, K. S. (1999). Principles of Growth and Processing of Semiconductors. New York: McGraw-Hill.
Matthews, J. M. (ed.) (1975). Epitaxial Growth, Vols A and B. New York: Academic Press.
Miller, A., MacKinnon, A. and Weaire, D. (1981). Beyond the binaries – the chalcopyrite and related semiconducting compounds. Solis State Physics, 36, 119–75.
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, Vol. 38, No. 8, April 19.
Mooser, E. and Pearson, W. B. (1960). The chemical bond in semiconductors. Progress in Semiconductors, 5, 103–39.
Mott, N. F. (1969). Conduction in non-crystalline materials III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philosophical Magazine, 19, 835–52.
Mott, N. F. and Davis, E. A. (1979). Electronic Processes in Non-crystalline Materials. 2nd edn. Oxford: Clarendon Press.
Mullin, J. B. (2004). Progress in the melt growth of III–V compounds. Journal of Crystal Growth, 264, 578–92.
Nakamura, S. (1994). Growth of InxGa(1-x)N compound semiconductors and high power InGaN/AlGaN double heterostructure violet-light-emitting diodes. Microelectronics Journal, 25, 651–9.
Nakamura, S. (1998). III-V nitride-based short-wavelength LEDs and LDs. In Group III Nitride Semiconductor Compounds, ed. Gil, B. (Oxford: Clarendon Press), pp. 391–416.
Pamplin, B. R. (ed.) (1980). Crystal Growth. 2nd edn. Oxford: Pergamon.
Parker, E. H. C. (ed.) (1985). The Technology and Physics of Molecular Beam Epitaxy. New York: Plenum Press.
Parthe, E. (1966). Crystal Chemistry of Tetrahedral Structures. New York: Gordon & Breach.
Pashley, D. W. (1991). The epitaxy of metals. In Processing of Metals and Alloys, ed. Cahn, R. W. Materials Science and Technology: A Comprehensive Treatment, Vol. 15 (Weinheim: VCH), pp. 290–328.
Pfann, W.G. (1952), Principles of zone melting. Journal of Metals, 4, 747–53.
Phillips, F. C. (1971). An Introduction to Crystallography. 4th edn. London: Longman.
Phillips, J. C. (1973). Bonds and Bands in Semiconductors. New York: Academic Press.
Rees, H. D. and Gray, K. W. (1976). Indium phosphide: A semiconductor for microwave devices. IEEE Journal of Solid State and Electron Devices, 1, 1–8.
Reid, M. (ed.) (1992). Nanostructural systems. In Semiconductors and Semimetals, Vol. 35. New York: Academic Press.
Shay, J. L. and Wernick, J. H. (1975). Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications. Oxford: Pergamon.
Shockley, W. (1950). Electrons and Holes in Semiconductors. Princeton: van Nostrand.
Spear, W. E. and Comber, L. G. (1975). Substitutional doping of amorphous silicon. Solid State Communications, 17, 1193–6.
Stormer, H. L., Dingle, R., Gossard, A. C., Wiegmann, W. and Logan, R. A. (1978). Electronic properties of modulation-doped GaAs-AlxGa(1-x)As superlattices. In Physics of Semiconductors 1978. Proceed. 14th Internat. Conf. Phys. Semicond. Edinburgh. Conf. Series No. 43 (Bristol: Inst. Phys., 1979), pp. 557–60.
Stradling, R. A. and Klipstein, P. C. (eds.) (1990). Growth and Characterization of Semiconductors. New York: Adam Hilger.
Stringfellow, G. B. (1989). Organometallic Vapor-Phase Epitaxy: Theory and Practice. Boston: Academic Press.
Sze, S. M. (1981). Physics of Semiconductor Devices. New York: Wiley.
Sze, S. M. (1985). Semiconductor Devices. Physics and Technology. New York: Wiley.
Verma, A. R. and Krishna, P. (1966). Polymorphism and Polytypism in Crystals. New York: Wiley.
Vurgaftman, I., Meyer, J. R. and Ram-Mohan, L. R. (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89, 5815–75.
Wang, C. C. and Alexander, B. H. (1955). Hardness of germanium-silicon alloys at room temperature. Acta Metallurgica, 3, 515–16.
Welker, H. (1952). Uber neue halbleitende verbindungen. Zeitschrift fur Naturforschung A: A Journal of Physical Sciences, 7, 744–9.
Welker, H. and Weiss, H. (1956). Group III – group V compounds. In Solid State Physics, eds. Seitz, F. and Turnbull, D., Vol. 3, pp. 1–78.
Wilkes, P. (1973). Solid State Theory in Metallurgy. Cambridge: Cambridge University Press.
Woolley, J. C. (1962). Solid solution of III-V compounds. In Compound Semiconductors, Vol. 1. Preparation of III-V Compounds, eds. Willardson, R. K. and Goering, H. L. (New York: Reinhold), pp. 3–20.
Ziman, J. M. (1972). Principles of the Theory of Solids. 2nd edn. (Cambridge: Cambridge University Press).
Further reading
Mayer, J. W. and Lau, S. S. (1990). Electronic Materials Science: For Integrated Circuits in Si and GaAs. New York: Macmillan Publishing.
Pierret, R. F. and Neudeck, G. W. (eds.) (1989). Modular Series on Solid State Devices. Reading, Mass.: Addison-Wesley.
Seeger, K. (1999). Semiconductor Physics: An Introduction. New York: Springer-Verlag.
Streetman, B. G. (1995). Solid State Electronic Devices. Englewood Cliffs, N.J.: Prentice-Hall.
Sze, S. M. (1981). Physics of Semiconductor Devices. New York: Wiley.
Wilson, J. and Hawkes, J. F. B. (1998). Optoelectronics: An Introduction. Englewood Cliffs, N.J: Prentice-Hall.
Yu, P. Y. and Cardona, M. (1996). Fundamentals of Semiconductors: Physics and Materials Properties. New York: Springer.
Semiconductor growth
Brice, J. C. (1986). Crystal Growth Processes. New York: Wiley.
Davies, G. J. and Williams, R. H. (eds.) (1994). Semiconductor Growth, Surfaces and Interfaces. London: Chapman & Hall.
Herman, M. A. and Sitter, H. (1989). Molecular Beam Epitaxy: Fundamentals and Current Status. New York: Springer-Verlag.
Lewis, B. and Anderson, J. C. (1978). Nucleation and Growth of Thin Films. New York: Academic Press.
Pamplin, B. R. (1975). Crystal Growth, International Series of Monographs in The Science of the Solid State, Volume 6. New York: Pergamon Press.
Parker, E. H. C. (ed.) (1985). The Technology and Physics of Molecular Beam Epitaxy. New York: Plenum Press.
Stradling, R. A. and Klipstein, P. C. (eds.) (1990). Growth and Characterization of Semiconductors. New York: Adam Hilger.
Stringfellow, G. B. (1989). Organometallic Vapor-Phase Epitaxy: Theory and Practice. Boston: Academic Press.