Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T10:16:11.726Z Has data issue: false hasContentIssue false

Chapter 16 - Neoplasms of Bone and Fibro-Osseous Lesions of the Craniofacial Skeleton

Published online by Cambridge University Press:  26 June 2017

Robert O. Greer
Affiliation:
University of Colorado, Denver
Robert E. Marx
Affiliation:
University of Miami
Sherif Said
Affiliation:
University of Colorado, Denver
Lori D. Prok
Affiliation:
University of Colorado, Denver
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Matsuzaka, K, Shimono, M, Uchiyama, HN, et al. Lesions related to the formation of bone, cartilage, or cementum arising in the oral area: a statistical study and review of the literature. Bull Tokyo Dent Coll, 2002, 43: 173180.Google Scholar
Larrea-Oyarbide, N, Valmaseda-Castellon, , Berini-Ayte’s, L. Osteomas of the craniofacial region: review of 106 cases. J Oral Pathol Med, 2008, 37: 3842.Google Scholar
Samy, LL, Mostafa, H. Osteomata of the nose and paranasal sinuses with a report of 21 cases. J Laryngol Otol, 1971, 85: 449469.Google Scholar
Smith, ME, Calcaterra, TC. Frontal sinus osteoma. Ann Otol Rhinal laryngeal, 1989, 98: 896900.Google Scholar
Nielson, GP, Rosenberg, E. Update on bone forming tumors of the head and neck. Head Neck Pathol, 2007, 1: 8793.Google Scholar
Halawi, AM, Maley, JE, Robinson, RA, et al. Craniofacial osteoma: clinical presentation and patterns of growth. Am J Rhinol Allergy, 2013, 27: 128133.Google Scholar
Earwaker, J. Paranasal sinus osteomas. A review of 46 cases. Skeletal Radiol, 1993, 22: 417423.Google Scholar
Kaplan, I, Nicolaou, Z, Hateul, D, et al. Solitary central osteoma of the jaws. A diagnostic dilemma. Oral Surg Oral Med Oral Pathol Oral Radiol Endodo, 2008, 106: e22e29.Google Scholar
Derniciaro, E. Gardner’s syndrome. Dermatol Clin, 1995, 13: 5156.Google Scholar
McHugh, JB, Mukherji, SK, Lucas, DR. Sino-orbital osteoma: a clinicopathological study of 45 surgically treated cases with emphasis on tumors with osteoblastic-like features. Arch Pathol Lab Med, 2009, 133: 15871593.Google Scholar

Secondary Sources

BoKhari, K, Hameed, My, Ajmal, M, et al. Benign osteoblastoma involving maxilla: a case report and review of the literature. Case Reports in Dentistry, 2012, doi 10.1155/2012/351241.Google Scholar
Alvares Capelozza, AL, Giao Dezotti, MS, Casati Alvares, L, et al. Osteoblastoma of the mandible: systemic review of the literature and report of a case. Dentomaxillofac Radiol, 2005, 34: 18.Google Scholar
Loizaga, JM, Calvo, M, Lopez Barea, F, et al. Osteoblastoma and osteoid osteoma. Clinical and morphological features of 162 cases. Pathol Red. Pract, 1993, 189: 3341.Google Scholar
Jones, AC, Prihoda, TJ, Kacher, JE, et al. Osteoblastoma of the maxilla and mandible: report of 24 cases, review of the literature and discussion of its relationship to osteoid osteoma of the jaws. Oral Surg, Oral Med, Oral Pathol, Oral Radiol Endod, 2006, 102: 639650.Google Scholar
Lucas, DR, Unni, KK, McLeod, RA, et al. Osteoblastoma: Clinicopathologic study of 306 cases. Human Pathol, 1994, 25: 117134.Google Scholar
Berry, M, Mankin, H, Gebhardt, M, et al. Osteoblastoma: a 30 year study of 99 cases. J Surg Oncology, 2008, 98: 179183.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathology, 2007, 1: 8793.Google Scholar
Della Rocca, C, Huvos, AG. Osteoblasoma. Varied histological presentations with a benign clinical course. An analysis of 55 cases. Am J Surg Pathol, 1996, 20: 841850.Google Scholar
Kiyohara, H, Sawatsubashi, M, Matsumoto, N., et al. Benign Osteoblastoma of the ethmoid sinus. Auris Nasus Larynx, 2013, 40: 338341.Google Scholar
Ahmed, MS, Nwoky, AL. Benign Osteoblastoma of the mandibular ramus. Review of the literature and report of a case. J Oral Maxillofac Surg, 2000, 58: 13101317.Google Scholar
Kulkarni, MM, Shah, AK, Ahire, S. Aggressive Osteoblastoma of the mandible: a case report. Int J Contemp Dent, 2011, 2: 135138.Google Scholar
Manjunatha, BS, Sunit, P, Amit, M, et al. Osteoblastoma of the jaws: a report of a case and review of the literature. Clinics and Practice, 2011, 118: 256258.Google Scholar
Unni, KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases, Ed 5, Philadelphia, Lippincott-Raven, 1996.Google Scholar
Ohkubo, T, Hernendez, JC, Goya, K, et al. “Aggressive” osteoblastoma of the maxilla. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodo, 1989, 68: 6973.Google Scholar
Dal Cin, P, Sciot, R, Samson, J, et al. Osteoid osteoma and osteoblastoma with clonal chromosome changes. Br J Cancer, 1994, 78: 344348.Google Scholar
Mascarello, JT, Krous, HF, Carpenter, DM. Unbalanced translocation resecting in the loss of the chromosome 17 short arm in osteoblastoma. Cancer Genet Cytogenet, 1993, 69: 6567.Google Scholar
Bertoni, F, Unni, KK, Lucas, DR, et al. Osteoblasoma with cartilagninous matrix an unusual morphologic presentation in 18 cases. Am J Surg Pathol, 1993, 17: 6974.Google Scholar
Ahmed, MS, Nwoky, AL. Benign osteoblastoma of the mandibular ramus. Review of the literature and report of a case. J Oral Maxillofac Surg, 2000, 58: 13101317.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 8793.Google Scholar
Zwimpfer, JJ, Tucker, WS, Faulkner, JF. Osteoid osteoma of the cervical spine. Case reports and review of the literature. Can J Surg, 1982, 25: 637641.Google Scholar
Pettine, KA, Klassen, RA. Osteoid-osteoma and osteoblastoma of the spine. J Bone Joint Surg Am, 1986, 68A: 354361.Google Scholar
Frassica, FJ, Waltarip, RL, Sponseller, PD, et al. Clinicopathologic features and treatment of osteoid osteoma and osteoblastoma in children and adolescents. Orthop Clin North A, 1996, 27: 559574.Google Scholar
Gitelis, S, Schajowiet, F. Osteoid osteoma and osteoblastoma. Orthop Clin North Am, 1989, 20: 313325.Google Scholar
Greenspan, A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical imaging, pathologic and differential considerations. Skeletal Radiol, 1993, 22: 485500.Google Scholar
Raskas, DS, Graziano, GP, Herzenberg, FJ, et al. Osteoid osteoma and osteoblastoma of the spine. J Spinal Disor, 1992, 5: 204211.Google Scholar
Scheine, NJ, Malone, M, Ashworth, MA, Jacques, TS. Diagnostic Pediatric Surgical Pathology. Churchill Livingstone, Elsevier, 2000, p. 231.Google Scholar
Gamba, JL, Martinez, S, Apple, J, et al. Computed tomography of axial skeletal osteoid osteomas. AJR Am Roent Genol, 1984, 142: 769772.Google Scholar
O’Connell, JS, Nanthakumar, SS, Nielsen, GP, et al. Osteoid ostoma: the uniquely innervated bone tumor. Mod Pathol, 1998, 11: 175180.Google Scholar
Rosenthal, DI, Hornicek, FJ, Wolfe, MW, et al. Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am, 1998, 80: 815821.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 8793.Google Scholar
Garrington, GE, Scofield, HJ, Cornyn, J, et al. Osteosarcoma of the jaws. Analysis of 56 cases. Cancer, 1967, 20: 377391.Google Scholar
Saito, Y, Miyajima, C, Nakao, K, et al. Highly malignant submandibular extra skeletal osteosarcoma in a young patient. Auris Nasus Larynx, 2008, 35: 576578.Google Scholar
Jasnau, S, Meyer, U, Potratz, J, et al. Craniofacial osteosarcoma: experience of the cooperative German-Austrain-Swiss osteosarcoma study group. Oral Oncology, 2008, 44: 286294.Google Scholar
Huh, WW, Holsinger, FC, Levy, A, et al. Osteosarcoma of the jaw in children and young adults. Head and Neck, 2012, 34: 981984.Google Scholar
Kim, HJ, McLawhorn, AS, Boland, PJ. Malignant osseous tumors of the pediatric spine. J Am Acad Orthopedic Sufg, 2012, 20: 646656.Google Scholar
Salvati, M, Ciappeta, P, Raco, A. Osteosarcoma of the skull. Clinical remarks on 19 cases. Cancer, 1993, 71: 22102216.Google Scholar
Lei, YY, Vantassel, P, Nauert, C, et al. Craniofacial osteosarcomas plain film, CT and MRI findings in 46 cases. AJR Am J Roentgerol, 1988, 150: 13971402.Google Scholar
Bertoni, F, Dallera, P, Bacchini, P, et al. The insituto Rizzoli-Beretta experience with osteosarcoma of the jaws. Cancer, 1991, 68: 15551563.Google Scholar
Clark, JL, Unni, KK, Dahlin, DC, et al. Osteosarcoma of the jaw. Cancer, 1983, 51: 23112316.Google Scholar
Shives, TC, Dahlin, DC, Sim, FH, et al. Osteosarcoma of the spine. J Bone Joint Surg Am, 1986, 86A: 660668.Google Scholar
Barwick, KW, Huvos, AG, Smith, J. Primary osteogenic sarcoma of the vertebral column: a clinicopathologic correlation of ten patients. Cancer, 1980, 46: 595604.Google Scholar
Kebudi, R, Ayan, I, Darendelier, F, et al. Primary osteosarcoma of the cervical spine. A pediatric case report and review of the literature. Med Pediatr Oncol, 1994, 23: 162165.Google Scholar
Chan, CW, Kung, TM, Ma, L. Telangietic osteosarcoma of the mandible. Cancer, 1986, 58: 21102115.Google Scholar
Giangaspero, F, Stracca, V, Visona, A, et al. Small cell-osteosarcoma of the mandible. Case report. Appl Pathol, 1984, 2: 2831.Google Scholar
Kurt, AM, Unni, K, McLeod, RA, et al. Low grade intraosseous osteosarcoma. Cancer, 1990, 65: 14181438.Google Scholar
Garbe, LR, Monges, GM, Pellegrin, FM, et al. Ultrastructural study of osteosarcomas. Hum Pathol, 1981, 12: 891896.Google Scholar
Badawi-EL, ZH, Muhammad, EM, Noaman, HH. Role of immunohistochemical cyclo-oxygenase-2 (COX-2) and osteocalcin in differentiating between osteoblastomas and osteosarcomas. Mallays J Pathol, 2012, 34: 1523.Google Scholar
Araki, N, Uchida, A, Kimura, T, et al. Involvement of the retroblastoma gene in primary osteosarcomas and other bone and soft tissue tumors. Clin Orthop Relat Res, 1991, 271–277.Google Scholar
Reissman, PT, Simon, MA, Lee, WH, et al. Studies of the retinoblastoma gene in human sarcomas. Oncogene, 1989, 4: 839843.Google Scholar
Wadayama, B, Toguchida, J, Shimizy, T, et al. Mutation spectrum of the retroblastoma gene in osteosarcomas. Cancer Res, 1994, 54: 30423048.Google Scholar
Biegel, JA, Womer, BA, Emanuel, BS. Complex karyotypes in a series of pediatric osteosarcomas. Cancer Genet Cytogenet, 1989, 38: 89100.Google Scholar
vanDaniel, M, Hulsebos, TJ. Amplification and over expression of genes 17p 11.2-p1c in osteosarcoma. Cancer Genet Cytogenet, 2004, 153: 7780.Google Scholar
Minio, AJ. Periosteal osteosarcoma of the mandible. Int J Oral Maxillofac Surg, 1995, 24: 226228.Google Scholar
Patterson, A, Greer, RO, Howard, D. Periosteal osteosarcoma of the maxilla. A case report and review of literature. J Oral Maxillofac Surg, 1990, 48: 522526.Google Scholar
Bridge, JA, Nelson, M, McComb, F, et al. Cytogenetic findings in 73 osteosarcoma specimens and review of the literature. Cancer Genet Cytogenet, 1997, 95: 7487.Google Scholar
Millar, BG, Browne, RM, Flood, TR. Juxtacortical osteosarcomas of the jaws. Br J Oral Maxillofac Surg, 1990, 28: 7379.Google Scholar
Kumar, R, Moser, P, Madewelll, JF, et al. Parosteal osteosarcoma arising in cranial bones. Clinical and radiologic features in eight patients. AJR Am J Roentgerol, 1990, 155: 113117.Google Scholar
Longhi, A, Errani, C, Pepaolis, M, et al. Primary bone osteosarcoma in the pediatric age. State of the art. Cancer Treat Rev, 2006, 32: 423436.Google Scholar
Daw, NC, Mahmoud, HH, Meyer, WH, et al. Bone sarcomas of the head and neck in children. The St. Jude Children’s Research hospital Experience. Cancer, 2000, 88: 21722180.Google Scholar
Unni, KK. Parosteal osteosarcoma. In Fletcher, CDM, Unni, KK, Mertens, F (eds) Pathology and Genetics of Tumours of Soft Tissue. France, IARC Press, 2002, pp. 279281.Google Scholar
Lee, JS, Fetsch, JF, Wasdhal, DA, et al. A review of 40 patients with extra skeletal osteosarcoma. Cancer, 1995, 76: 22532259.Google Scholar
Rieske, P, Bartkowiak, JK, Szadowska, AM, et al. A comparative study of p53/MDM2 genes alterations and p53/MDM2 proteins immunoreactivity in soft tissue sarcomas. J Exp Clin Cancer Res, 1999, 18: 403416.Google Scholar
Kebudi, R, Ayan, I, Darendeliler, E, et al. Primary osteosarcoma of the cervical spine. A pediatric case report and review of the literature. Med Pediatr Oncol, 1994, 23: 162165.Google Scholar
Matsuzaka, K, Shimono, M, Uchiyama, et al. Lesions related to the formation of bone, cartilage or cementum arising in the oral area: a statistical study and review of the literature. Bull Tokyo Dent Coll, 2002, 43: 173180.Google Scholar
Huvos, AG. Bone Tumors. Diagnosis, Treatment and Prognosis, Ed 1, Phildelphia, WB Saunders, 1991.Google Scholar
Dahlin, DC, Unni, KK. Bone Tumors: General Aspects and Data on 8,542, Charles C Thomas Publishers, Springfield, Ed 4, 1986.Google Scholar
Schajowicz, F. Tumors and Tumor-Like Lesions of Bone. Pathology, Radiology and Treatment, Ed 2, New York, Springer-Verlag, 1994.Google Scholar
Mira, JM. Bone Tumors. Clinical Radiologic and Pathologic Correlations. Philadelphia Lea & Febiger, 1989.Google Scholar
Inwards, CY. Update on cartilage forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 6774.Google Scholar
Fu, Y-S, Perzin, KH. Non-epithelial tumors of the nasal cavity, paranasal sinuses and nasopharynx: a clinicopathologic study. III. Cartilaginous tumors (chondromas, chondrosarcomas) Cancer, 1974, 34: 453463.Google Scholar
Kilby, D, Ambegaokar, A. The nasal chondroma: 2 case reports and a survey of the literature. J Laryngol Otolgy, 1977, 91: 415426.Google Scholar
Ghogawala, Z, Moore, M, Strand, R, et al. Clival Chondroma in a child with Ollier’s disease. Case report. Pediat Neuro Surg, 1991, 17: 5356.Google Scholar
Rathore, PK, Mandal, S, Meher, R, et al. Giant ossifying chondroma of the skull. Int J Pediatr Otorhinolaryngol, 2005, 69: 17091711.Google Scholar
Kosaki, N, Yabe, H, Anazawa, U, et al. Bilateral multiple malignant transformation of Ollier’s disease. Skeletal Radiol, 2005, 34: 477484.Google Scholar
Cook, PL, Evans, PG. Chondrosarcoma of the skull in Maffucci’s syndrome. Br J Radiol, 1977, 50: 833836.Google Scholar
Hopyan, S, Gokgoz, N, Poon, R, et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet, 2002, 30: 306210.Google Scholar
Gnepp, DR. Diagnostic Surgical Pathology of the Head and Neck, Ed 2, Philadelphia, Saunders Elsevier, 2009, p. 743.Google Scholar
Saglik, Y, Altay, M, Unai, VS, et al. Manifestations and management of osteochondromas: a retrospective analysis of 382 patients. Acta Orthop, 2006, 72: 748755.Google Scholar
Dahlin, DC. Bone Tumors: General Aspects and Data on 6,221 Cases, Ed 3, Charles C Thomas, Springfield, IL, 1978.Google Scholar
Khurana, J, Abdul-Karim, F, Boree, JVMG. Osteochondroma. In Fletcher, CDM, Unni, KK, Metens, F. (eds) World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon, France, IRAC, 2002, pp. 234236.Google Scholar
Canella, P, Gardin, F, Borriani, S. Exostosis: development, evolution and relationships to malignant degeneration. Ital J Orthop Traumatol, 1981, 7: 293298.Google Scholar
Niedzwiecka, M, Kaczmarek, P, Krawczy, T. Benign but fatal. A case of a newborn with congenital osteochondroma. Bone, 2013, 54: 169171.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology. A Rationale for Diagnosis and Treatment, Ed 1, Chicago. Hanover Park, IL, Quintessence Publishing Company, 2012.Google Scholar
Shore, RM, Pozanski, AK, Anandappa, EC, et al. Arterial and venous compromise by osteochondroma. Pediatr Kadiol, 1994, 24: 3940.Google Scholar
Mehta, M, White, LM, Knapp, T, et al. MR imaging of symptomatic osteochondromas with pathologic correlations. Skeletal Radio, 1998, 27: 427436.Google Scholar
Garrison, RG, Uni, KK, McLeod, RA. Chondrosarcoma arising in osteochondroma. Cancer, 1982, 49: 18901897.Google Scholar
Ahn, J, Ludecke, H-J, Lidow, S, et al. Cloning of the putative suppressor gene for hereditary multiple exostoses (EXT1) Nat Genet, 1995, 11: 137143.Google Scholar
Zak, BM, Crawford, BE, Esko, JD. Hereditary multiple exostoses and heparin sulfate polymerization. Biochim Biophys Acta, 2002, 1573: 346355.Google Scholar
Feeley, MG, Boehm, AK, Bridge, RS, et al. Cytogenetic and molecular cytogenetic evidence of recurrent 8q 24.1 loss in osteochondroma. Cancer Genet Cytogenet, 2002, 137: 102107.Google Scholar
Ostuk, C, Tezer, M, Hamzaoglu, A. Solitary osteochondroma of the cervical spine causing spinal cord compression. Acta Orthop Belg, 2007, 73: 133136.Google Scholar
Chiurco, AA. Multiple exostoses of bone with fatal spinal cord compression, report of a case and brief review of the literature. Neurology, 1970, 20: 275278.Google Scholar
Kitsoulis, P, Vassiliki, G, Kallopi, S, et al. Osteochondromas: review of the clinical radiological and pathological features. In Vivo, 2008, 22: 633646.Google Scholar
Jaffe, HL, Lichtensteen, L. Chondromyxoid fibroma of bone: a distinctive benign tumor likely mistaken for chondrosarcoma. Arch Pathol, 1948, 45: 541551.Google Scholar
Rahimi, A, Beabout, JW, Ivins, JC, et al. Chondromyxoid fibroma: a clinicopathologic study of 76 cases. Cancer, 1972, 30: 726736.Google Scholar
Huvos, AG. Bone Tumors: Diagnosis Treatment and Prognosis. Philadelphia, W.B. Saunders, 1991, pp. 319330.Google Scholar
Batsakis, JG, Raymond, AK. Pathology consultation: chondromyxoid fibroma. Ann Otol Rhinol Laryngol, 1989, 98: 571572.Google Scholar
Hammad, H, Hammond, HL, Kurago, ZB. Chondromyxoid fibroma of the jaws: case report and review of the literature. Oral Surg Oral Med Oral Radiol Oral Pathol and Endod, 1998, 85: 293300.Google Scholar
Khatana, S, Singh, V, Gupta, A. Unilocular anterior mandibular swelling. Int J Pediatr Otolargol, 2013, 77: 964971.Google Scholar
Oh, N, Korsandi, AS, Scheri, S, et al. Chondromyxoid fibroma of the mastoid portion of the temporal bone. MRI and PET/CT findings and their correlation with histology. Ear Nose Throat J, 2013, 92: 201203.Google Scholar
Gupta, S, Heman-Ackah, SE, Harris, JA, et al. Chondromyxoid fibroma of the temporal bone. Oto Neuro Fol, 2012, 33: e71e72.Google Scholar
Sharma, M, Velho, V, Ginayake, R, et al. Chondromyxoid fibroma of the temporal bone: a rare entity. Neurosci, 2012, 7: 211214.Google Scholar
Aegerter, E, Kirkpatrick, JA. Orthopedic Diseases. Physiology Radiology. Phildaelphia, W.B. Saunders, 1963, pp. 580587.Google Scholar
Fotiadis, E, Akritopoulos, P, Samoladas, E. Chondromyxoid fibroma. A rare tumor with an unusual location. Arch Orthop Trauma Surg, 2008, 128: 371375.Google Scholar
Safar, A, Nelson, M, Neff, JR, et al. Recurrent anomalies of 6[inv(6)(p25q13] in chondromyxoid fibroma. Human Pathol, 2000, 31: 306311.Google Scholar
Justin, J, Akpalo, H, Gambarotti, M, et al. Phenotypic diversity in chondromyxoid fibroma reveals differentiation pattern of tumor mimicking fetal cartilage canals development. Am J Pathol, 2010, 177: 10721078.Google Scholar
Durr, HR, Liehemann, , Nerlich, A, et al. Chondromyxoid fibroma of bone. Arch Orthop Trauma Surg, 2000, 120: 4247.Google Scholar
Jaffe, H, Lichtenstein, L. Benign chondroblastoma of bone. A reinterpretation of the so called calcifying or chondromatous giant cell tumor. Am J Pathol, 1942, 18: 969991.Google Scholar
Springfield, DS, Capanna, R, Gherlinzoni, F, et al. Chondroblastoma. A review of seventy cases. J Bone Joint Surg Am, 1985, 67: 748755.Google Scholar
Sailhan, F, Chotel, F, Parot, R. Chondroblastoma of bone in a pediatric population. J Bone Joint Surg Am, 2009, 91: 21592168.Google Scholar
Kurt, AM, Unni, KK, Sim, FH, et al. Chondroblastoma of bone. Hum Pathol, 1989, 20: 965976.Google Scholar
Bertoni, F, Unni, KK, Beabout, W, et al. Chondroblastoma of the skull and facial bones. Am J Clin Pathol, 1987, 88: 19.Google Scholar
Nwoku, AL, Koch, H. Temporomandibular joint. A rare localization for bone tumors. J Maxillofac Surg, 1974, 2: 113.Google Scholar
Kondoh, T, Hamada, Y, Kamei, K, et al. Chondroblastoma of the mandibular condyle. Report of a case. J Oral Maxillofac Surg, 2002, 60: 198203.Google Scholar
Turwtto, RE, Kurt, AM, Sim, FH, et al. Chondroblastoma. Hum Pathol, 1993, 24: 944949.Google Scholar
Edel, G, Ueda, Y, Nakanishi, J, et al. Chondroblastoma of bone. A clinical, radiological, light and immunohistochemical study. Virhows Arch, 1992, 421: 355366.Google Scholar
Wolff, DA, Stevenson, S, Goldberg, VM. S-100 protein immunostaining identifies cells expressing a chondrocytic phenotype during articular cartilage repair. J Orthop Res, 1992, 10: 4957.Google Scholar
Nakamura, Y, Becker, LE, Marks, A. S-100 protein in tumors of cartilage and bone. Cancer, 1983, 52: 18201825.Google Scholar
Kyriakos, M, Land, VJ, Penning, HL, et al. Metastatic chondroblastoma. Report of a fatal case with a review of the literature on atypical, aggressive, and malignant chondroblastoma. Cancer, 1985, 55: 17701789.Google Scholar
Hohlweg, B, Metzger, MC, Bohin, J, et al. Advanced image findings and complete-assisted surgery of suspected synovial chondromatosis in the temporomandibular joint. J Magnetu Resonance Imaging, 2008, 28(5): 12511257.Google Scholar
Van Arx, DP, Simpson, MJ, Batman, P. Synovial chondromatosis of the temporomandibular joint. Br. J Oral Maxillofac Surg, 1988, 26: 297305.Google Scholar
Koyama, J, Ito, J, Hayashi, T, et al. Synovial chondromatosis in the temporomandibular joint complicated by displacement and calcification of the articular disk: report of two cases. AJNR Am J Neuroradiol, 2001, 22: 12031206.Google Scholar
Chen, A, Wong, LY, Sheu, CY. Distinguishing multiple rice body formation in chronic subacromial-subdeltoid bursitis from synovial chondromatosis. Skeletal Radiol, 2002, 31: 119121.Google Scholar
Kim, HG, Park, KH, Huh, JK. Magnetic resonance imaging characteristics of synovial chondromatosis of the temporomandibular joint. J Orofac Pain, 2002, 16: 148153.Google Scholar
Voge, TJ, Abolmaalin, N, Maurer, J. Neoplasms of the temporomandibular joint (TMJ). Diagnosis, differential diagnosis and intervention. Radiology, 2001, 41: 760771.Google Scholar
Guarda-Nardini, L, et al. Synovial chondromatosis of the temporomandibular joint: a case description with systemic review of the literature. Int J Oral Maxillofac Surg, 2010, 39: 745755Google Scholar
Fujita, S, Yoshida, H, Tojyo, I, et al. Synovial chondromatosis of the temporomandibular joint. Clinical and immunohistopathological considerations. Br J Oral Maxillofac Surg, 2004, 42: 259260.Google Scholar
Hohlweg-Majert, B, Schon, R, Schmelzeisen, R, et al. A navigational maxillofacial surgery using virtual models. World J Surg, 2005, 29: 15301538.Google Scholar
Chou, P, Mehta, S, Gonzalez-Crussi, F. Chondrosarcoma of the head in children. Pediatr Pathol, 1990, 10: 945958.Google Scholar
Pones, HAR, Pontes, FSC, deAbreu, MC, et al. Clinicopathological analysis of head and neck chondrosarcoma: three case reports and literature review. Int J Oral Maxillofac Surg, 2012, 41: 203210.Google Scholar
Prado Ornellas, F, Nishimoto, IN, deCruz Perez, DE. Head and neck chondrosarcoma: analysis of 16 cases. Br J Oral Maxillofac Surg, 2009, 47: 555557.Google Scholar
Huvos, AG, Marcove, RC. Chondrosarcoma in the young. A clinicopathologic analysis of patients younger than 25 years of age. Am J Surg Pathol, 1987, 11: 930942.Google Scholar
Liu, J, Hudkins, PG, Swee, RG et al. Bone sarcomas associated with Ollier’s disease. Cancer, 1987, 59: 13761385.Google Scholar
Garrington, GE, Scofield, HJ, Cornyn, J, et al. Osteosarcoma of the jaws: analysis of 56 cases. Cancer, 1967, 20: 377391.Google Scholar
Gupta, S. Mesenchymal chondrosarcoma of maxilla: a rare case report. Med Oral Pathol Oral Cir Bucal, 2011, 16: e493e496.Google Scholar
Turner, S, Kebudi, R, Peksayor, G, et al. Congenital mesenchymal chondrosarcoma of the orbit. Case report and review of the literature. Ophthalmology, 2004, 111: 10161022.Google Scholar
Gonzales-Lois, C, Cuevas, C, Abdullah, O, et al. Intracranial extra skeletal myxoid chondrosarcoma: case report and review of the literature. Acta Neurochir, 2002, 144: 735740.Google Scholar
Devaney, KS, Ferlito, A, Silver, CL.Cartilaginous tumors of the larynx. Otol Phinol Laryngol, 1995, 104: 251255.Google Scholar
Slootweg, PJ, Clear-cell chondrosarcoma of the maxilla. Report of a case. Oral Surg, Oral Med, Oral Pathol, 1980, 50: 233237.Google Scholar
Pang, ZG, He, XZ, Wu, LY, et al. Clinicopathologic and immunohistochemical study of 23 cases of mesenchymal chondrosarcoma. Zhonghu Bing Xue Za Zhi, 2011, 40: 368372.Google Scholar
Meis-Kundblom, JM, Bergh, P, Gunterberg, B, et al. Extra skeletal myxoid chondrosarcoma. A reappraisal of its morphologic spectrum and prognostic factors based on 17 cases. Am J Surg Pathol, 1999, 23: 636650.Google Scholar
Antonseon, CR, Argani, P, Erlandson, RA, et al. Skeletal and extra skeletal myxoid chondrosarcoma: a comparative clinicopathologic ultra structural and molecular study. Cancer, 1998, 83: 15041521.Google Scholar
Tarkkauren, M, Wiklend, T, Virolainen, M, et al. Differentiated chondrosarcoma with t(9;22) (q34; q11-12). Genes Chromosomes. Cancer, 1994, 9: 136140.Google Scholar
Stehman, G, Anderson, H, Mandahl, N, et al. Translocation of t(9;22) (q22;q12) is a primary cytogenetic abnormality in extraskeletal myxoid chondrosarcoma. Int J. Cancer, 1995, 62: 398402.Google Scholar
Szuhai, K, Cleton-Hansen, A-M, Pancras, GW, et al. Molecular pathology and its diagnostic use in bone tumors. Cancer Genetics, 2012, 205: 193204.Google Scholar
Gadwal, SR, Fanburg-Smith, JC, Gannon, FH, et al. Primary chondrosarcoma of the head and neck in pediatric patients. A clinicopathologic study of 14 cases with review of the literature. Cancer, 2000, 88: 21812188.Google Scholar
Angiero, F, Vinci, R, Sidoni, A, et al. Mesenchymal chondrosarcoma of the left coronoid process. Report of a unique case with clinical histopathologic and immunohistochemical findings, and a review of the literature. Quintessence Int, 2007, 38: 349355.Google Scholar
Dahlin, DC, MacCarty, CS. Chordoma: a study of 59 cases. Cancer, 1952, 5: 11701178.Google Scholar
Raffel, C, Wright, DC, Gutin, PH, Wilson, CB. Cranial chordomas: clinical presentation and results of operative and radiation therapy in twenty-six patients. Neurosurgery, 1985, 17: 703710.Google Scholar
Borba, LA, Al-Mefty, O, Mrak, RE, Suen, J. Cranial chordoma in children and adolescents. J Neurosurg, 1996, 84: 584591.Google Scholar
Omerod, R. A case of chordoma presenting in the nasopharynx. J Laryngol Otol, 1960, 74: 245254.Google Scholar
Whelan, MA, Reede, DL, Meisler, W, Bergeron, RT. CT of the base of the skull. Radiol Clin North Am, 1984, 22: 177217.Google Scholar
Erdem, E, Engardo, C, Antuaco, MD. Comprehensive review of intracranial chordoma. Radiographics, 2003, 23: 9951009.Google Scholar
Suba, Z, Hauser, P, Garami, M, Martonffy, K, et al. Skull base chordoma mimicking a preauricular neoplasm in a child: clinicopathological features and biological behaviour. J Craniomaxillofac Surg, 2007, 35: 3538.Google Scholar
Pamir, MN, Ozduman, K. Analysis of radiological features relative to histopathology in 42 skull-base chordomas and chondrosarcomas. Eru J Radiol, 2006, 58(3): 461470.Google Scholar
Chugh, R. Chordoma. The non-sarcoma primary bone tumor. Oncologist, 2007, 12: 13441350.Google Scholar
Oakley, GJ. Brachyury, Sox-9 and podoplanin, new markers in skull base chordomas vs chondrosarcoma differential. A tissue array-based comparative analysis. Mod Path, 2008, 21: 14611469.Google Scholar
Gosau, M, Draenert, FG, Winter, WA. Fibrosarcoma of the childhood mandible. Head and Face Medicine, 2008, 4: 2123.Google Scholar
Pereira, CM, Jorge, J, Hipolito, LP, et al. Primary intraosseous fibrosarcoma of the jaw. Int J Oral Maxillofac Surg, 2005, 34: 579581.Google Scholar
Kahn, LP, Vigorita, V. Fibrosarcoma of bone. In Fletcher, CDM, Unni, KK, Mertens, F, (eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon France, IARC Press, 2002, pp. 289290.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W., et al. A novel ETV-6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle tumors. Am J Surg Pathol, 2000, 24:937946.Google Scholar
Fletcher, CDM, Unni, KK, Mertens, I. World Health Organization Classification of Tumors, Pathology and Genetics of Soft Tissue and Bone: So-called Fibrohistocytic Tumors. Lyon, IARC Press, 2002, 120125.Google Scholar
Wanebo, HJ, Koness, RJ, MacFarlane, JK. Head and neck sarcoma: report of the head and neck sarcoma registry. Society of head & Neck Surgeons Committee on Research. Head and Neck, 1992, 14: 17.Google Scholar
Gorsky, M, Epstein, JB. Head and neck and inter-oral soft tissue sarcomas. Oral Oncol, 1998, 34: 292296.Google Scholar
Nagler, RM, Malkin, L, Ben-Arieh, Y, et al. Sarcoma of the maxillofacial region, follow-up of 25 cases. Anticancer Res, 2000, 20: 37353742.Google Scholar
Lee, JS, Fitz Gibbon, EJ, Chen, YR. Clinical guidelines for management of craniofacial fibrous dysplasia. Orphanet J Rare Dis, 2012, doi: 10.1186/1750-1172-7-51-52.Google Scholar
Tsai, EC, Santorreneos, S, Rutka, JT. Tumors of the skull bone in children: review of tumor types and management strategies. Neuro Surg Focus, 2002, 12: e1.Google Scholar
Riminucci, M, Liu, B, Corsi, A., et al. The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gsa gene: site-specific patterns and current histological hallmarks. J Pathol, 1999, 187: 249258.Google Scholar
Parekh, SG, Donthineni-Rao, R, Ricchetti, E., et al. Fibrous dysplasia. J Am Acad Orthop Surg, 2004, 12: 305313.Google Scholar
Valentini, V, Cassoni, A, Marianetti, TM, et al. Craniomaxillofacial fibrous dysplasia: conservative treatment or radical surgery? A retrospective study of 68 patients. Plastic and Reconstructive Surg, 2009, 123: 653660.Google Scholar
Michael, CB, Lee, AG, Patrinely, JR. Visual loss associated with fibrous dysplasia of the anterior skull base. Case report and review of the literature. J Neurosurg, 2000, 92: 350354.Google Scholar
Dian, E, Morris, DE, Lo, LJ, et al. Cyst degeneration in craniofacial fibrous dysplasia. Clinical presentation and management. J Neurosurg, 2007, 107: 504508.Google Scholar
Kelly, MH, Brillante, B, Collins, MT. Pain in fibrous dysplasia of bone: age-related changes and anatomical distribution of skeletal lesions. Osteoporos Int, 2008, 19: 5763.Google Scholar
Sciarretta, V, Pasquini, E, Frank, G., et al. Endoscopic treatment of benign tumors of the nose and paranasal sinuses. Report of 33 cases. Am J Rhinol, 2006, 20: 6471.Google Scholar
Long, JJ, Jung, HH, Lee, HM, et al. Monostatic fibrous dysplasia of temporal bone. Report of two cases and review of its characteristics. Acta Otolaryngol, 2005, 125: 11261129.Google Scholar
Chung, KF, Alaghband-Zadeh, J, Guz, A. Acromegaly and hyperprolactinemia in McCune-Albright syndrome. Evidence of hypothalamic dysfunction. Am J Dis Chil, 1983, 137: 134136.Google Scholar
Aarkkog, D, Tveteraas, E. McCune-Albright’s syndrome following adrenalectomy for Cushing’s syndrome in infancy. J Pediatr, 1968, 73: 8996.Google Scholar
Aoki, T, Kouho, H, Hisaoka, M., et al. Intramuscular myxoma with fibrous dysplasia: a report of two cases with a review of the literature. Path Int, 1995, 45: 65171.Google Scholar
Shi, RR, Zue-Fen, L, Zang, R, et al. GNAS mutational analysis in differentiating fibrous dysplasia and ossifying fibroma of the jaw. Modern Pathology, 2013, 26: 10231031.Google Scholar
Marx, KE, Stern, D. Oral and Maxillofacial Pathology: A Rational for Diagnosis and Treatment, Ed 2, Chicago, Quintessence Publishing Company, 2010, p. 791.Google Scholar
Ruggieri, P, Sim, FH, Band, JR, et al. Malignancies in fibrous dysplasia. Cancer, 1994, 73: 14111424.Google Scholar
Eversole, LR, Leider, AS, Nelson, K. Ossifying fibroma: a clinicopathologic study of sixty-four cases. Oral Surg, Oral Med, Oral Pathol, Oral Radio, Endod, 1985, 60: 505511.Google Scholar
Mintz, S, Velez, I. Central ossifying fibroma: an analysis of 20 cases and review of the literature. Quintessence Int, 2007, 38: 222227.Google Scholar
Waldron, CA. Fibro-osseous lesions of the jaws. J Oral Maxillofac Surg, 1993, 51: 828835.Google Scholar
Traiantafillidou, K, Venetis, G, Karakinaris, G., et al. Ossifying fibroma of the jaws: a clinical study of 14 cases and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiology Endod, 2012, 114: 193199.Google Scholar
Slootweg, PJ, El-Mofty, SK. Ossifying fibroma. In Barnes, L Everson, JW, Reichart, P, Sidransky, D (eds) Pathology and Genetics Head and Neck Tumors. Lyon, France, IARC Press, 2005, pp. 319320.Google Scholar
Su, L, Weathers, DR, Waldron, CA. Distinguishing features of focal cemento-osseous dysplasia and cemento-ossifying fibromas. II A clinical and radiographic spectrum of 316 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1997, 84: 540549.Google Scholar
El-Mofty, S. Psammomatoid and trabecular juvenile ossifying fibroma of the craniofacial skeleton. Two distinct clinicopathologic entities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93: 296304.Google Scholar
Slootweg, PJ, Muller, H. Juvenile ossifying fibroma. Report of four cases. J Craniomaxillofac Surg, 1990, 18: 125129.Google Scholar
Slootweb, PJ, Panders, AK, Loopmans, R., et al. Juvenile ossifying fibroma. An analysis of 33 cases with emphasis on histopathological aspects. J Oral Pathol Med, 1994, 23: 385388.Google Scholar
Johnson, LC, Youseti, TN, Heffiner, DK et al. Juvenile active ossifying fibroma; its nature dynamics and origin. Acta Otolaryngol Sluppl 1991, 448: 140.Google Scholar
Thankappan, S, Nair, S, Thomas, KP et al. Psammomatoid and trabecular varients of juvenile ossifying fibroma-two case reports. Indian J Radiol Imaging, 2009, 19: 116119.Google Scholar
Kaplan, I, Manor, R, Yahalom, R, et al. Giant cell granuloma associated with central ossifying fibromas of the jaws: a clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103: e35e41.Google Scholar
Chang, CC, Hung, HY, Chang, JX. Central ossifying fibroma: a clinicopathologic study of 28 caes. J Formos Med Assoc, 2008, 107: 288294.Google Scholar
Guriel, M, Uckan, N, Guler, N, et al. Surgical and reconstructive treatment of a large ossifying fibromas of the mandible. A retrognathic patient. J Oral Maxillofac Surg, 2001, 59: 10971100.Google Scholar
Gogl, H. Das Psammo-osteoid-fibroma der nas und ihreso neben humohlen. Monatsschr Ohrenheilk Lar Rhin, 1949, 83: 110.Google Scholar
Sawyer, JR, Tryka, AF, Bell, JM, et al. Non random chromosome break-points at Xq26 and 2q33 characteristic cemento-ossifying fibromas of the orbit. Cancer, 1995, 76: 18531859.Google Scholar
Dal Cin, P, Sciot, R, Fossion, E, et al. Chromosomal abnormalities in cemento ossifying fibroma. Cancer Genet Cytogenet, 1993, 71: 170172.Google Scholar
Barnes, L, Everson, JW, Reichart, et al. Pathology and Genetics. Head and Neck Tumors. WHO Classification of Tumors. Lyon, IARC Press, 2005.Google Scholar
Stauropoulos, J, Katz, J. Central giant cell granuloma; a systematic review of the radiographic characteristics with addition of 20 new cases. Dentomaxillofac Radiol, 2002, 31: 213217.Google Scholar
Kruse-Losler, B, Raihanatou, D, Gaetner, C, et al. Central giant cell granuloma of the jaws: a clinical, radiologic and histopathologic study of 26 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: 346354.Google Scholar
Liu, B, Yu, SF, Li, TJ. Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts. J Oral Pathol Med, 2003, 32: 367375.Google Scholar
Huvos, AG. Bone Tumors. Diagnosis, Treatment and Prognosis, Ed 2, Philadelphia, WB Saunders 1991.Google Scholar
Ardekian, L, Manor, R, Peled, M, et al. Bilateral central giant cell granulomas in a patient with neurofibromatosis. Report of a case and review of the literature. J Oral Maxillofac Surg, 1999, 57: 869872.Google Scholar
Catani, F, Pardi, E, Borsari, S., et al. Molecular pathogenesis of primary hyperthyroidism. J Endocraniol Invest, 2011, 34: 3539.Google Scholar
Itonaga, I, Hussein, I, Kudo, O, et al. Cellular mechanisms of osteoclast formation and lacunar resorption in giant cell granuloma of the jaw. J Oral Pathol Med, 2003, 32: 224231.Google Scholar
Amaral, FR, Diniz, GM, Bernardes, VF. WWOX expression in giant cell lesions of the jaws. Oral Surg, Oral Med, Oral Pathol, Oral Radio, 2013, 116: 210213.Google Scholar
Sezer, B, Koyuneu, B, Gomel, M, et al. Interlesional corticosteroid inject for central giant cell granuloma. A case report and review of the literature. Turk J Pediat, 2005, 47: 7581.Google Scholar
O’Regan, M, Gibb, DH, Odell, W. Rapid growth of giant ell granuloma in pregnancy treated with calcitonin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001, 92: 532538.Google Scholar
Kaban, LB, Troulis, MJ, Ebb, D, et al. Antiangiogenic therapy with interferon alpha for giant cell lesions of the jaws. J Oral Maxillofac Surg, 2002, 60: 11031113.Google Scholar
Wieneke, JA, Gannon, KH, Heffner, DK, et al. Giant cell tumor of the larynx. A clinicopathologic study of eight cases and a review of the literature. Neurosurgery, 2001, 48: 424429.Google Scholar
Ayclair, PL, Cucnin, P, Kratochuil, FJ, et al. A clinical and histomorphologic comparison of the central giant cell granuloma and the giant cell tumor. Oral Surg Oral Med Oral Pathol, 1988, 66: 197208.Google Scholar
Gingell, JC, Levy, BA, Beckerman, T, et al. Aneurysmal bone cyst. J Oral Maxillofac Surg, 1984, 42: 527534.Google Scholar
Martinez, V, Sissions, HA. Aneurysmal bone cyst. A review of 123 cases including primary lesions and those secondary to other bone pathology. Cancer, 1988, 61: 22912304.Google Scholar
Lee, HL, Cho, KS, Choi, KU. Aggressive aneurysmal bone cyst of the maxilla confused with telangiectic osteosarcoma. Auris Nasus Larynx, 2012, 39: 337340.Google Scholar
Panoutakopoulous, G, Pandis, N, Kyrlazoglou, I, et al. Recurrent t(16;17) (q22; p13) in aneurysmal bone cysts. Genes Chromosomes. Cancer, 1999, 26: 265266.Google Scholar
Ye Pringle, LM, Lau, AW, et al. TRE 17/USP6 oncogene translocation in aneurysmal bone cyst indices matrix metalloproteinase production via actiuation of N7-Kappa B. Oncogene, 2010, 29: 36193629.Google Scholar
Vergel DeDios, AM, Bond, JR, Shives, TC, et al. Aneurysmal bone cyst. A clinicopathologic study of 238 cases. Cancer, 1992, 69: 29212931.Google Scholar
Ruiter, DJ, van Rijssel, JG, van der Velde, EA. Aneurysmal bone cysts. A clinicopathological study of 105 cases. Cancer, 1977, 39: 22312235.Google Scholar
Briadley, GW, Greene, JF Jr, Frankel, LJ. Case reports: malignant transformation of aneurysmal bone cysts. Clin Orthop Relat Res, 2005, 438: 282287.Google Scholar
Kryiakos, M, Hardy, D. Malignant transformation of aneurysmal bone cyst with analysis of the literature. Cancer, 1991, 68: 17701780.Google Scholar
Goshen, O, Aviel-Ronen, S, Dori, S, Talmi, YP. Brown tumour of hyperparathyroidism in the mandible associated with atypical parathyroid adenoma. J Laryngol Otol, 2000, 114: 302304.Google Scholar
Guney, E, Yigibasi, OG, Bayram, F, et al. Brown tumor of the maxilla associated with primary hyperparathyroidism. Auris Nasus Larynx, 2001, 28: 369372.Google Scholar
Watanabe, T, Tsukamoto, F, Shimizu, T, et al. Familial isolated hyperparathyroidism caused by single adenoma: a distinct entity different from multiple endocrine neoplasia. Endocr J, 1998, 45: 637646.Google Scholar
Yamazaki, H, Ota, Y, Aoki, T, et al. Brown tumor of the maxilla and mandible: progressive mandibular brown tumor after removal of parathyroid adenoma. J Oral Maxillofac Surg, 2003, 61: 719722.Google Scholar
Scott, SN, Graham, SM, Sato, Y, Robinson, RA. Brown tumour of the palate in a patient with primary hyperparathyroidism. Ann Otol Rhinol Laryngol, 1999, 108: 9194.Google Scholar
Jebasingh, F, Jubbin, J, Shah, A, et al. Bilateral maxillary brown tumours as a first presentation of primary hyperparathyroidism. Oral Maxillofac Surg, 2008, 12: 97100.Google Scholar
Jones, WA. Familial multilocular cystic disease of the jaws. Am J Cancer, 1933, 17: 946.Google Scholar
Ueki, Y, Tiziani, V, Santanna, C, Fukai, N, et al. Mutations in the gene encoding c-Ab1-binding protein SH3BP2 cause Cherubism. Nat Genet, 2001, 28: 125126.Google Scholar
De Lange, J, Van den Akker, HP. Clinical and radiological features of central giant-cell lesions of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 99: 464470.Google Scholar
Kozakiewicz, M, Percynska-Partyka, W, Kobos, J. Cherubism – clinical picture and treatment. Oral Dis, 2001, 7: 123130.Google Scholar
Krompecher, Z. Zur histogenese and morpjologic den adamantinome and sonstiger kiefergeschwulste. Beitr Pathol Anat, 1918, 64: 165197.Google Scholar
Barrett, AW, Morgan, M, Ramsay, AD, Farthing, PM, Newman, L, Speight, PM. A clinicopathological and immunohistochemical analysis of melanotic neuroectodermal tumor of infancy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93: 688698.Google Scholar
Siddiqui, TH, Amin, MR, Bashar, MA, Ahmed, Z, et al. Melanotic neuroectodermal tumour of infancy. Mymensingh Med J, 2011, 20: 312315.Google Scholar
Agarwal, P, Saxena, S, Kumar, , GLupta, R. Melanotic neuroectodermal tumor of infancy: Presentation of a case affecting the maxilla. J Oral Maxillofac Pathol, 2010, 14: 2932.Google Scholar
Borello, ED, Gorlin, RJ. Melanotic neuroectodermal tumor of infancy – a neoplasm of neural crese origin. Report of a case associated with high urinary excretion of vanilmandelic acid. Cancer, 1966, 12: 196206.Google Scholar
Khoddami, M, Squire, J, Zielenska, M, Thorner, P. Melanotic neuroectodermal tumor of infancy: a molecular genetic study. Pediatr Dev Pathol, 1998, 1: 295299.Google Scholar
Kaya, S, Unal, OF, Sarac, S, Gedikoglu, G. Melanotic neuroectodermal tumor of infancy: report of two cases and review of literature. Int J Pediatr Otorhinolaryngol, 2000, 52: 169–72.Google Scholar
Dehner, LP, Sibley, RK, Sauk, JJ. Malignant neuroectodermal tumor of infancy. A clinical, pathologic, ultrastructural and tissue culture study. Cancer, 1979, 43: 389410.Google Scholar
deAlva, E, Pardo, J. Ewing’s tumor. Tumor biology and clinical application. Int J Surg Pathol, 2001, 9: 717.Google Scholar
Ries, LAG, Smith, MA, Garney, JG, et al. Cancer Incidence and Survival among Children and Adolescents. United States SEER Program. 1975–1995, NIH Pub. No 99-4649. Bethesda, National Cancer Institute SEER Program, 1999.Google Scholar
Linnoila, RI, Trokos, M, Triche, TJ, et al. Evidence for neural origin and PAS positive variants of the malignant small cell tumor of thoraco-pulmonary region. (Askin tumor). Am J Surg Pathol, 1985, 10: 124133.Google Scholar
Carvajal, R, Meyers, P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol Oncol Clin North Am, 2005, 19: 501525.Google Scholar
Windfuhr, JP. Primitive neuroectodermal tumor of the head and neck: incidence, diagnosis and management. Ann Otol Rhinol Laryngol, 2004, 113: 533543.Google Scholar
Dick, EA, McHugh, K, Kimber, C, et al. Imaging of non-central nervous system primitive neuroectodermal tumors. Diagnostic features and correlation with outcome. Clin Radiol, 2001, 56: 205215.Google Scholar
Ewing, J. Diffuse endothelioma of bone. Proc NY Pathol Soc, 1921, 21: 1724.Google Scholar
Folpe, AL, Goldblum, JR, Rubin, BP, et al. Morphologic and immunophenotype diversity in Ewing family tumors. A study of 66 genetically confirmed cases. Am J Surg Pathol, 2005, 29: 10251033.Google Scholar
Cangir, TJ, Vietti, EA, Gehan, G, et al. Ewing’s sarcoma metastatic at diagnosis. Cancer, 1990, 55: 887893.Google Scholar
Vaccani, JP, Forte, V, deJong, AL, et al. Ewing’s sarcoma of the head and neck in children. Int J Pediatric Otorhinolaryngol, 1999, 48: 209216.Google Scholar
Van Doominck, JA, Schaub, B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma. A report from Children’s Oncology Group. J Clin Oncol, 2010, 28: 19891994.Google Scholar
deAlva, E, Pardo, J. Ewing’s tumor. Tumor biology and clinical application. Int J Surg Pathol, 2001, 9: 717.Google Scholar
Ries, LAG, Smith, MA, Garney, JG, et al. Cancer Incidence and Survival among Children and Adolescents. United States SEER Program. 1975–1995, NIH Pub. No 99-4649. Bethesda, National Cancer Institute SEER Program, 1999.Google Scholar
Linnoila, RI, Trokos, M, Triche, TJ, et al. Evidence for neural origin and PAS positive variants of the malignant small cell tumor of thoraco-pulmonary region. (Askin tumor). Am J Surg Pathol, 1985, 10: 124133.Google Scholar
Carvajal, R, Meyers, P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol Oncol Clin North Am, 2005, 19: 501525.Google Scholar
Windfuhr, JP. Primitive neuroectodermal tumor of the head and neck: incidence, diagnosis and management. Ann Otol Rhinol Laryngol, 2004, 113: 533543.Google Scholar
Dick, EA, McHugh, K, Kimber, C, et al. Imaging of non-central nervous system primitive neuroectodermal tumors. Diagnostic features and correlation with outcome. Clin Radiol, 2001, 56: 205215.Google Scholar
Ewing, J. Diffuse endothelioma of bone. Proc NY Pathol Soc, 1921, 21: 1724.Google Scholar
Folpe, AL, Goldblum, JR, Rubin, BP, et al. Morphologic and immunophenotype diversity in Ewing family tumors. A study of 66 genetically confirmed cases. Am J Surg Pathol, 2005, 29: 10251033.Google Scholar
Cangir, TJ, Vietti, EA, Gehan, G, et al. Ewing’s sarcoma metastatic at diagnosis. Cancer, 1990, 55: 887893.Google Scholar
Vaccani, JP, Forte, V, deJong, AL, et al. Ewing’s sarcoma of the head and neck in children. Int J Pediatric Otorhinolaryngol, 1999, 48: 209216.Google Scholar
Van Doominck, JA, Schaub, B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma. A report from Children’s Oncology Group. J Clin Oncol, 2010, 28: 19891994.Google Scholar
Matsuzaka, K, Shimono, M, Uchiyama, HN, et al. Lesions related to the formation of bone, cartilage, or cementum arising in the oral area: a statistical study and review of the literature. Bull Tokyo Dent Coll, 2002, 43: 173180.Google Scholar
Larrea-Oyarbide, N, Valmaseda-Castellon, , Berini-Ayte’s, L. Osteomas of the craniofacial region: review of 106 cases. J Oral Pathol Med, 2008, 37: 3842.Google Scholar
Samy, LL, Mostafa, H. Osteomata of the nose and paranasal sinuses with a report of 21 cases. J Laryngol Otol, 1971, 85: 449469.Google Scholar
Smith, ME, Calcaterra, TC. Frontal sinus osteoma. Ann Otol Rhinal laryngeal, 1989, 98: 896900.Google Scholar
Nielson, GP, Rosenberg, E. Update on bone forming tumors of the head and neck. Head Neck Pathol, 2007, 1: 8793.Google Scholar
Halawi, AM, Maley, JE, Robinson, RA, et al. Craniofacial osteoma: clinical presentation and patterns of growth. Am J Rhinol Allergy, 2013, 27: 128133.Google Scholar
Earwaker, J. Paranasal sinus osteomas. A review of 46 cases. Skeletal Radiol, 1993, 22: 417423.Google Scholar
Kaplan, I, Nicolaou, Z, Hateul, D, et al. Solitary central osteoma of the jaws. A diagnostic dilemma. Oral Surg Oral Med Oral Pathol Oral Radiol Endodo, 2008, 106: e22e29.Google Scholar
Derniciaro, E. Gardner’s syndrome. Dermatol Clin, 1995, 13: 5156.Google Scholar
McHugh, JB, Mukherji, SK, Lucas, DR. Sino-orbital osteoma: a clinicopathological study of 45 surgically treated cases with emphasis on tumors with osteoblastic-like features. Arch Pathol Lab Med, 2009, 133: 15871593.Google Scholar
BoKhari, K, Hameed, My, Ajmal, M, et al. Benign osteoblastoma involving maxilla: a case report and review of the literature. Case Reports in Dentistry, 2012, doi 10.1155/2012/351241.Google Scholar
Alvares Capelozza, AL, Giao Dezotti, MS, Casati Alvares, L, et al. Osteoblastoma of the mandible: systemic review of the literature and report of a case. Dentomaxillofac Radiol, 2005, 34: 18.Google Scholar
Loizaga, JM, Calvo, M, Lopez Barea, F, et al. Osteoblastoma and osteoid osteoma. Clinical and morphological features of 162 cases. Pathol Red. Pract, 1993, 189: 3341.Google Scholar
Jones, AC, Prihoda, TJ, Kacher, JE, et al. Osteoblastoma of the maxilla and mandible: report of 24 cases, review of the literature and discussion of its relationship to osteoid osteoma of the jaws. Oral Surg, Oral Med, Oral Pathol, Oral Radiol Endod, 2006, 102: 639650.Google Scholar
Lucas, DR, Unni, KK, McLeod, RA, et al. Osteoblastoma: Clinicopathologic study of 306 cases. Human Pathol, 1994, 25: 117134.Google Scholar
Berry, M, Mankin, H, Gebhardt, M, et al. Osteoblastoma: a 30 year study of 99 cases. J Surg Oncology, 2008, 98: 179183.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathology, 2007, 1: 8793.Google Scholar
Della Rocca, C, Huvos, AG. Osteoblasoma. Varied histological presentations with a benign clinical course. An analysis of 55 cases. Am J Surg Pathol, 1996, 20: 841850.Google Scholar
Kiyohara, H, Sawatsubashi, M, Matsumoto, N., et al. Benign Osteoblastoma of the ethmoid sinus. Auris Nasus Larynx, 2013, 40: 338341.Google Scholar
Ahmed, MS, Nwoky, AL. Benign Osteoblastoma of the mandibular ramus. Review of the literature and report of a case. J Oral Maxillofac Surg, 2000, 58: 13101317.Google Scholar
Kulkarni, MM, Shah, AK, Ahire, S. Aggressive Osteoblastoma of the mandible: a case report. Int J Contemp Dent, 2011, 2: 135138.Google Scholar
Manjunatha, BS, Sunit, P, Amit, M, et al. Osteoblastoma of the jaws: a report of a case and review of the literature. Clinics and Practice, 2011, 118: 256258.Google Scholar
Unni, KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases, Ed 5, Philadelphia, Lippincott-Raven, 1996.Google Scholar
Ohkubo, T, Hernendez, JC, Goya, K, et al. “Aggressive” osteoblastoma of the maxilla. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodo, 1989, 68: 6973.Google Scholar
Dal Cin, P, Sciot, R, Samson, J, et al. Osteoid osteoma and osteoblastoma with clonal chromosome changes. Br J Cancer, 1994, 78: 344348.Google Scholar
Mascarello, JT, Krous, HF, Carpenter, DM. Unbalanced translocation resecting in the loss of the chromosome 17 short arm in osteoblastoma. Cancer Genet Cytogenet, 1993, 69: 6567.Google Scholar
Bertoni, F, Unni, KK, Lucas, DR, et al. Osteoblasoma with cartilagninous matrix an unusual morphologic presentation in 18 cases. Am J Surg Pathol, 1993, 17: 6974.Google Scholar
Ahmed, MS, Nwoky, AL. Benign osteoblastoma of the mandibular ramus. Review of the literature and report of a case. J Oral Maxillofac Surg, 2000, 58: 13101317.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 8793.Google Scholar
Zwimpfer, JJ, Tucker, WS, Faulkner, JF. Osteoid osteoma of the cervical spine. Case reports and review of the literature. Can J Surg, 1982, 25: 637641.Google Scholar
Pettine, KA, Klassen, RA. Osteoid-osteoma and osteoblastoma of the spine. J Bone Joint Surg Am, 1986, 68A: 354361.Google Scholar
Frassica, FJ, Waltarip, RL, Sponseller, PD, et al. Clinicopathologic features and treatment of osteoid osteoma and osteoblastoma in children and adolescents. Orthop Clin North A, 1996, 27: 559574.Google Scholar
Gitelis, S, Schajowiet, F. Osteoid osteoma and osteoblastoma. Orthop Clin North Am, 1989, 20: 313325.Google Scholar
Greenspan, A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical imaging, pathologic and differential considerations. Skeletal Radiol, 1993, 22: 485500.Google Scholar
Raskas, DS, Graziano, GP, Herzenberg, FJ, et al. Osteoid osteoma and osteoblastoma of the spine. J Spinal Disor, 1992, 5: 204211.Google Scholar
Scheine, NJ, Malone, M, Ashworth, MA, Jacques, TS. Diagnostic Pediatric Surgical Pathology. Churchill Livingstone, Elsevier, 2000, p. 231.Google Scholar
Gamba, JL, Martinez, S, Apple, J, et al. Computed tomography of axial skeletal osteoid osteomas. AJR Am Roent Genol, 1984, 142: 769772.Google Scholar
O’Connell, JS, Nanthakumar, SS, Nielsen, GP, et al. Osteoid ostoma: the uniquely innervated bone tumor. Mod Pathol, 1998, 11: 175180.Google Scholar
Rosenthal, DI, Hornicek, FJ, Wolfe, MW, et al. Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am, 1998, 80: 815821.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 8793.Google Scholar
Garrington, GE, Scofield, HJ, Cornyn, J, et al. Osteosarcoma of the jaws. Analysis of 56 cases. Cancer, 1967, 20: 377391.Google Scholar
Saito, Y, Miyajima, C, Nakao, K, et al. Highly malignant submandibular extra skeletal osteosarcoma in a young patient. Auris Nasus Larynx, 2008, 35: 576578.Google Scholar
Jasnau, S, Meyer, U, Potratz, J, et al. Craniofacial osteosarcoma: experience of the cooperative German-Austrain-Swiss osteosarcoma study group. Oral Oncology, 2008, 44: 286294.Google Scholar
Huh, WW, Holsinger, FC, Levy, A, et al. Osteosarcoma of the jaw in children and young adults. Head and Neck, 2012, 34: 981984.Google Scholar
Kim, HJ, McLawhorn, AS, Boland, PJ. Malignant osseous tumors of the pediatric spine. J Am Acad Orthopedic Sufg, 2012, 20: 646656.Google Scholar
Salvati, M, Ciappeta, P, Raco, A. Osteosarcoma of the skull. Clinical remarks on 19 cases. Cancer, 1993, 71: 22102216.Google Scholar
Lei, YY, Vantassel, P, Nauert, C, et al. Craniofacial osteosarcomas plain film, CT and MRI findings in 46 cases. AJR Am J Roentgerol, 1988, 150: 13971402.Google Scholar
Bertoni, F, Dallera, P, Bacchini, P, et al. The insituto Rizzoli-Beretta experience with osteosarcoma of the jaws. Cancer, 1991, 68: 15551563.Google Scholar
Clark, JL, Unni, KK, Dahlin, DC, et al. Osteosarcoma of the jaw. Cancer, 1983, 51: 23112316.Google Scholar
Shives, TC, Dahlin, DC, Sim, FH, et al. Osteosarcoma of the spine. J Bone Joint Surg Am, 1986, 86A: 660668.Google Scholar
Barwick, KW, Huvos, AG, Smith, J. Primary osteogenic sarcoma of the vertebral column: a clinicopathologic correlation of ten patients. Cancer, 1980, 46: 595604.Google Scholar
Kebudi, R, Ayan, I, Darendelier, F, et al. Primary osteosarcoma of the cervical spine. A pediatric case report and review of the literature. Med Pediatr Oncol, 1994, 23: 162165.Google Scholar
Chan, CW, Kung, TM, Ma, L. Telangietic osteosarcoma of the mandible. Cancer, 1986, 58: 21102115.Google Scholar
Giangaspero, F, Stracca, V, Visona, A, et al. Small cell-osteosarcoma of the mandible. Case report. Appl Pathol, 1984, 2: 2831.Google Scholar
Kurt, AM, Unni, K, McLeod, RA, et al. Low grade intraosseous osteosarcoma. Cancer, 1990, 65: 14181438.Google Scholar
Garbe, LR, Monges, GM, Pellegrin, FM, et al. Ultrastructural study of osteosarcomas. Hum Pathol, 1981, 12: 891896.Google Scholar
Badawi-EL, ZH, Muhammad, EM, Noaman, HH. Role of immunohistochemical cyclo-oxygenase-2 (COX-2) and osteocalcin in differentiating between osteoblastomas and osteosarcomas. Mallays J Pathol, 2012, 34: 1523.Google Scholar
Araki, N, Uchida, A, Kimura, T, et al. Involvement of the retroblastoma gene in primary osteosarcomas and other bone and soft tissue tumors. Clin Orthop Relat Res, 1991, 271–277.Google Scholar
Reissman, PT, Simon, MA, Lee, WH, et al. Studies of the retinoblastoma gene in human sarcomas. Oncogene, 1989, 4: 839843.Google Scholar
Wadayama, B, Toguchida, J, Shimizy, T, et al. Mutation spectrum of the retroblastoma gene in osteosarcomas. Cancer Res, 1994, 54: 30423048.Google Scholar
Biegel, JA, Womer, BA, Emanuel, BS. Complex karyotypes in a series of pediatric osteosarcomas. Cancer Genet Cytogenet, 1989, 38: 89100.Google Scholar
vanDaniel, M, Hulsebos, TJ. Amplification and over expression of genes 17p 11.2-p1c in osteosarcoma. Cancer Genet Cytogenet, 2004, 153: 7780.Google Scholar
Minio, AJ. Periosteal osteosarcoma of the mandible. Int J Oral Maxillofac Surg, 1995, 24: 226228.Google Scholar
Patterson, A, Greer, RO, Howard, D. Periosteal osteosarcoma of the maxilla. A case report and review of literature. J Oral Maxillofac Surg, 1990, 48: 522526.Google Scholar
Bridge, JA, Nelson, M, McComb, F, et al. Cytogenetic findings in 73 osteosarcoma specimens and review of the literature. Cancer Genet Cytogenet, 1997, 95: 7487.Google Scholar
Millar, BG, Browne, RM, Flood, TR. Juxtacortical osteosarcomas of the jaws. Br J Oral Maxillofac Surg, 1990, 28: 7379.Google Scholar
Kumar, R, Moser, P, Madewelll, JF, et al. Parosteal osteosarcoma arising in cranial bones. Clinical and radiologic features in eight patients. AJR Am J Roentgerol, 1990, 155: 113117.Google Scholar
Longhi, A, Errani, C, Pepaolis, M, et al. Primary bone osteosarcoma in the pediatric age. State of the art. Cancer Treat Rev, 2006, 32: 423436.Google Scholar
Daw, NC, Mahmoud, HH, Meyer, WH, et al. Bone sarcomas of the head and neck in children. The St. Jude Children’s Research hospital Experience. Cancer, 2000, 88: 21722180.Google Scholar
Unni, KK. Parosteal osteosarcoma. In Fletcher, CDM, Unni, KK, Mertens, F (eds) Pathology and Genetics of Tumours of Soft Tissue. France, IARC Press, 2002, pp. 279281.Google Scholar
Lee, JS, Fetsch, JF, Wasdhal, DA, et al. A review of 40 patients with extra skeletal osteosarcoma. Cancer, 1995, 76: 22532259.Google Scholar
Rieske, P, Bartkowiak, JK, Szadowska, AM, et al. A comparative study of p53/MDM2 genes alterations and p53/MDM2 proteins immunoreactivity in soft tissue sarcomas. J Exp Clin Cancer Res, 1999, 18: 403416.Google Scholar
Kebudi, R, Ayan, I, Darendeliler, E, et al. Primary osteosarcoma of the cervical spine. A pediatric case report and review of the literature. Med Pediatr Oncol, 1994, 23: 162165.Google Scholar
Matsuzaka, K, Shimono, M, Uchiyama, et al. Lesions related to the formation of bone, cartilage or cementum arising in the oral area: a statistical study and review of the literature. Bull Tokyo Dent Coll, 2002, 43: 173180.Google Scholar
Huvos, AG. Bone Tumors. Diagnosis, Treatment and Prognosis, Ed 1, Phildelphia, WB Saunders, 1991.Google Scholar
Dahlin, DC, Unni, KK. Bone Tumors: General Aspects and Data on 8,542, Charles C Thomas Publishers, Springfield, Ed 4, 1986.Google Scholar
Schajowicz, F. Tumors and Tumor-Like Lesions of Bone. Pathology, Radiology and Treatment, Ed 2, New York, Springer-Verlag, 1994.Google Scholar
Mira, JM. Bone Tumors. Clinical Radiologic and Pathologic Correlations. Philadelphia Lea & Febiger, 1989.Google Scholar
Inwards, CY. Update on cartilage forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 6774.Google Scholar
Fu, Y-S, Perzin, KH. Non-epithelial tumors of the nasal cavity, paranasal sinuses and nasopharynx: a clinicopathologic study. III. Cartilaginous tumors (chondromas, chondrosarcomas) Cancer, 1974, 34: 453463.Google Scholar
Kilby, D, Ambegaokar, A. The nasal chondroma: 2 case reports and a survey of the literature. J Laryngol Otolgy, 1977, 91: 415426.Google Scholar
Ghogawala, Z, Moore, M, Strand, R, et al. Clival Chondroma in a child with Ollier’s disease. Case report. Pediat Neuro Surg, 1991, 17: 5356.Google Scholar
Rathore, PK, Mandal, S, Meher, R, et al. Giant ossifying chondroma of the skull. Int J Pediatr Otorhinolaryngol, 2005, 69: 17091711.Google Scholar
Kosaki, N, Yabe, H, Anazawa, U, et al. Bilateral multiple malignant transformation of Ollier’s disease. Skeletal Radiol, 2005, 34: 477484.Google Scholar
Cook, PL, Evans, PG. Chondrosarcoma of the skull in Maffucci’s syndrome. Br J Radiol, 1977, 50: 833836.Google Scholar
Hopyan, S, Gokgoz, N, Poon, R, et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet, 2002, 30: 306210.Google Scholar
Gnepp, DR. Diagnostic Surgical Pathology of the Head and Neck, Ed 2, Philadelphia, Saunders Elsevier, 2009, p. 743.Google Scholar
Saglik, Y, Altay, M, Unai, VS, et al. Manifestations and management of osteochondromas: a retrospective analysis of 382 patients. Acta Orthop, 2006, 72: 748755.Google Scholar
Dahlin, DC. Bone Tumors: General Aspects and Data on 6,221 Cases, Ed 3, Charles C Thomas, Springfield, IL, 1978.Google Scholar
Khurana, J, Abdul-Karim, F, Boree, JVMG. Osteochondroma. In Fletcher, CDM, Unni, KK, Metens, F. (eds) World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon, France, IRAC, 2002, pp. 234236.Google Scholar
Canella, P, Gardin, F, Borriani, S. Exostosis: development, evolution and relationships to malignant degeneration. Ital J Orthop Traumatol, 1981, 7: 293298.Google Scholar
Niedzwiecka, M, Kaczmarek, P, Krawczy, T. Benign but fatal. A case of a newborn with congenital osteochondroma. Bone, 2013, 54: 169171.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology. A Rationale for Diagnosis and Treatment, Ed 1, Chicago. Hanover Park, IL, Quintessence Publishing Company, 2012.Google Scholar
Shore, RM, Pozanski, AK, Anandappa, EC, et al. Arterial and venous compromise by osteochondroma. Pediatr Kadiol, 1994, 24: 3940.Google Scholar
Mehta, M, White, LM, Knapp, T, et al. MR imaging of symptomatic osteochondromas with pathologic correlations. Skeletal Radio, 1998, 27: 427436.Google Scholar
Garrison, RG, Uni, KK, McLeod, RA. Chondrosarcoma arising in osteochondroma. Cancer, 1982, 49: 18901897.Google Scholar
Ahn, J, Ludecke, H-J, Lidow, S, et al. Cloning of the putative suppressor gene for hereditary multiple exostoses (EXT1) Nat Genet, 1995, 11: 137143.Google Scholar
Zak, BM, Crawford, BE, Esko, JD. Hereditary multiple exostoses and heparin sulfate polymerization. Biochim Biophys Acta, 2002, 1573: 346355.Google Scholar
Feeley, MG, Boehm, AK, Bridge, RS, et al. Cytogenetic and molecular cytogenetic evidence of recurrent 8q 24.1 loss in osteochondroma. Cancer Genet Cytogenet, 2002, 137: 102107.Google Scholar
Ostuk, C, Tezer, M, Hamzaoglu, A. Solitary osteochondroma of the cervical spine causing spinal cord compression. Acta Orthop Belg, 2007, 73: 133136.Google Scholar
Chiurco, AA. Multiple exostoses of bone with fatal spinal cord compression, report of a case and brief review of the literature. Neurology, 1970, 20: 275278.Google Scholar
Kitsoulis, P, Vassiliki, G, Kallopi, S, et al. Osteochondromas: review of the clinical radiological and pathological features. In Vivo, 2008, 22: 633646.Google Scholar
Jaffe, HL, Lichtensteen, L. Chondromyxoid fibroma of bone: a distinctive benign tumor likely mistaken for chondrosarcoma. Arch Pathol, 1948, 45: 541551.Google Scholar
Rahimi, A, Beabout, JW, Ivins, JC, et al. Chondromyxoid fibroma: a clinicopathologic study of 76 cases. Cancer, 1972, 30: 726736.Google Scholar
Huvos, AG. Bone Tumors: Diagnosis Treatment and Prognosis. Philadelphia, W.B. Saunders, 1991, pp. 319330.Google Scholar
Batsakis, JG, Raymond, AK. Pathology consultation: chondromyxoid fibroma. Ann Otol Rhinol Laryngol, 1989, 98: 571572.Google Scholar
Hammad, H, Hammond, HL, Kurago, ZB. Chondromyxoid fibroma of the jaws: case report and review of the literature. Oral Surg Oral Med Oral Radiol Oral Pathol and Endod, 1998, 85: 293300.Google Scholar
Khatana, S, Singh, V, Gupta, A. Unilocular anterior mandibular swelling. Int J Pediatr Otolargol, 2013, 77: 964971.Google Scholar
Oh, N, Korsandi, AS, Scheri, S, et al. Chondromyxoid fibroma of the mastoid portion of the temporal bone. MRI and PET/CT findings and their correlation with histology. Ear Nose Throat J, 2013, 92: 201203.Google Scholar
Gupta, S, Heman-Ackah, SE, Harris, JA, et al. Chondromyxoid fibroma of the temporal bone. Oto Neuro Fol, 2012, 33: e71e72.Google Scholar
Sharma, M, Velho, V, Ginayake, R, et al. Chondromyxoid fibroma of the temporal bone: a rare entity. Neurosci, 2012, 7: 211214.Google Scholar
Aegerter, E, Kirkpatrick, JA. Orthopedic Diseases. Physiology Radiology. Phildaelphia, W.B. Saunders, 1963, pp. 580587.Google Scholar
Fotiadis, E, Akritopoulos, P, Samoladas, E. Chondromyxoid fibroma. A rare tumor with an unusual location. Arch Orthop Trauma Surg, 2008, 128: 371375.Google Scholar
Safar, A, Nelson, M, Neff, JR, et al. Recurrent anomalies of 6[inv(6)(p25q13] in chondromyxoid fibroma. Human Pathol, 2000, 31: 306311.Google Scholar
Justin, J, Akpalo, H, Gambarotti, M, et al. Phenotypic diversity in chondromyxoid fibroma reveals differentiation pattern of tumor mimicking fetal cartilage canals development. Am J Pathol, 2010, 177: 10721078.Google Scholar
Durr, HR, Liehemann, , Nerlich, A, et al. Chondromyxoid fibroma of bone. Arch Orthop Trauma Surg, 2000, 120: 4247.Google Scholar
Jaffe, H, Lichtenstein, L. Benign chondroblastoma of bone. A reinterpretation of the so called calcifying or chondromatous giant cell tumor. Am J Pathol, 1942, 18: 969991.Google Scholar
Springfield, DS, Capanna, R, Gherlinzoni, F, et al. Chondroblastoma. A review of seventy cases. J Bone Joint Surg Am, 1985, 67: 748755.Google Scholar
Sailhan, F, Chotel, F, Parot, R. Chondroblastoma of bone in a pediatric population. J Bone Joint Surg Am, 2009, 91: 21592168.Google Scholar
Kurt, AM, Unni, KK, Sim, FH, et al. Chondroblastoma of bone. Hum Pathol, 1989, 20: 965976.Google Scholar
Bertoni, F, Unni, KK, Beabout, W, et al. Chondroblastoma of the skull and facial bones. Am J Clin Pathol, 1987, 88: 19.Google Scholar
Nwoku, AL, Koch, H. Temporomandibular joint. A rare localization for bone tumors. J Maxillofac Surg, 1974, 2: 113.Google Scholar
Kondoh, T, Hamada, Y, Kamei, K, et al. Chondroblastoma of the mandibular condyle. Report of a case. J Oral Maxillofac Surg, 2002, 60: 198203.Google Scholar
Turwtto, RE, Kurt, AM, Sim, FH, et al. Chondroblastoma. Hum Pathol, 1993, 24: 944949.Google Scholar
Edel, G, Ueda, Y, Nakanishi, J, et al. Chondroblastoma of bone. A clinical, radiological, light and immunohistochemical study. Virhows Arch, 1992, 421: 355366.Google Scholar
Wolff, DA, Stevenson, S, Goldberg, VM. S-100 protein immunostaining identifies cells expressing a chondrocytic phenotype during articular cartilage repair. J Orthop Res, 1992, 10: 4957.Google Scholar
Nakamura, Y, Becker, LE, Marks, A. S-100 protein in tumors of cartilage and bone. Cancer, 1983, 52: 18201825.Google Scholar
Kyriakos, M, Land, VJ, Penning, HL, et al. Metastatic chondroblastoma. Report of a fatal case with a review of the literature on atypical, aggressive, and malignant chondroblastoma. Cancer, 1985, 55: 17701789.Google Scholar
Hohlweg, B, Metzger, MC, Bohin, J, et al. Advanced image findings and complete-assisted surgery of suspected synovial chondromatosis in the temporomandibular joint. J Magnetu Resonance Imaging, 2008, 28(5): 12511257.Google Scholar
Van Arx, DP, Simpson, MJ, Batman, P. Synovial chondromatosis of the temporomandibular joint. Br. J Oral Maxillofac Surg, 1988, 26: 297305.Google Scholar
Koyama, J, Ito, J, Hayashi, T, et al. Synovial chondromatosis in the temporomandibular joint complicated by displacement and calcification of the articular disk: report of two cases. AJNR Am J Neuroradiol, 2001, 22: 12031206.Google Scholar
Chen, A, Wong, LY, Sheu, CY. Distinguishing multiple rice body formation in chronic subacromial-subdeltoid bursitis from synovial chondromatosis. Skeletal Radiol, 2002, 31: 119121.Google Scholar
Kim, HG, Park, KH, Huh, JK. Magnetic resonance imaging characteristics of synovial chondromatosis of the temporomandibular joint. J Orofac Pain, 2002, 16: 148153.Google Scholar
Voge, TJ, Abolmaalin, N, Maurer, J. Neoplasms of the temporomandibular joint (TMJ). Diagnosis, differential diagnosis and intervention. Radiology, 2001, 41: 760771.Google Scholar
Guarda-Nardini, L, et al. Synovial chondromatosis of the temporomandibular joint: a case description with systemic review of the literature. Int J Oral Maxillofac Surg, 2010, 39: 745755Google Scholar
Fujita, S, Yoshida, H, Tojyo, I, et al. Synovial chondromatosis of the temporomandibular joint. Clinical and immunohistopathological considerations. Br J Oral Maxillofac Surg, 2004, 42: 259260.Google Scholar
Hohlweg-Majert, B, Schon, R, Schmelzeisen, R, et al. A navigational maxillofacial surgery using virtual models. World J Surg, 2005, 29: 15301538.Google Scholar
Chou, P, Mehta, S, Gonzalez-Crussi, F. Chondrosarcoma of the head in children. Pediatr Pathol, 1990, 10: 945958.Google Scholar
Pones, HAR, Pontes, FSC, deAbreu, MC, et al. Clinicopathological analysis of head and neck chondrosarcoma: three case reports and literature review. Int J Oral Maxillofac Surg, 2012, 41: 203210.Google Scholar
Prado Ornellas, F, Nishimoto, IN, deCruz Perez, DE. Head and neck chondrosarcoma: analysis of 16 cases. Br J Oral Maxillofac Surg, 2009, 47: 555557.Google Scholar
Huvos, AG, Marcove, RC. Chondrosarcoma in the young. A clinicopathologic analysis of patients younger than 25 years of age. Am J Surg Pathol, 1987, 11: 930942.Google Scholar
Liu, J, Hudkins, PG, Swee, RG et al. Bone sarcomas associated with Ollier’s disease. Cancer, 1987, 59: 13761385.Google Scholar
Garrington, GE, Scofield, HJ, Cornyn, J, et al. Osteosarcoma of the jaws: analysis of 56 cases. Cancer, 1967, 20: 377391.Google Scholar
Gupta, S. Mesenchymal chondrosarcoma of maxilla: a rare case report. Med Oral Pathol Oral Cir Bucal, 2011, 16: e493e496.Google Scholar
Turner, S, Kebudi, R, Peksayor, G, et al. Congenital mesenchymal chondrosarcoma of the orbit. Case report and review of the literature. Ophthalmology, 2004, 111: 10161022.Google Scholar
Gonzales-Lois, C, Cuevas, C, Abdullah, O, et al. Intracranial extra skeletal myxoid chondrosarcoma: case report and review of the literature. Acta Neurochir, 2002, 144: 735740.Google Scholar
Devaney, KS, Ferlito, A, Silver, CL.Cartilaginous tumors of the larynx. Otol Phinol Laryngol, 1995, 104: 251255.Google Scholar
Slootweg, PJ, Clear-cell chondrosarcoma of the maxilla. Report of a case. Oral Surg, Oral Med, Oral Pathol, 1980, 50: 233237.Google Scholar
Pang, ZG, He, XZ, Wu, LY, et al. Clinicopathologic and immunohistochemical study of 23 cases of mesenchymal chondrosarcoma. Zhonghu Bing Xue Za Zhi, 2011, 40: 368372.Google Scholar
Meis-Kundblom, JM, Bergh, P, Gunterberg, B, et al. Extra skeletal myxoid chondrosarcoma. A reappraisal of its morphologic spectrum and prognostic factors based on 17 cases. Am J Surg Pathol, 1999, 23: 636650.Google Scholar
Antonseon, CR, Argani, P, Erlandson, RA, et al. Skeletal and extra skeletal myxoid chondrosarcoma: a comparative clinicopathologic ultra structural and molecular study. Cancer, 1998, 83: 15041521.Google Scholar
Tarkkauren, M, Wiklend, T, Virolainen, M, et al. Differentiated chondrosarcoma with t(9;22) (q34; q11-12). Genes Chromosomes. Cancer, 1994, 9: 136140.Google Scholar
Stehman, G, Anderson, H, Mandahl, N, et al. Translocation of t(9;22) (q22;q12) is a primary cytogenetic abnormality in extraskeletal myxoid chondrosarcoma. Int J. Cancer, 1995, 62: 398402.Google Scholar
Szuhai, K, Cleton-Hansen, A-M, Pancras, GW, et al. Molecular pathology and its diagnostic use in bone tumors. Cancer Genetics, 2012, 205: 193204.Google Scholar
Gadwal, SR, Fanburg-Smith, JC, Gannon, FH, et al. Primary chondrosarcoma of the head and neck in pediatric patients. A clinicopathologic study of 14 cases with review of the literature. Cancer, 2000, 88: 21812188.Google Scholar
Angiero, F, Vinci, R, Sidoni, A, et al. Mesenchymal chondrosarcoma of the left coronoid process. Report of a unique case with clinical histopathologic and immunohistochemical findings, and a review of the literature. Quintessence Int, 2007, 38: 349355.Google Scholar
Dahlin, DC, MacCarty, CS. Chordoma: a study of 59 cases. Cancer, 1952, 5: 11701178.Google Scholar
Raffel, C, Wright, DC, Gutin, PH, Wilson, CB. Cranial chordomas: clinical presentation and results of operative and radiation therapy in twenty-six patients. Neurosurgery, 1985, 17: 703710.Google Scholar
Borba, LA, Al-Mefty, O, Mrak, RE, Suen, J. Cranial chordoma in children and adolescents. J Neurosurg, 1996, 84: 584591.Google Scholar
Omerod, R. A case of chordoma presenting in the nasopharynx. J Laryngol Otol, 1960, 74: 245254.Google Scholar
Whelan, MA, Reede, DL, Meisler, W, Bergeron, RT. CT of the base of the skull. Radiol Clin North Am, 1984, 22: 177217.Google Scholar
Erdem, E, Engardo, C, Antuaco, MD. Comprehensive review of intracranial chordoma. Radiographics, 2003, 23: 9951009.Google Scholar
Suba, Z, Hauser, P, Garami, M, Martonffy, K, et al. Skull base chordoma mimicking a preauricular neoplasm in a child: clinicopathological features and biological behaviour. J Craniomaxillofac Surg, 2007, 35: 3538.Google Scholar
Pamir, MN, Ozduman, K. Analysis of radiological features relative to histopathology in 42 skull-base chordomas and chondrosarcomas. Eru J Radiol, 2006, 58(3): 461470.Google Scholar
Chugh, R. Chordoma. The non-sarcoma primary bone tumor. Oncologist, 2007, 12: 13441350.Google Scholar
Oakley, GJ. Brachyury, Sox-9 and podoplanin, new markers in skull base chordomas vs chondrosarcoma differential. A tissue array-based comparative analysis. Mod Path, 2008, 21: 14611469.Google Scholar
Gosau, M, Draenert, FG, Winter, WA. Fibrosarcoma of the childhood mandible. Head and Face Medicine, 2008, 4: 2123.Google Scholar
Pereira, CM, Jorge, J, Hipolito, LP, et al. Primary intraosseous fibrosarcoma of the jaw. Int J Oral Maxillofac Surg, 2005, 34: 579581.Google Scholar
Kahn, LP, Vigorita, V. Fibrosarcoma of bone. In Fletcher, CDM, Unni, KK, Mertens, F, (eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon France, IARC Press, 2002, pp. 289290.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W., et al. A novel ETV-6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle tumors. Am J Surg Pathol, 2000, 24:937946.Google Scholar
Fletcher, CDM, Unni, KK, Mertens, I. World Health Organization Classification of Tumors, Pathology and Genetics of Soft Tissue and Bone: So-called Fibrohistocytic Tumors. Lyon, IARC Press, 2002, 120125.Google Scholar
Wanebo, HJ, Koness, RJ, MacFarlane, JK. Head and neck sarcoma: report of the head and neck sarcoma registry. Society of head & Neck Surgeons Committee on Research. Head and Neck, 1992, 14: 17.Google Scholar
Gorsky, M, Epstein, JB. Head and neck and inter-oral soft tissue sarcomas. Oral Oncol, 1998, 34: 292296.Google Scholar
Nagler, RM, Malkin, L, Ben-Arieh, Y, et al. Sarcoma of the maxillofacial region, follow-up of 25 cases. Anticancer Res, 2000, 20: 37353742.Google Scholar
Lee, JS, Fitz Gibbon, EJ, Chen, YR. Clinical guidelines for management of craniofacial fibrous dysplasia. Orphanet J Rare Dis, 2012, doi: 10.1186/1750-1172-7-51-52.Google Scholar
Tsai, EC, Santorreneos, S, Rutka, JT. Tumors of the skull bone in children: review of tumor types and management strategies. Neuro Surg Focus, 2002, 12: e1.Google Scholar
Riminucci, M, Liu, B, Corsi, A., et al. The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gsa gene: site-specific patterns and current histological hallmarks. J Pathol, 1999, 187: 249258.Google Scholar
Parekh, SG, Donthineni-Rao, R, Ricchetti, E., et al. Fibrous dysplasia. J Am Acad Orthop Surg, 2004, 12: 305313.Google Scholar
Valentini, V, Cassoni, A, Marianetti, TM, et al. Craniomaxillofacial fibrous dysplasia: conservative treatment or radical surgery? A retrospective study of 68 patients. Plastic and Reconstructive Surg, 2009, 123: 653660.Google Scholar
Michael, CB, Lee, AG, Patrinely, JR. Visual loss associated with fibrous dysplasia of the anterior skull base. Case report and review of the literature. J Neurosurg, 2000, 92: 350354.Google Scholar
Dian, E, Morris, DE, Lo, LJ, et al. Cyst degeneration in craniofacial fibrous dysplasia. Clinical presentation and management. J Neurosurg, 2007, 107: 504508.Google Scholar
Kelly, MH, Brillante, B, Collins, MT. Pain in fibrous dysplasia of bone: age-related changes and anatomical distribution of skeletal lesions. Osteoporos Int, 2008, 19: 5763.Google Scholar
Sciarretta, V, Pasquini, E, Frank, G., et al. Endoscopic treatment of benign tumors of the nose and paranasal sinuses. Report of 33 cases. Am J Rhinol, 2006, 20: 6471.Google Scholar
Long, JJ, Jung, HH, Lee, HM, et al. Monostatic fibrous dysplasia of temporal bone. Report of two cases and review of its characteristics. Acta Otolaryngol, 2005, 125: 11261129.Google Scholar
Chung, KF, Alaghband-Zadeh, J, Guz, A. Acromegaly and hyperprolactinemia in McCune-Albright syndrome. Evidence of hypothalamic dysfunction. Am J Dis Chil, 1983, 137: 134136.Google Scholar
Aarkkog, D, Tveteraas, E. McCune-Albright’s syndrome following adrenalectomy for Cushing’s syndrome in infancy. J Pediatr, 1968, 73: 8996.Google Scholar
Aoki, T, Kouho, H, Hisaoka, M., et al. Intramuscular myxoma with fibrous dysplasia: a report of two cases with a review of the literature. Path Int, 1995, 45: 65171.Google Scholar
Shi, RR, Zue-Fen, L, Zang, R, et al. GNAS mutational analysis in differentiating fibrous dysplasia and ossifying fibroma of the jaw. Modern Pathology, 2013, 26: 10231031.Google Scholar
Marx, KE, Stern, D. Oral and Maxillofacial Pathology: A Rational for Diagnosis and Treatment, Ed 2, Chicago, Quintessence Publishing Company, 2010, p. 791.Google Scholar
Ruggieri, P, Sim, FH, Band, JR, et al. Malignancies in fibrous dysplasia. Cancer, 1994, 73: 14111424.Google Scholar
Eversole, LR, Leider, AS, Nelson, K. Ossifying fibroma: a clinicopathologic study of sixty-four cases. Oral Surg, Oral Med, Oral Pathol, Oral Radio, Endod, 1985, 60: 505511.Google Scholar
Mintz, S, Velez, I. Central ossifying fibroma: an analysis of 20 cases and review of the literature. Quintessence Int, 2007, 38: 222227.Google Scholar
Waldron, CA. Fibro-osseous lesions of the jaws. J Oral Maxillofac Surg, 1993, 51: 828835.Google Scholar
Traiantafillidou, K, Venetis, G, Karakinaris, G., et al. Ossifying fibroma of the jaws: a clinical study of 14 cases and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiology Endod, 2012, 114: 193199.Google Scholar
Slootweg, PJ, El-Mofty, SK. Ossifying fibroma. In Barnes, L Everson, JW, Reichart, P, Sidransky, D (eds) Pathology and Genetics Head and Neck Tumors. Lyon, France, IARC Press, 2005, pp. 319320.Google Scholar
Su, L, Weathers, DR, Waldron, CA. Distinguishing features of focal cemento-osseous dysplasia and cemento-ossifying fibromas. II A clinical and radiographic spectrum of 316 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1997, 84: 540549.Google Scholar
El-Mofty, S. Psammomatoid and trabecular juvenile ossifying fibroma of the craniofacial skeleton. Two distinct clinicopathologic entities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93: 296304.Google Scholar
Slootweg, PJ, Muller, H. Juvenile ossifying fibroma. Report of four cases. J Craniomaxillofac Surg, 1990, 18: 125129.Google Scholar
Slootweb, PJ, Panders, AK, Loopmans, R., et al. Juvenile ossifying fibroma. An analysis of 33 cases with emphasis on histopathological aspects. J Oral Pathol Med, 1994, 23: 385388.Google Scholar
Johnson, LC, Youseti, TN, Heffiner, DK et al. Juvenile active ossifying fibroma; its nature dynamics and origin. Acta Otolaryngol Sluppl 1991, 448: 140.Google Scholar
Thankappan, S, Nair, S, Thomas, KP et al. Psammomatoid and trabecular varients of juvenile ossifying fibroma-two case reports. Indian J Radiol Imaging, 2009, 19: 116119.Google Scholar
Kaplan, I, Manor, R, Yahalom, R, et al. Giant cell granuloma associated with central ossifying fibromas of the jaws: a clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103: e35e41.Google Scholar
Chang, CC, Hung, HY, Chang, JX. Central ossifying fibroma: a clinicopathologic study of 28 caes. J Formos Med Assoc, 2008, 107: 288294.Google Scholar
Guriel, M, Uckan, N, Guler, N, et al. Surgical and reconstructive treatment of a large ossifying fibromas of the mandible. A retrognathic patient. J Oral Maxillofac Surg, 2001, 59: 10971100.Google Scholar
Gogl, H. Das Psammo-osteoid-fibroma der nas und ihreso neben humohlen. Monatsschr Ohrenheilk Lar Rhin, 1949, 83: 110.Google Scholar
Sawyer, JR, Tryka, AF, Bell, JM, et al. Non random chromosome break-points at Xq26 and 2q33 characteristic cemento-ossifying fibromas of the orbit. Cancer, 1995, 76: 18531859.Google Scholar
Dal Cin, P, Sciot, R, Fossion, E, et al. Chromosomal abnormalities in cemento ossifying fibroma. Cancer Genet Cytogenet, 1993, 71: 170172.Google Scholar
Barnes, L, Everson, JW, Reichart, et al. Pathology and Genetics. Head and Neck Tumors. WHO Classification of Tumors. Lyon, IARC Press, 2005.Google Scholar
Stauropoulos, J, Katz, J. Central giant cell granuloma; a systematic review of the radiographic characteristics with addition of 20 new cases. Dentomaxillofac Radiol, 2002, 31: 213217.Google Scholar
Kruse-Losler, B, Raihanatou, D, Gaetner, C, et al. Central giant cell granuloma of the jaws: a clinical, radiologic and histopathologic study of 26 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: 346354.Google Scholar
Liu, B, Yu, SF, Li, TJ. Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts. J Oral Pathol Med, 2003, 32: 367375.Google Scholar
Huvos, AG. Bone Tumors. Diagnosis, Treatment and Prognosis, Ed 2, Philadelphia, WB Saunders 1991.Google Scholar
Ardekian, L, Manor, R, Peled, M, et al. Bilateral central giant cell granulomas in a patient with neurofibromatosis. Report of a case and review of the literature. J Oral Maxillofac Surg, 1999, 57: 869872.Google Scholar
Catani, F, Pardi, E, Borsari, S., et al. Molecular pathogenesis of primary hyperthyroidism. J Endocraniol Invest, 2011, 34: 3539.Google Scholar
Itonaga, I, Hussein, I, Kudo, O, et al. Cellular mechanisms of osteoclast formation and lacunar resorption in giant cell granuloma of the jaw. J Oral Pathol Med, 2003, 32: 224231.Google Scholar
Amaral, FR, Diniz, GM, Bernardes, VF. WWOX expression in giant cell lesions of the jaws. Oral Surg, Oral Med, Oral Pathol, Oral Radio, 2013, 116: 210213.Google Scholar
Sezer, B, Koyuneu, B, Gomel, M, et al. Interlesional corticosteroid inject for central giant cell granuloma. A case report and review of the literature. Turk J Pediat, 2005, 47: 7581.Google Scholar
O’Regan, M, Gibb, DH, Odell, W. Rapid growth of giant ell granuloma in pregnancy treated with calcitonin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001, 92: 532538.Google Scholar
Kaban, LB, Troulis, MJ, Ebb, D, et al. Antiangiogenic therapy with interferon alpha for giant cell lesions of the jaws. J Oral Maxillofac Surg, 2002, 60: 11031113.Google Scholar
Wieneke, JA, Gannon, KH, Heffner, DK, et al. Giant cell tumor of the larynx. A clinicopathologic study of eight cases and a review of the literature. Neurosurgery, 2001, 48: 424429.Google Scholar
Ayclair, PL, Cucnin, P, Kratochuil, FJ, et al. A clinical and histomorphologic comparison of the central giant cell granuloma and the giant cell tumor. Oral Surg Oral Med Oral Pathol, 1988, 66: 197208.Google Scholar
Gingell, JC, Levy, BA, Beckerman, T, et al. Aneurysmal bone cyst. J Oral Maxillofac Surg, 1984, 42: 527534.Google Scholar
Martinez, V, Sissions, HA. Aneurysmal bone cyst. A review of 123 cases including primary lesions and those secondary to other bone pathology. Cancer, 1988, 61: 22912304.Google Scholar
Lee, HL, Cho, KS, Choi, KU. Aggressive aneurysmal bone cyst of the maxilla confused with telangiectic osteosarcoma. Auris Nasus Larynx, 2012, 39: 337340.Google Scholar
Panoutakopoulous, G, Pandis, N, Kyrlazoglou, I, et al. Recurrent t(16;17) (q22; p13) in aneurysmal bone cysts. Genes Chromosomes. Cancer, 1999, 26: 265266.Google Scholar
Ye Pringle, LM, Lau, AW, et al. TRE 17/USP6 oncogene translocation in aneurysmal bone cyst indices matrix metalloproteinase production via actiuation of N7-Kappa B. Oncogene, 2010, 29: 36193629.Google Scholar
Vergel DeDios, AM, Bond, JR, Shives, TC, et al. Aneurysmal bone cyst. A clinicopathologic study of 238 cases. Cancer, 1992, 69: 29212931.Google Scholar
Ruiter, DJ, van Rijssel, JG, van der Velde, EA. Aneurysmal bone cysts. A clinicopathological study of 105 cases. Cancer, 1977, 39: 22312235.Google Scholar
Briadley, GW, Greene, JF Jr, Frankel, LJ. Case reports: malignant transformation of aneurysmal bone cysts. Clin Orthop Relat Res, 2005, 438: 282287.Google Scholar
Kryiakos, M, Hardy, D. Malignant transformation of aneurysmal bone cyst with analysis of the literature. Cancer, 1991, 68: 17701780.Google Scholar
Goshen, O, Aviel-Ronen, S, Dori, S, Talmi, YP. Brown tumour of hyperparathyroidism in the mandible associated with atypical parathyroid adenoma. J Laryngol Otol, 2000, 114: 302304.Google Scholar
Guney, E, Yigibasi, OG, Bayram, F, et al. Brown tumor of the maxilla associated with primary hyperparathyroidism. Auris Nasus Larynx, 2001, 28: 369372.Google Scholar
Watanabe, T, Tsukamoto, F, Shimizu, T, et al. Familial isolated hyperparathyroidism caused by single adenoma: a distinct entity different from multiple endocrine neoplasia. Endocr J, 1998, 45: 637646.Google Scholar
Yamazaki, H, Ota, Y, Aoki, T, et al. Brown tumor of the maxilla and mandible: progressive mandibular brown tumor after removal of parathyroid adenoma. J Oral Maxillofac Surg, 2003, 61: 719722.Google Scholar
Scott, SN, Graham, SM, Sato, Y, Robinson, RA. Brown tumour of the palate in a patient with primary hyperparathyroidism. Ann Otol Rhinol Laryngol, 1999, 108: 9194.Google Scholar
Jebasingh, F, Jubbin, J, Shah, A, et al. Bilateral maxillary brown tumours as a first presentation of primary hyperparathyroidism. Oral Maxillofac Surg, 2008, 12: 97100.Google Scholar
Jones, WA. Familial multilocular cystic disease of the jaws. Am J Cancer, 1933, 17: 946.Google Scholar
Ueki, Y, Tiziani, V, Santanna, C, Fukai, N, et al. Mutations in the gene encoding c-Ab1-binding protein SH3BP2 cause Cherubism. Nat Genet, 2001, 28: 125126.Google Scholar
De Lange, J, Van den Akker, HP. Clinical and radiological features of central giant-cell lesions of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 99: 464470.Google Scholar
Kozakiewicz, M, Percynska-Partyka, W, Kobos, J. Cherubism – clinical picture and treatment. Oral Dis, 2001, 7: 123130.Google Scholar
Krompecher, Z. Zur histogenese and morpjologic den adamantinome and sonstiger kiefergeschwulste. Beitr Pathol Anat, 1918, 64: 165197.Google Scholar
Barrett, AW, Morgan, M, Ramsay, AD, Farthing, PM, Newman, L, Speight, PM. A clinicopathological and immunohistochemical analysis of melanotic neuroectodermal tumor of infancy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93: 688698.Google Scholar
Siddiqui, TH, Amin, MR, Bashar, MA, Ahmed, Z, et al. Melanotic neuroectodermal tumour of infancy. Mymensingh Med J, 2011, 20: 312315.Google Scholar
Agarwal, P, Saxena, S, Kumar, , GLupta, R. Melanotic neuroectodermal tumor of infancy: Presentation of a case affecting the maxilla. J Oral Maxillofac Pathol, 2010, 14: 2932.Google Scholar
Borello, ED, Gorlin, RJ. Melanotic neuroectodermal tumor of infancy – a neoplasm of neural crese origin. Report of a case associated with high urinary excretion of vanilmandelic acid. Cancer, 1966, 12: 196206.Google Scholar
Khoddami, M, Squire, J, Zielenska, M, Thorner, P. Melanotic neuroectodermal tumor of infancy: a molecular genetic study. Pediatr Dev Pathol, 1998, 1: 295299.Google Scholar
Kaya, S, Unal, OF, Sarac, S, Gedikoglu, G. Melanotic neuroectodermal tumor of infancy: report of two cases and review of literature. Int J Pediatr Otorhinolaryngol, 2000, 52: 169–72.Google Scholar
Dehner, LP, Sibley, RK, Sauk, JJ. Malignant neuroectodermal tumor of infancy. A clinical, pathologic, ultrastructural and tissue culture study. Cancer, 1979, 43: 389410.Google Scholar
deAlva, E, Pardo, J. Ewing’s tumor. Tumor biology and clinical application. Int J Surg Pathol, 2001, 9: 717.Google Scholar
Ries, LAG, Smith, MA, Garney, JG, et al. Cancer Incidence and Survival among Children and Adolescents. United States SEER Program. 1975–1995, NIH Pub. No 99-4649. Bethesda, National Cancer Institute SEER Program, 1999.Google Scholar
Linnoila, RI, Trokos, M, Triche, TJ, et al. Evidence for neural origin and PAS positive variants of the malignant small cell tumor of thoraco-pulmonary region. (Askin tumor). Am J Surg Pathol, 1985, 10: 124133.Google Scholar
Carvajal, R, Meyers, P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol Oncol Clin North Am, 2005, 19: 501525.Google Scholar
Windfuhr, JP. Primitive neuroectodermal tumor of the head and neck: incidence, diagnosis and management. Ann Otol Rhinol Laryngol, 2004, 113: 533543.Google Scholar
Dick, EA, McHugh, K, Kimber, C, et al. Imaging of non-central nervous system primitive neuroectodermal tumors. Diagnostic features and correlation with outcome. Clin Radiol, 2001, 56: 205215.Google Scholar
Ewing, J. Diffuse endothelioma of bone. Proc NY Pathol Soc, 1921, 21: 1724.Google Scholar
Folpe, AL, Goldblum, JR, Rubin, BP, et al. Morphologic and immunophenotype diversity in Ewing family tumors. A study of 66 genetically confirmed cases. Am J Surg Pathol, 2005, 29: 10251033.Google Scholar
Cangir, TJ, Vietti, EA, Gehan, G, et al. Ewing’s sarcoma metastatic at diagnosis. Cancer, 1990, 55: 887893.Google Scholar
Vaccani, JP, Forte, V, deJong, AL, et al. Ewing’s sarcoma of the head and neck in children. Int J Pediatric Otorhinolaryngol, 1999, 48: 209216.Google Scholar
Van Doominck, JA, Schaub, B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma. A report from Children’s Oncology Group. J Clin Oncol, 2010, 28: 19891994.Google Scholar
deAlva, E, Pardo, J. Ewing’s tumor. Tumor biology and clinical application. Int J Surg Pathol, 2001, 9: 717.Google Scholar
Ries, LAG, Smith, MA, Garney, JG, et al. Cancer Incidence and Survival among Children and Adolescents. United States SEER Program. 1975–1995, NIH Pub. No 99-4649. Bethesda, National Cancer Institute SEER Program, 1999.Google Scholar
Linnoila, RI, Trokos, M, Triche, TJ, et al. Evidence for neural origin and PAS positive variants of the malignant small cell tumor of thoraco-pulmonary region. (Askin tumor). Am J Surg Pathol, 1985, 10: 124133.Google Scholar
Carvajal, R, Meyers, P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol Oncol Clin North Am, 2005, 19: 501525.Google Scholar
Windfuhr, JP. Primitive neuroectodermal tumor of the head and neck: incidence, diagnosis and management. Ann Otol Rhinol Laryngol, 2004, 113: 533543.Google Scholar
Dick, EA, McHugh, K, Kimber, C, et al. Imaging of non-central nervous system primitive neuroectodermal tumors. Diagnostic features and correlation with outcome. Clin Radiol, 2001, 56: 205215.Google Scholar
Ewing, J. Diffuse endothelioma of bone. Proc NY Pathol Soc, 1921, 21: 1724.Google Scholar
Folpe, AL, Goldblum, JR, Rubin, BP, et al. Morphologic and immunophenotype diversity in Ewing family tumors. A study of 66 genetically confirmed cases. Am J Surg Pathol, 2005, 29: 10251033.Google Scholar
Cangir, TJ, Vietti, EA, Gehan, G, et al. Ewing’s sarcoma metastatic at diagnosis. Cancer, 1990, 55: 887893.Google Scholar
Vaccani, JP, Forte, V, deJong, AL, et al. Ewing’s sarcoma of the head and neck in children. Int J Pediatric Otorhinolaryngol, 1999, 48: 209216.Google Scholar
Van Doominck, JA, Schaub, B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma. A report from Children’s Oncology Group. J Clin Oncol, 2010, 28: 19891994.Google Scholar
Matsuzaka, K, Shimono, M, Uchiyama, HN, et al. Lesions related to the formation of bone, cartilage, or cementum arising in the oral area: a statistical study and review of the literature. Bull Tokyo Dent Coll, 2002, 43: 173180.Google Scholar
Larrea-Oyarbide, N, Valmaseda-Castellon, , Berini-Ayte’s, L. Osteomas of the craniofacial region: review of 106 cases. J Oral Pathol Med, 2008, 37: 3842.Google Scholar
Samy, LL, Mostafa, H. Osteomata of the nose and paranasal sinuses with a report of 21 cases. J Laryngol Otol, 1971, 85: 449469.Google Scholar
Smith, ME, Calcaterra, TC. Frontal sinus osteoma. Ann Otol Rhinal laryngeal, 1989, 98: 896900.Google Scholar
Nielson, GP, Rosenberg, E. Update on bone forming tumors of the head and neck. Head Neck Pathol, 2007, 1: 8793.Google Scholar
Halawi, AM, Maley, JE, Robinson, RA, et al. Craniofacial osteoma: clinical presentation and patterns of growth. Am J Rhinol Allergy, 2013, 27: 128133.Google Scholar
Earwaker, J. Paranasal sinus osteomas. A review of 46 cases. Skeletal Radiol, 1993, 22: 417423.Google Scholar
Kaplan, I, Nicolaou, Z, Hateul, D, et al. Solitary central osteoma of the jaws. A diagnostic dilemma. Oral Surg Oral Med Oral Pathol Oral Radiol Endodo, 2008, 106: e22e29.Google Scholar
Derniciaro, E. Gardner’s syndrome. Dermatol Clin, 1995, 13: 5156.Google Scholar
McHugh, JB, Mukherji, SK, Lucas, DR. Sino-orbital osteoma: a clinicopathological study of 45 surgically treated cases with emphasis on tumors with osteoblastic-like features. Arch Pathol Lab Med, 2009, 133: 15871593.Google Scholar
BoKhari, K, Hameed, My, Ajmal, M, et al. Benign osteoblastoma involving maxilla: a case report and review of the literature. Case Reports in Dentistry, 2012, doi 10.1155/2012/351241.Google Scholar
Alvares Capelozza, AL, Giao Dezotti, MS, Casati Alvares, L, et al. Osteoblastoma of the mandible: systemic review of the literature and report of a case. Dentomaxillofac Radiol, 2005, 34: 18.Google Scholar
Loizaga, JM, Calvo, M, Lopez Barea, F, et al. Osteoblastoma and osteoid osteoma. Clinical and morphological features of 162 cases. Pathol Red. Pract, 1993, 189: 3341.Google Scholar
Jones, AC, Prihoda, TJ, Kacher, JE, et al. Osteoblastoma of the maxilla and mandible: report of 24 cases, review of the literature and discussion of its relationship to osteoid osteoma of the jaws. Oral Surg, Oral Med, Oral Pathol, Oral Radiol Endod, 2006, 102: 639650.Google Scholar
Lucas, DR, Unni, KK, McLeod, RA, et al. Osteoblastoma: Clinicopathologic study of 306 cases. Human Pathol, 1994, 25: 117134.Google Scholar
Berry, M, Mankin, H, Gebhardt, M, et al. Osteoblastoma: a 30 year study of 99 cases. J Surg Oncology, 2008, 98: 179183.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathology, 2007, 1: 8793.Google Scholar
Della Rocca, C, Huvos, AG. Osteoblasoma. Varied histological presentations with a benign clinical course. An analysis of 55 cases. Am J Surg Pathol, 1996, 20: 841850.Google Scholar
Kiyohara, H, Sawatsubashi, M, Matsumoto, N., et al. Benign Osteoblastoma of the ethmoid sinus. Auris Nasus Larynx, 2013, 40: 338341.Google Scholar
Ahmed, MS, Nwoky, AL. Benign Osteoblastoma of the mandibular ramus. Review of the literature and report of a case. J Oral Maxillofac Surg, 2000, 58: 13101317.Google Scholar
Kulkarni, MM, Shah, AK, Ahire, S. Aggressive Osteoblastoma of the mandible: a case report. Int J Contemp Dent, 2011, 2: 135138.Google Scholar
Manjunatha, BS, Sunit, P, Amit, M, et al. Osteoblastoma of the jaws: a report of a case and review of the literature. Clinics and Practice, 2011, 118: 256258.Google Scholar
Unni, KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases, Ed 5, Philadelphia, Lippincott-Raven, 1996.Google Scholar
Ohkubo, T, Hernendez, JC, Goya, K, et al. “Aggressive” osteoblastoma of the maxilla. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodo, 1989, 68: 6973.Google Scholar
Dal Cin, P, Sciot, R, Samson, J, et al. Osteoid osteoma and osteoblastoma with clonal chromosome changes. Br J Cancer, 1994, 78: 344348.Google Scholar
Mascarello, JT, Krous, HF, Carpenter, DM. Unbalanced translocation resecting in the loss of the chromosome 17 short arm in osteoblastoma. Cancer Genet Cytogenet, 1993, 69: 6567.Google Scholar
Bertoni, F, Unni, KK, Lucas, DR, et al. Osteoblasoma with cartilagninous matrix an unusual morphologic presentation in 18 cases. Am J Surg Pathol, 1993, 17: 6974.Google Scholar
Ahmed, MS, Nwoky, AL. Benign osteoblastoma of the mandibular ramus. Review of the literature and report of a case. J Oral Maxillofac Surg, 2000, 58: 13101317.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 8793.Google Scholar
Zwimpfer, JJ, Tucker, WS, Faulkner, JF. Osteoid osteoma of the cervical spine. Case reports and review of the literature. Can J Surg, 1982, 25: 637641.Google Scholar
Pettine, KA, Klassen, RA. Osteoid-osteoma and osteoblastoma of the spine. J Bone Joint Surg Am, 1986, 68A: 354361.Google Scholar
Frassica, FJ, Waltarip, RL, Sponseller, PD, et al. Clinicopathologic features and treatment of osteoid osteoma and osteoblastoma in children and adolescents. Orthop Clin North A, 1996, 27: 559574.Google Scholar
Gitelis, S, Schajowiet, F. Osteoid osteoma and osteoblastoma. Orthop Clin North Am, 1989, 20: 313325.Google Scholar
Greenspan, A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical imaging, pathologic and differential considerations. Skeletal Radiol, 1993, 22: 485500.Google Scholar
Raskas, DS, Graziano, GP, Herzenberg, FJ, et al. Osteoid osteoma and osteoblastoma of the spine. J Spinal Disor, 1992, 5: 204211.Google Scholar
Scheine, NJ, Malone, M, Ashworth, MA, Jacques, TS. Diagnostic Pediatric Surgical Pathology. Churchill Livingstone, Elsevier, 2000, p. 231.Google Scholar
Gamba, JL, Martinez, S, Apple, J, et al. Computed tomography of axial skeletal osteoid osteomas. AJR Am Roent Genol, 1984, 142: 769772.Google Scholar
O’Connell, JS, Nanthakumar, SS, Nielsen, GP, et al. Osteoid ostoma: the uniquely innervated bone tumor. Mod Pathol, 1998, 11: 175180.Google Scholar
Rosenthal, DI, Hornicek, FJ, Wolfe, MW, et al. Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am, 1998, 80: 815821.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 8793.Google Scholar
Garrington, GE, Scofield, HJ, Cornyn, J, et al. Osteosarcoma of the jaws. Analysis of 56 cases. Cancer, 1967, 20: 377391.Google Scholar
Saito, Y, Miyajima, C, Nakao, K, et al. Highly malignant submandibular extra skeletal osteosarcoma in a young patient. Auris Nasus Larynx, 2008, 35: 576578.Google Scholar
Jasnau, S, Meyer, U, Potratz, J, et al. Craniofacial osteosarcoma: experience of the cooperative German-Austrain-Swiss osteosarcoma study group. Oral Oncology, 2008, 44: 286294.Google Scholar
Huh, WW, Holsinger, FC, Levy, A, et al. Osteosarcoma of the jaw in children and young adults. Head and Neck, 2012, 34: 981984.Google Scholar
Kim, HJ, McLawhorn, AS, Boland, PJ. Malignant osseous tumors of the pediatric spine. J Am Acad Orthopedic Sufg, 2012, 20: 646656.Google Scholar
Salvati, M, Ciappeta, P, Raco, A. Osteosarcoma of the skull. Clinical remarks on 19 cases. Cancer, 1993, 71: 22102216.Google Scholar
Lei, YY, Vantassel, P, Nauert, C, et al. Craniofacial osteosarcomas plain film, CT and MRI findings in 46 cases. AJR Am J Roentgerol, 1988, 150: 13971402.Google Scholar
Bertoni, F, Dallera, P, Bacchini, P, et al. The insituto Rizzoli-Beretta experience with osteosarcoma of the jaws. Cancer, 1991, 68: 15551563.Google Scholar
Clark, JL, Unni, KK, Dahlin, DC, et al. Osteosarcoma of the jaw. Cancer, 1983, 51: 23112316.Google Scholar
Shives, TC, Dahlin, DC, Sim, FH, et al. Osteosarcoma of the spine. J Bone Joint Surg Am, 1986, 86A: 660668.Google Scholar
Barwick, KW, Huvos, AG, Smith, J. Primary osteogenic sarcoma of the vertebral column: a clinicopathologic correlation of ten patients. Cancer, 1980, 46: 595604.Google Scholar
Kebudi, R, Ayan, I, Darendelier, F, et al. Primary osteosarcoma of the cervical spine. A pediatric case report and review of the literature. Med Pediatr Oncol, 1994, 23: 162165.Google Scholar
Chan, CW, Kung, TM, Ma, L. Telangietic osteosarcoma of the mandible. Cancer, 1986, 58: 21102115.Google Scholar
Giangaspero, F, Stracca, V, Visona, A, et al. Small cell-osteosarcoma of the mandible. Case report. Appl Pathol, 1984, 2: 2831.Google Scholar
Kurt, AM, Unni, K, McLeod, RA, et al. Low grade intraosseous osteosarcoma. Cancer, 1990, 65: 14181438.Google Scholar
Garbe, LR, Monges, GM, Pellegrin, FM, et al. Ultrastructural study of osteosarcomas. Hum Pathol, 1981, 12: 891896.Google Scholar
Badawi-EL, ZH, Muhammad, EM, Noaman, HH. Role of immunohistochemical cyclo-oxygenase-2 (COX-2) and osteocalcin in differentiating between osteoblastomas and osteosarcomas. Mallays J Pathol, 2012, 34: 1523.Google Scholar
Araki, N, Uchida, A, Kimura, T, et al. Involvement of the retroblastoma gene in primary osteosarcomas and other bone and soft tissue tumors. Clin Orthop Relat Res, 1991, 271–277.Google Scholar
Reissman, PT, Simon, MA, Lee, WH, et al. Studies of the retinoblastoma gene in human sarcomas. Oncogene, 1989, 4: 839843.Google Scholar
Wadayama, B, Toguchida, J, Shimizy, T, et al. Mutation spectrum of the retroblastoma gene in osteosarcomas. Cancer Res, 1994, 54: 30423048.Google Scholar
Biegel, JA, Womer, BA, Emanuel, BS. Complex karyotypes in a series of pediatric osteosarcomas. Cancer Genet Cytogenet, 1989, 38: 89100.Google Scholar
vanDaniel, M, Hulsebos, TJ. Amplification and over expression of genes 17p 11.2-p1c in osteosarcoma. Cancer Genet Cytogenet, 2004, 153: 7780.Google Scholar
Minio, AJ. Periosteal osteosarcoma of the mandible. Int J Oral Maxillofac Surg, 1995, 24: 226228.Google Scholar
Patterson, A, Greer, RO, Howard, D. Periosteal osteosarcoma of the maxilla. A case report and review of literature. J Oral Maxillofac Surg, 1990, 48: 522526.Google Scholar
Bridge, JA, Nelson, M, McComb, F, et al. Cytogenetic findings in 73 osteosarcoma specimens and review of the literature. Cancer Genet Cytogenet, 1997, 95: 7487.Google Scholar
Millar, BG, Browne, RM, Flood, TR. Juxtacortical osteosarcomas of the jaws. Br J Oral Maxillofac Surg, 1990, 28: 7379.Google Scholar
Kumar, R, Moser, P, Madewelll, JF, et al. Parosteal osteosarcoma arising in cranial bones. Clinical and radiologic features in eight patients. AJR Am J Roentgerol, 1990, 155: 113117.Google Scholar
Longhi, A, Errani, C, Pepaolis, M, et al. Primary bone osteosarcoma in the pediatric age. State of the art. Cancer Treat Rev, 2006, 32: 423436.Google Scholar
Daw, NC, Mahmoud, HH, Meyer, WH, et al. Bone sarcomas of the head and neck in children. The St. Jude Children’s Research hospital Experience. Cancer, 2000, 88: 21722180.Google Scholar
Unni, KK. Parosteal osteosarcoma. In Fletcher, CDM, Unni, KK, Mertens, F (eds) Pathology and Genetics of Tumours of Soft Tissue. France, IARC Press, 2002, pp. 279281.Google Scholar
Lee, JS, Fetsch, JF, Wasdhal, DA, et al. A review of 40 patients with extra skeletal osteosarcoma. Cancer, 1995, 76: 22532259.Google Scholar
Rieske, P, Bartkowiak, JK, Szadowska, AM, et al. A comparative study of p53/MDM2 genes alterations and p53/MDM2 proteins immunoreactivity in soft tissue sarcomas. J Exp Clin Cancer Res, 1999, 18: 403416.Google Scholar
Kebudi, R, Ayan, I, Darendeliler, E, et al. Primary osteosarcoma of the cervical spine. A pediatric case report and review of the literature. Med Pediatr Oncol, 1994, 23: 162165.Google Scholar
Matsuzaka, K, Shimono, M, Uchiyama, et al. Lesions related to the formation of bone, cartilage or cementum arising in the oral area: a statistical study and review of the literature. Bull Tokyo Dent Coll, 2002, 43: 173180.Google Scholar
Huvos, AG. Bone Tumors. Diagnosis, Treatment and Prognosis, Ed 1, Phildelphia, WB Saunders, 1991.Google Scholar
Dahlin, DC, Unni, KK. Bone Tumors: General Aspects and Data on 8,542, Charles C Thomas Publishers, Springfield, Ed 4, 1986.Google Scholar
Schajowicz, F. Tumors and Tumor-Like Lesions of Bone. Pathology, Radiology and Treatment, Ed 2, New York, Springer-Verlag, 1994.Google Scholar
Mira, JM. Bone Tumors. Clinical Radiologic and Pathologic Correlations. Philadelphia Lea & Febiger, 1989.Google Scholar
Inwards, CY. Update on cartilage forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 6774.Google Scholar
Fu, Y-S, Perzin, KH. Non-epithelial tumors of the nasal cavity, paranasal sinuses and nasopharynx: a clinicopathologic study. III. Cartilaginous tumors (chondromas, chondrosarcomas) Cancer, 1974, 34: 453463.Google Scholar
Kilby, D, Ambegaokar, A. The nasal chondroma: 2 case reports and a survey of the literature. J Laryngol Otolgy, 1977, 91: 415426.Google Scholar
Ghogawala, Z, Moore, M, Strand, R, et al. Clival Chondroma in a child with Ollier’s disease. Case report. Pediat Neuro Surg, 1991, 17: 5356.Google Scholar
Rathore, PK, Mandal, S, Meher, R, et al. Giant ossifying chondroma of the skull. Int J Pediatr Otorhinolaryngol, 2005, 69: 17091711.Google Scholar
Kosaki, N, Yabe, H, Anazawa, U, et al. Bilateral multiple malignant transformation of Ollier’s disease. Skeletal Radiol, 2005, 34: 477484.Google Scholar
Cook, PL, Evans, PG. Chondrosarcoma of the skull in Maffucci’s syndrome. Br J Radiol, 1977, 50: 833836.Google Scholar
Hopyan, S, Gokgoz, N, Poon, R, et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet, 2002, 30: 306210.Google Scholar
Gnepp, DR. Diagnostic Surgical Pathology of the Head and Neck, Ed 2, Philadelphia, Saunders Elsevier, 2009, p. 743.Google Scholar
Saglik, Y, Altay, M, Unai, VS, et al. Manifestations and management of osteochondromas: a retrospective analysis of 382 patients. Acta Orthop, 2006, 72: 748755.Google Scholar
Dahlin, DC. Bone Tumors: General Aspects and Data on 6,221 Cases, Ed 3, Charles C Thomas, Springfield, IL, 1978.Google Scholar
Khurana, J, Abdul-Karim, F, Boree, JVMG. Osteochondroma. In Fletcher, CDM, Unni, KK, Metens, F. (eds) World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon, France, IRAC, 2002, pp. 234236.Google Scholar
Canella, P, Gardin, F, Borriani, S. Exostosis: development, evolution and relationships to malignant degeneration. Ital J Orthop Traumatol, 1981, 7: 293298.Google Scholar
Niedzwiecka, M, Kaczmarek, P, Krawczy, T. Benign but fatal. A case of a newborn with congenital osteochondroma. Bone, 2013, 54: 169171.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology. A Rationale for Diagnosis and Treatment, Ed 1, Chicago. Hanover Park, IL, Quintessence Publishing Company, 2012.Google Scholar
Shore, RM, Pozanski, AK, Anandappa, EC, et al. Arterial and venous compromise by osteochondroma. Pediatr Kadiol, 1994, 24: 3940.Google Scholar
Mehta, M, White, LM, Knapp, T, et al. MR imaging of symptomatic osteochondromas with pathologic correlations. Skeletal Radio, 1998, 27: 427436.Google Scholar
Garrison, RG, Uni, KK, McLeod, RA. Chondrosarcoma arising in osteochondroma. Cancer, 1982, 49: 18901897.Google Scholar
Ahn, J, Ludecke, H-J, Lidow, S, et al. Cloning of the putative suppressor gene for hereditary multiple exostoses (EXT1) Nat Genet, 1995, 11: 137143.Google Scholar
Zak, BM, Crawford, BE, Esko, JD. Hereditary multiple exostoses and heparin sulfate polymerization. Biochim Biophys Acta, 2002, 1573: 346355.Google Scholar
Feeley, MG, Boehm, AK, Bridge, RS, et al. Cytogenetic and molecular cytogenetic evidence of recurrent 8q 24.1 loss in osteochondroma. Cancer Genet Cytogenet, 2002, 137: 102107.Google Scholar
Ostuk, C, Tezer, M, Hamzaoglu, A. Solitary osteochondroma of the cervical spine causing spinal cord compression. Acta Orthop Belg, 2007, 73: 133136.Google Scholar
Chiurco, AA. Multiple exostoses of bone with fatal spinal cord compression, report of a case and brief review of the literature. Neurology, 1970, 20: 275278.Google Scholar
Kitsoulis, P, Vassiliki, G, Kallopi, S, et al. Osteochondromas: review of the clinical radiological and pathological features. In Vivo, 2008, 22: 633646.Google Scholar
Jaffe, HL, Lichtensteen, L. Chondromyxoid fibroma of bone: a distinctive benign tumor likely mistaken for chondrosarcoma. Arch Pathol, 1948, 45: 541551.Google Scholar
Rahimi, A, Beabout, JW, Ivins, JC, et al. Chondromyxoid fibroma: a clinicopathologic study of 76 cases. Cancer, 1972, 30: 726736.Google Scholar
Huvos, AG. Bone Tumors: Diagnosis Treatment and Prognosis. Philadelphia, W.B. Saunders, 1991, pp. 319330.Google Scholar
Batsakis, JG, Raymond, AK. Pathology consultation: chondromyxoid fibroma. Ann Otol Rhinol Laryngol, 1989, 98: 571572.Google Scholar
Hammad, H, Hammond, HL, Kurago, ZB. Chondromyxoid fibroma of the jaws: case report and review of the literature. Oral Surg Oral Med Oral Radiol Oral Pathol and Endod, 1998, 85: 293300.Google Scholar
Khatana, S, Singh, V, Gupta, A. Unilocular anterior mandibular swelling. Int J Pediatr Otolargol, 2013, 77: 964971.Google Scholar
Oh, N, Korsandi, AS, Scheri, S, et al. Chondromyxoid fibroma of the mastoid portion of the temporal bone. MRI and PET/CT findings and their correlation with histology. Ear Nose Throat J, 2013, 92: 201203.Google Scholar
Gupta, S, Heman-Ackah, SE, Harris, JA, et al. Chondromyxoid fibroma of the temporal bone. Oto Neuro Fol, 2012, 33: e71e72.Google Scholar
Sharma, M, Velho, V, Ginayake, R, et al. Chondromyxoid fibroma of the temporal bone: a rare entity. Neurosci, 2012, 7: 211214.Google Scholar
Aegerter, E, Kirkpatrick, JA. Orthopedic Diseases. Physiology Radiology. Phildaelphia, W.B. Saunders, 1963, pp. 580587.Google Scholar
Fotiadis, E, Akritopoulos, P, Samoladas, E. Chondromyxoid fibroma. A rare tumor with an unusual location. Arch Orthop Trauma Surg, 2008, 128: 371375.Google Scholar
Safar, A, Nelson, M, Neff, JR, et al. Recurrent anomalies of 6[inv(6)(p25q13] in chondromyxoid fibroma. Human Pathol, 2000, 31: 306311.Google Scholar
Justin, J, Akpalo, H, Gambarotti, M, et al. Phenotypic diversity in chondromyxoid fibroma reveals differentiation pattern of tumor mimicking fetal cartilage canals development. Am J Pathol, 2010, 177: 10721078.Google Scholar
Durr, HR, Liehemann, , Nerlich, A, et al. Chondromyxoid fibroma of bone. Arch Orthop Trauma Surg, 2000, 120: 4247.Google Scholar
Jaffe, H, Lichtenstein, L. Benign chondroblastoma of bone. A reinterpretation of the so called calcifying or chondromatous giant cell tumor. Am J Pathol, 1942, 18: 969991.Google Scholar
Springfield, DS, Capanna, R, Gherlinzoni, F, et al. Chondroblastoma. A review of seventy cases. J Bone Joint Surg Am, 1985, 67: 748755.Google Scholar
Sailhan, F, Chotel, F, Parot, R. Chondroblastoma of bone in a pediatric population. J Bone Joint Surg Am, 2009, 91: 21592168.Google Scholar
Kurt, AM, Unni, KK, Sim, FH, et al. Chondroblastoma of bone. Hum Pathol, 1989, 20: 965976.Google Scholar
Bertoni, F, Unni, KK, Beabout, W, et al. Chondroblastoma of the skull and facial bones. Am J Clin Pathol, 1987, 88: 19.Google Scholar
Nwoku, AL, Koch, H. Temporomandibular joint. A rare localization for bone tumors. J Maxillofac Surg, 1974, 2: 113.Google Scholar
Kondoh, T, Hamada, Y, Kamei, K, et al. Chondroblastoma of the mandibular condyle. Report of a case. J Oral Maxillofac Surg, 2002, 60: 198203.Google Scholar
Turwtto, RE, Kurt, AM, Sim, FH, et al. Chondroblastoma. Hum Pathol, 1993, 24: 944949.Google Scholar
Edel, G, Ueda, Y, Nakanishi, J, et al. Chondroblastoma of bone. A clinical, radiological, light and immunohistochemical study. Virhows Arch, 1992, 421: 355366.Google Scholar
Wolff, DA, Stevenson, S, Goldberg, VM. S-100 protein immunostaining identifies cells expressing a chondrocytic phenotype during articular cartilage repair. J Orthop Res, 1992, 10: 4957.Google Scholar
Nakamura, Y, Becker, LE, Marks, A. S-100 protein in tumors of cartilage and bone. Cancer, 1983, 52: 18201825.Google Scholar
Kyriakos, M, Land, VJ, Penning, HL, et al. Metastatic chondroblastoma. Report of a fatal case with a review of the literature on atypical, aggressive, and malignant chondroblastoma. Cancer, 1985, 55: 17701789.Google Scholar
Hohlweg, B, Metzger, MC, Bohin, J, et al. Advanced image findings and complete-assisted surgery of suspected synovial chondromatosis in the temporomandibular joint. J Magnetu Resonance Imaging, 2008, 28(5): 12511257.Google Scholar
Van Arx, DP, Simpson, MJ, Batman, P. Synovial chondromatosis of the temporomandibular joint. Br. J Oral Maxillofac Surg, 1988, 26: 297305.Google Scholar
Koyama, J, Ito, J, Hayashi, T, et al. Synovial chondromatosis in the temporomandibular joint complicated by displacement and calcification of the articular disk: report of two cases. AJNR Am J Neuroradiol, 2001, 22: 12031206.Google Scholar
Chen, A, Wong, LY, Sheu, CY. Distinguishing multiple rice body formation in chronic subacromial-subdeltoid bursitis from synovial chondromatosis. Skeletal Radiol, 2002, 31: 119121.Google Scholar
Kim, HG, Park, KH, Huh, JK. Magnetic resonance imaging characteristics of synovial chondromatosis of the temporomandibular joint. J Orofac Pain, 2002, 16: 148153.Google Scholar
Voge, TJ, Abolmaalin, N, Maurer, J. Neoplasms of the temporomandibular joint (TMJ). Diagnosis, differential diagnosis and intervention. Radiology, 2001, 41: 760771.Google Scholar
Guarda-Nardini, L, et al. Synovial chondromatosis of the temporomandibular joint: a case description with systemic review of the literature. Int J Oral Maxillofac Surg, 2010, 39: 745755Google Scholar
Fujita, S, Yoshida, H, Tojyo, I, et al. Synovial chondromatosis of the temporomandibular joint. Clinical and immunohistopathological considerations. Br J Oral Maxillofac Surg, 2004, 42: 259260.Google Scholar
Hohlweg-Majert, B, Schon, R, Schmelzeisen, R, et al. A navigational maxillofacial surgery using virtual models. World J Surg, 2005, 29: 15301538.Google Scholar
Chou, P, Mehta, S, Gonzalez-Crussi, F. Chondrosarcoma of the head in children. Pediatr Pathol, 1990, 10: 945958.Google Scholar
Pones, HAR, Pontes, FSC, deAbreu, MC, et al. Clinicopathological analysis of head and neck chondrosarcoma: three case reports and literature review. Int J Oral Maxillofac Surg, 2012, 41: 203210.Google Scholar
Prado Ornellas, F, Nishimoto, IN, deCruz Perez, DE. Head and neck chondrosarcoma: analysis of 16 cases. Br J Oral Maxillofac Surg, 2009, 47: 555557.Google Scholar
Huvos, AG, Marcove, RC. Chondrosarcoma in the young. A clinicopathologic analysis of patients younger than 25 years of age. Am J Surg Pathol, 1987, 11: 930942.Google Scholar
Liu, J, Hudkins, PG, Swee, RG et al. Bone sarcomas associated with Ollier’s disease. Cancer, 1987, 59: 13761385.Google Scholar
Garrington, GE, Scofield, HJ, Cornyn, J, et al. Osteosarcoma of the jaws: analysis of 56 cases. Cancer, 1967, 20: 377391.Google Scholar
Gupta, S. Mesenchymal chondrosarcoma of maxilla: a rare case report. Med Oral Pathol Oral Cir Bucal, 2011, 16: e493e496.Google Scholar
Turner, S, Kebudi, R, Peksayor, G, et al. Congenital mesenchymal chondrosarcoma of the orbit. Case report and review of the literature. Ophthalmology, 2004, 111: 10161022.Google Scholar
Gonzales-Lois, C, Cuevas, C, Abdullah, O, et al. Intracranial extra skeletal myxoid chondrosarcoma: case report and review of the literature. Acta Neurochir, 2002, 144: 735740.Google Scholar
Devaney, KS, Ferlito, A, Silver, CL.Cartilaginous tumors of the larynx. Otol Phinol Laryngol, 1995, 104: 251255.Google Scholar
Slootweg, PJ, Clear-cell chondrosarcoma of the maxilla. Report of a case. Oral Surg, Oral Med, Oral Pathol, 1980, 50: 233237.Google Scholar
Pang, ZG, He, XZ, Wu, LY, et al. Clinicopathologic and immunohistochemical study of 23 cases of mesenchymal chondrosarcoma. Zhonghu Bing Xue Za Zhi, 2011, 40: 368372.Google Scholar
Meis-Kundblom, JM, Bergh, P, Gunterberg, B, et al. Extra skeletal myxoid chondrosarcoma. A reappraisal of its morphologic spectrum and prognostic factors based on 17 cases. Am J Surg Pathol, 1999, 23: 636650.Google Scholar
Antonseon, CR, Argani, P, Erlandson, RA, et al. Skeletal and extra skeletal myxoid chondrosarcoma: a comparative clinicopathologic ultra structural and molecular study. Cancer, 1998, 83: 15041521.Google Scholar
Tarkkauren, M, Wiklend, T, Virolainen, M, et al. Differentiated chondrosarcoma with t(9;22) (q34; q11-12). Genes Chromosomes. Cancer, 1994, 9: 136140.Google Scholar
Stehman, G, Anderson, H, Mandahl, N, et al. Translocation of t(9;22) (q22;q12) is a primary cytogenetic abnormality in extraskeletal myxoid chondrosarcoma. Int J. Cancer, 1995, 62: 398402.Google Scholar
Szuhai, K, Cleton-Hansen, A-M, Pancras, GW, et al. Molecular pathology and its diagnostic use in bone tumors. Cancer Genetics, 2012, 205: 193204.Google Scholar
Gadwal, SR, Fanburg-Smith, JC, Gannon, FH, et al. Primary chondrosarcoma of the head and neck in pediatric patients. A clinicopathologic study of 14 cases with review of the literature. Cancer, 2000, 88: 21812188.Google Scholar
Angiero, F, Vinci, R, Sidoni, A, et al. Mesenchymal chondrosarcoma of the left coronoid process. Report of a unique case with clinical histopathologic and immunohistochemical findings, and a review of the literature. Quintessence Int, 2007, 38: 349355.Google Scholar
Dahlin, DC, MacCarty, CS. Chordoma: a study of 59 cases. Cancer, 1952, 5: 11701178.Google Scholar
Raffel, C, Wright, DC, Gutin, PH, Wilson, CB. Cranial chordomas: clinical presentation and results of operative and radiation therapy in twenty-six patients. Neurosurgery, 1985, 17: 703710.Google Scholar
Borba, LA, Al-Mefty, O, Mrak, RE, Suen, J. Cranial chordoma in children and adolescents. J Neurosurg, 1996, 84: 584591.Google Scholar
Omerod, R. A case of chordoma presenting in the nasopharynx. J Laryngol Otol, 1960, 74: 245254.Google Scholar
Whelan, MA, Reede, DL, Meisler, W, Bergeron, RT. CT of the base of the skull. Radiol Clin North Am, 1984, 22: 177217.Google Scholar
Erdem, E, Engardo, C, Antuaco, MD. Comprehensive review of intracranial chordoma. Radiographics, 2003, 23: 9951009.Google Scholar
Suba, Z, Hauser, P, Garami, M, Martonffy, K, et al. Skull base chordoma mimicking a preauricular neoplasm in a child: clinicopathological features and biological behaviour. J Craniomaxillofac Surg, 2007, 35: 3538.Google Scholar
Pamir, MN, Ozduman, K. Analysis of radiological features relative to histopathology in 42 skull-base chordomas and chondrosarcomas. Eru J Radiol, 2006, 58(3): 461470.Google Scholar
Chugh, R. Chordoma. The non-sarcoma primary bone tumor. Oncologist, 2007, 12: 13441350.Google Scholar
Oakley, GJ. Brachyury, Sox-9 and podoplanin, new markers in skull base chordomas vs chondrosarcoma differential. A tissue array-based comparative analysis. Mod Path, 2008, 21: 14611469.Google Scholar
Gosau, M, Draenert, FG, Winter, WA. Fibrosarcoma of the childhood mandible. Head and Face Medicine, 2008, 4: 2123.Google Scholar
Pereira, CM, Jorge, J, Hipolito, LP, et al. Primary intraosseous fibrosarcoma of the jaw. Int J Oral Maxillofac Surg, 2005, 34: 579581.Google Scholar
Kahn, LP, Vigorita, V. Fibrosarcoma of bone. In Fletcher, CDM, Unni, KK, Mertens, F, (eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon France, IARC Press, 2002, pp. 289290.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W., et al. A novel ETV-6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle tumors. Am J Surg Pathol, 2000, 24:937946.Google Scholar
Fletcher, CDM, Unni, KK, Mertens, I. World Health Organization Classification of Tumors, Pathology and Genetics of Soft Tissue and Bone: So-called Fibrohistocytic Tumors. Lyon, IARC Press, 2002, 120125.Google Scholar
Wanebo, HJ, Koness, RJ, MacFarlane, JK. Head and neck sarcoma: report of the head and neck sarcoma registry. Society of head & Neck Surgeons Committee on Research. Head and Neck, 1992, 14: 17.Google Scholar
Gorsky, M, Epstein, JB. Head and neck and inter-oral soft tissue sarcomas. Oral Oncol, 1998, 34: 292296.Google Scholar
Nagler, RM, Malkin, L, Ben-Arieh, Y, et al. Sarcoma of the maxillofacial region, follow-up of 25 cases. Anticancer Res, 2000, 20: 37353742.Google Scholar
Lee, JS, Fitz Gibbon, EJ, Chen, YR. Clinical guidelines for management of craniofacial fibrous dysplasia. Orphanet J Rare Dis, 2012, doi: 10.1186/1750-1172-7-51-52.Google Scholar
Tsai, EC, Santorreneos, S, Rutka, JT. Tumors of the skull bone in children: review of tumor types and management strategies. Neuro Surg Focus, 2002, 12: e1.Google Scholar
Riminucci, M, Liu, B, Corsi, A., et al. The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gsa gene: site-specific patterns and current histological hallmarks. J Pathol, 1999, 187: 249258.Google Scholar
Parekh, SG, Donthineni-Rao, R, Ricchetti, E., et al. Fibrous dysplasia. J Am Acad Orthop Surg, 2004, 12: 305313.Google Scholar
Valentini, V, Cassoni, A, Marianetti, TM, et al. Craniomaxillofacial fibrous dysplasia: conservative treatment or radical surgery? A retrospective study of 68 patients. Plastic and Reconstructive Surg, 2009, 123: 653660.Google Scholar
Michael, CB, Lee, AG, Patrinely, JR. Visual loss associated with fibrous dysplasia of the anterior skull base. Case report and review of the literature. J Neurosurg, 2000, 92: 350354.Google Scholar
Dian, E, Morris, DE, Lo, LJ, et al. Cyst degeneration in craniofacial fibrous dysplasia. Clinical presentation and management. J Neurosurg, 2007, 107: 504508.Google Scholar
Kelly, MH, Brillante, B, Collins, MT. Pain in fibrous dysplasia of bone: age-related changes and anatomical distribution of skeletal lesions. Osteoporos Int, 2008, 19: 5763.Google Scholar
Sciarretta, V, Pasquini, E, Frank, G., et al. Endoscopic treatment of benign tumors of the nose and paranasal sinuses. Report of 33 cases. Am J Rhinol, 2006, 20: 6471.Google Scholar
Long, JJ, Jung, HH, Lee, HM, et al. Monostatic fibrous dysplasia of temporal bone. Report of two cases and review of its characteristics. Acta Otolaryngol, 2005, 125: 11261129.Google Scholar
Chung, KF, Alaghband-Zadeh, J, Guz, A. Acromegaly and hyperprolactinemia in McCune-Albright syndrome. Evidence of hypothalamic dysfunction. Am J Dis Chil, 1983, 137: 134136.Google Scholar
Aarkkog, D, Tveteraas, E. McCune-Albright’s syndrome following adrenalectomy for Cushing’s syndrome in infancy. J Pediatr, 1968, 73: 8996.Google Scholar
Aoki, T, Kouho, H, Hisaoka, M., et al. Intramuscular myxoma with fibrous dysplasia: a report of two cases with a review of the literature. Path Int, 1995, 45: 65171.Google Scholar
Shi, RR, Zue-Fen, L, Zang, R, et al. GNAS mutational analysis in differentiating fibrous dysplasia and ossifying fibroma of the jaw. Modern Pathology, 2013, 26: 10231031.Google Scholar
Marx, KE, Stern, D. Oral and Maxillofacial Pathology: A Rational for Diagnosis and Treatment, Ed 2, Chicago, Quintessence Publishing Company, 2010, p. 791.Google Scholar
Ruggieri, P, Sim, FH, Band, JR, et al. Malignancies in fibrous dysplasia. Cancer, 1994, 73: 14111424.Google Scholar
Eversole, LR, Leider, AS, Nelson, K. Ossifying fibroma: a clinicopathologic study of sixty-four cases. Oral Surg, Oral Med, Oral Pathol, Oral Radio, Endod, 1985, 60: 505511.Google Scholar
Mintz, S, Velez, I. Central ossifying fibroma: an analysis of 20 cases and review of the literature. Quintessence Int, 2007, 38: 222227.Google Scholar
Waldron, CA. Fibro-osseous lesions of the jaws. J Oral Maxillofac Surg, 1993, 51: 828835.Google Scholar
Traiantafillidou, K, Venetis, G, Karakinaris, G., et al. Ossifying fibroma of the jaws: a clinical study of 14 cases and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiology Endod, 2012, 114: 193199.Google Scholar
Slootweg, PJ, El-Mofty, SK. Ossifying fibroma. In Barnes, L Everson, JW, Reichart, P, Sidransky, D (eds) Pathology and Genetics Head and Neck Tumors. Lyon, France, IARC Press, 2005, pp. 319320.Google Scholar
Su, L, Weathers, DR, Waldron, CA. Distinguishing features of focal cemento-osseous dysplasia and cemento-ossifying fibromas. II A clinical and radiographic spectrum of 316 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1997, 84: 540549.Google Scholar
El-Mofty, S. Psammomatoid and trabecular juvenile ossifying fibroma of the craniofacial skeleton. Two distinct clinicopathologic entities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93: 296304.Google Scholar
Slootweg, PJ, Muller, H. Juvenile ossifying fibroma. Report of four cases. J Craniomaxillofac Surg, 1990, 18: 125129.Google Scholar
Slootweb, PJ, Panders, AK, Loopmans, R., et al. Juvenile ossifying fibroma. An analysis of 33 cases with emphasis on histopathological aspects. J Oral Pathol Med, 1994, 23: 385388.Google Scholar
Johnson, LC, Youseti, TN, Heffiner, DK et al. Juvenile active ossifying fibroma; its nature dynamics and origin. Acta Otolaryngol Sluppl 1991, 448: 140.Google Scholar
Thankappan, S, Nair, S, Thomas, KP et al. Psammomatoid and trabecular varients of juvenile ossifying fibroma-two case reports. Indian J Radiol Imaging, 2009, 19: 116119.Google Scholar
Kaplan, I, Manor, R, Yahalom, R, et al. Giant cell granuloma associated with central ossifying fibromas of the jaws: a clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103: e35e41.Google Scholar
Chang, CC, Hung, HY, Chang, JX. Central ossifying fibroma: a clinicopathologic study of 28 caes. J Formos Med Assoc, 2008, 107: 288294.Google Scholar
Guriel, M, Uckan, N, Guler, N, et al. Surgical and reconstructive treatment of a large ossifying fibromas of the mandible. A retrognathic patient. J Oral Maxillofac Surg, 2001, 59: 10971100.Google Scholar
Gogl, H. Das Psammo-osteoid-fibroma der nas und ihreso neben humohlen. Monatsschr Ohrenheilk Lar Rhin, 1949, 83: 110.Google Scholar
Sawyer, JR, Tryka, AF, Bell, JM, et al. Non random chromosome break-points at Xq26 and 2q33 characteristic cemento-ossifying fibromas of the orbit. Cancer, 1995, 76: 18531859.Google Scholar
Dal Cin, P, Sciot, R, Fossion, E, et al. Chromosomal abnormalities in cemento ossifying fibroma. Cancer Genet Cytogenet, 1993, 71: 170172.Google Scholar
Barnes, L, Everson, JW, Reichart, et al. Pathology and Genetics. Head and Neck Tumors. WHO Classification of Tumors. Lyon, IARC Press, 2005.Google Scholar
Stauropoulos, J, Katz, J. Central giant cell granuloma; a systematic review of the radiographic characteristics with addition of 20 new cases. Dentomaxillofac Radiol, 2002, 31: 213217.Google Scholar
Kruse-Losler, B, Raihanatou, D, Gaetner, C, et al. Central giant cell granuloma of the jaws: a clinical, radiologic and histopathologic study of 26 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: 346354.Google Scholar
Liu, B, Yu, SF, Li, TJ. Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts. J Oral Pathol Med, 2003, 32: 367375.Google Scholar
Huvos, AG. Bone Tumors. Diagnosis, Treatment and Prognosis, Ed 2, Philadelphia, WB Saunders 1991.Google Scholar
Ardekian, L, Manor, R, Peled, M, et al. Bilateral central giant cell granulomas in a patient with neurofibromatosis. Report of a case and review of the literature. J Oral Maxillofac Surg, 1999, 57: 869872.Google Scholar
Catani, F, Pardi, E, Borsari, S., et al. Molecular pathogenesis of primary hyperthyroidism. J Endocraniol Invest, 2011, 34: 3539.Google Scholar
Itonaga, I, Hussein, I, Kudo, O, et al. Cellular mechanisms of osteoclast formation and lacunar resorption in giant cell granuloma of the jaw. J Oral Pathol Med, 2003, 32: 224231.Google Scholar
Amaral, FR, Diniz, GM, Bernardes, VF. WWOX expression in giant cell lesions of the jaws. Oral Surg, Oral Med, Oral Pathol, Oral Radio, 2013, 116: 210213.Google Scholar
Sezer, B, Koyuneu, B, Gomel, M, et al. Interlesional corticosteroid inject for central giant cell granuloma. A case report and review of the literature. Turk J Pediat, 2005, 47: 7581.Google Scholar
O’Regan, M, Gibb, DH, Odell, W. Rapid growth of giant ell granuloma in pregnancy treated with calcitonin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001, 92: 532538.Google Scholar
Kaban, LB, Troulis, MJ, Ebb, D, et al. Antiangiogenic therapy with interferon alpha for giant cell lesions of the jaws. J Oral Maxillofac Surg, 2002, 60: 11031113.Google Scholar
Wieneke, JA, Gannon, KH, Heffner, DK, et al. Giant cell tumor of the larynx. A clinicopathologic study of eight cases and a review of the literature. Neurosurgery, 2001, 48: 424429.Google Scholar
Ayclair, PL, Cucnin, P, Kratochuil, FJ, et al. A clinical and histomorphologic comparison of the central giant cell granuloma and the giant cell tumor. Oral Surg Oral Med Oral Pathol, 1988, 66: 197208.Google Scholar
Gingell, JC, Levy, BA, Beckerman, T, et al. Aneurysmal bone cyst. J Oral Maxillofac Surg, 1984, 42: 527534.Google Scholar
Martinez, V, Sissions, HA. Aneurysmal bone cyst. A review of 123 cases including primary lesions and those secondary to other bone pathology. Cancer, 1988, 61: 22912304.Google Scholar
Lee, HL, Cho, KS, Choi, KU. Aggressive aneurysmal bone cyst of the maxilla confused with telangiectic osteosarcoma. Auris Nasus Larynx, 2012, 39: 337340.Google Scholar
Panoutakopoulous, G, Pandis, N, Kyrlazoglou, I, et al. Recurrent t(16;17) (q22; p13) in aneurysmal bone cysts. Genes Chromosomes. Cancer, 1999, 26: 265266.Google Scholar
Ye Pringle, LM, Lau, AW, et al. TRE 17/USP6 oncogene translocation in aneurysmal bone cyst indices matrix metalloproteinase production via actiuation of N7-Kappa B. Oncogene, 2010, 29: 36193629.Google Scholar
Vergel DeDios, AM, Bond, JR, Shives, TC, et al. Aneurysmal bone cyst. A clinicopathologic study of 238 cases. Cancer, 1992, 69: 29212931.Google Scholar
Ruiter, DJ, van Rijssel, JG, van der Velde, EA. Aneurysmal bone cysts. A clinicopathological study of 105 cases. Cancer, 1977, 39: 22312235.Google Scholar
Briadley, GW, Greene, JF Jr, Frankel, LJ. Case reports: malignant transformation of aneurysmal bone cysts. Clin Orthop Relat Res, 2005, 438: 282287.Google Scholar
Kryiakos, M, Hardy, D. Malignant transformation of aneurysmal bone cyst with analysis of the literature. Cancer, 1991, 68: 17701780.Google Scholar
Goshen, O, Aviel-Ronen, S, Dori, S, Talmi, YP. Brown tumour of hyperparathyroidism in the mandible associated with atypical parathyroid adenoma. J Laryngol Otol, 2000, 114: 302304.Google Scholar
Guney, E, Yigibasi, OG, Bayram, F, et al. Brown tumor of the maxilla associated with primary hyperparathyroidism. Auris Nasus Larynx, 2001, 28: 369372.Google Scholar
Watanabe, T, Tsukamoto, F, Shimizu, T, et al. Familial isolated hyperparathyroidism caused by single adenoma: a distinct entity different from multiple endocrine neoplasia. Endocr J, 1998, 45: 637646.Google Scholar
Yamazaki, H, Ota, Y, Aoki, T, et al. Brown tumor of the maxilla and mandible: progressive mandibular brown tumor after removal of parathyroid adenoma. J Oral Maxillofac Surg, 2003, 61: 719722.Google Scholar
Scott, SN, Graham, SM, Sato, Y, Robinson, RA. Brown tumour of the palate in a patient with primary hyperparathyroidism. Ann Otol Rhinol Laryngol, 1999, 108: 9194.Google Scholar
Jebasingh, F, Jubbin, J, Shah, A, et al. Bilateral maxillary brown tumours as a first presentation of primary hyperparathyroidism. Oral Maxillofac Surg, 2008, 12: 97100.Google Scholar
Jones, WA. Familial multilocular cystic disease of the jaws. Am J Cancer, 1933, 17: 946.Google Scholar
Ueki, Y, Tiziani, V, Santanna, C, Fukai, N, et al. Mutations in the gene encoding c-Ab1-binding protein SH3BP2 cause Cherubism. Nat Genet, 2001, 28: 125126.Google Scholar
De Lange, J, Van den Akker, HP. Clinical and radiological features of central giant-cell lesions of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 99: 464470.Google Scholar
Kozakiewicz, M, Percynska-Partyka, W, Kobos, J. Cherubism – clinical picture and treatment. Oral Dis, 2001, 7: 123130.Google Scholar
Krompecher, Z. Zur histogenese and morpjologic den adamantinome and sonstiger kiefergeschwulste. Beitr Pathol Anat, 1918, 64: 165197.Google Scholar
Barrett, AW, Morgan, M, Ramsay, AD, Farthing, PM, Newman, L, Speight, PM. A clinicopathological and immunohistochemical analysis of melanotic neuroectodermal tumor of infancy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93: 688698.Google Scholar
Siddiqui, TH, Amin, MR, Bashar, MA, Ahmed, Z, et al. Melanotic neuroectodermal tumour of infancy. Mymensingh Med J, 2011, 20: 312315.Google Scholar
Agarwal, P, Saxena, S, Kumar, , GLupta, R. Melanotic neuroectodermal tumor of infancy: Presentation of a case affecting the maxilla. J Oral Maxillofac Pathol, 2010, 14: 2932.Google Scholar
Borello, ED, Gorlin, RJ. Melanotic neuroectodermal tumor of infancy – a neoplasm of neural crese origin. Report of a case associated with high urinary excretion of vanilmandelic acid. Cancer, 1966, 12: 196206.Google Scholar
Khoddami, M, Squire, J, Zielenska, M, Thorner, P. Melanotic neuroectodermal tumor of infancy: a molecular genetic study. Pediatr Dev Pathol, 1998, 1: 295299.Google Scholar
Kaya, S, Unal, OF, Sarac, S, Gedikoglu, G. Melanotic neuroectodermal tumor of infancy: report of two cases and review of literature. Int J Pediatr Otorhinolaryngol, 2000, 52: 169–72.Google Scholar
Dehner, LP, Sibley, RK, Sauk, JJ. Malignant neuroectodermal tumor of infancy. A clinical, pathologic, ultrastructural and tissue culture study. Cancer, 1979, 43: 389410.Google Scholar
deAlva, E, Pardo, J. Ewing’s tumor. Tumor biology and clinical application. Int J Surg Pathol, 2001, 9: 717.Google Scholar
Ries, LAG, Smith, MA, Garney, JG, et al. Cancer Incidence and Survival among Children and Adolescents. United States SEER Program. 1975–1995, NIH Pub. No 99-4649. Bethesda, National Cancer Institute SEER Program, 1999.Google Scholar
Linnoila, RI, Trokos, M, Triche, TJ, et al. Evidence for neural origin and PAS positive variants of the malignant small cell tumor of thoraco-pulmonary region. (Askin tumor). Am J Surg Pathol, 1985, 10: 124133.Google Scholar
Carvajal, R, Meyers, P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol Oncol Clin North Am, 2005, 19: 501525.Google Scholar
Windfuhr, JP. Primitive neuroectodermal tumor of the head and neck: incidence, diagnosis and management. Ann Otol Rhinol Laryngol, 2004, 113: 533543.Google Scholar
Dick, EA, McHugh, K, Kimber, C, et al. Imaging of non-central nervous system primitive neuroectodermal tumors. Diagnostic features and correlation with outcome. Clin Radiol, 2001, 56: 205215.Google Scholar
Ewing, J. Diffuse endothelioma of bone. Proc NY Pathol Soc, 1921, 21: 1724.Google Scholar
Folpe, AL, Goldblum, JR, Rubin, BP, et al. Morphologic and immunophenotype diversity in Ewing family tumors. A study of 66 genetically confirmed cases. Am J Surg Pathol, 2005, 29: 10251033.Google Scholar
Cangir, TJ, Vietti, EA, Gehan, G, et al. Ewing’s sarcoma metastatic at diagnosis. Cancer, 1990, 55: 887893.Google Scholar
Vaccani, JP, Forte, V, deJong, AL, et al. Ewing’s sarcoma of the head and neck in children. Int J Pediatric Otorhinolaryngol, 1999, 48: 209216.Google Scholar
Van Doominck, JA, Schaub, B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma. A report from Children’s Oncology Group. J Clin Oncol, 2010, 28: 19891994.Google Scholar
deAlva, E, Pardo, J. Ewing’s tumor. Tumor biology and clinical application. Int J Surg Pathol, 2001, 9: 717.Google Scholar
Ries, LAG, Smith, MA, Garney, JG, et al. Cancer Incidence and Survival among Children and Adolescents. United States SEER Program. 1975–1995, NIH Pub. No 99-4649. Bethesda, National Cancer Institute SEER Program, 1999.Google Scholar
Linnoila, RI, Trokos, M, Triche, TJ, et al. Evidence for neural origin and PAS positive variants of the malignant small cell tumor of thoraco-pulmonary region. (Askin tumor). Am J Surg Pathol, 1985, 10: 124133.Google Scholar
Carvajal, R, Meyers, P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol Oncol Clin North Am, 2005, 19: 501525.Google Scholar
Windfuhr, JP. Primitive neuroectodermal tumor of the head and neck: incidence, diagnosis and management. Ann Otol Rhinol Laryngol, 2004, 113: 533543.Google Scholar
Dick, EA, McHugh, K, Kimber, C, et al. Imaging of non-central nervous system primitive neuroectodermal tumors. Diagnostic features and correlation with outcome. Clin Radiol, 2001, 56: 205215.Google Scholar
Ewing, J. Diffuse endothelioma of bone. Proc NY Pathol Soc, 1921, 21: 1724.Google Scholar
Folpe, AL, Goldblum, JR, Rubin, BP, et al. Morphologic and immunophenotype diversity in Ewing family tumors. A study of 66 genetically confirmed cases. Am J Surg Pathol, 2005, 29: 10251033.Google Scholar
Cangir, TJ, Vietti, EA, Gehan, G, et al. Ewing’s sarcoma metastatic at diagnosis. Cancer, 1990, 55: 887893.Google Scholar
Vaccani, JP, Forte, V, deJong, AL, et al. Ewing’s sarcoma of the head and neck in children. Int J Pediatric Otorhinolaryngol, 1999, 48: 209216.Google Scholar
Van Doominck, JA, Schaub, B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma. A report from Children’s Oncology Group. J Clin Oncol, 2010, 28: 19891994.Google Scholar
Matsuzaka, K, Shimono, M, Uchiyama, HN, et al. Lesions related to the formation of bone, cartilage, or cementum arising in the oral area: a statistical study and review of the literature. Bull Tokyo Dent Coll, 2002, 43: 173180.Google Scholar
Larrea-Oyarbide, N, Valmaseda-Castellon, , Berini-Ayte’s, L. Osteomas of the craniofacial region: review of 106 cases. J Oral Pathol Med, 2008, 37: 3842.Google Scholar
Samy, LL, Mostafa, H. Osteomata of the nose and paranasal sinuses with a report of 21 cases. J Laryngol Otol, 1971, 85: 449469.Google Scholar
Smith, ME, Calcaterra, TC. Frontal sinus osteoma. Ann Otol Rhinal laryngeal, 1989, 98: 896900.Google Scholar
Nielson, GP, Rosenberg, E. Update on bone forming tumors of the head and neck. Head Neck Pathol, 2007, 1: 8793.Google Scholar
Halawi, AM, Maley, JE, Robinson, RA, et al. Craniofacial osteoma: clinical presentation and patterns of growth. Am J Rhinol Allergy, 2013, 27: 128133.Google Scholar
Earwaker, J. Paranasal sinus osteomas. A review of 46 cases. Skeletal Radiol, 1993, 22: 417423.Google Scholar
Kaplan, I, Nicolaou, Z, Hateul, D, et al. Solitary central osteoma of the jaws. A diagnostic dilemma. Oral Surg Oral Med Oral Pathol Oral Radiol Endodo, 2008, 106: e22e29.Google Scholar
Derniciaro, E. Gardner’s syndrome. Dermatol Clin, 1995, 13: 5156.Google Scholar
McHugh, JB, Mukherji, SK, Lucas, DR. Sino-orbital osteoma: a clinicopathological study of 45 surgically treated cases with emphasis on tumors with osteoblastic-like features. Arch Pathol Lab Med, 2009, 133: 15871593.Google Scholar
BoKhari, K, Hameed, My, Ajmal, M, et al. Benign osteoblastoma involving maxilla: a case report and review of the literature. Case Reports in Dentistry, 2012, doi 10.1155/2012/351241.Google Scholar
Alvares Capelozza, AL, Giao Dezotti, MS, Casati Alvares, L, et al. Osteoblastoma of the mandible: systemic review of the literature and report of a case. Dentomaxillofac Radiol, 2005, 34: 18.Google Scholar
Loizaga, JM, Calvo, M, Lopez Barea, F, et al. Osteoblastoma and osteoid osteoma. Clinical and morphological features of 162 cases. Pathol Red. Pract, 1993, 189: 3341.Google Scholar
Jones, AC, Prihoda, TJ, Kacher, JE, et al. Osteoblastoma of the maxilla and mandible: report of 24 cases, review of the literature and discussion of its relationship to osteoid osteoma of the jaws. Oral Surg, Oral Med, Oral Pathol, Oral Radiol Endod, 2006, 102: 639650.Google Scholar
Lucas, DR, Unni, KK, McLeod, RA, et al. Osteoblastoma: Clinicopathologic study of 306 cases. Human Pathol, 1994, 25: 117134.Google Scholar
Berry, M, Mankin, H, Gebhardt, M, et al. Osteoblastoma: a 30 year study of 99 cases. J Surg Oncology, 2008, 98: 179183.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathology, 2007, 1: 8793.Google Scholar
Della Rocca, C, Huvos, AG. Osteoblasoma. Varied histological presentations with a benign clinical course. An analysis of 55 cases. Am J Surg Pathol, 1996, 20: 841850.Google Scholar
Kiyohara, H, Sawatsubashi, M, Matsumoto, N., et al. Benign Osteoblastoma of the ethmoid sinus. Auris Nasus Larynx, 2013, 40: 338341.Google Scholar
Ahmed, MS, Nwoky, AL. Benign Osteoblastoma of the mandibular ramus. Review of the literature and report of a case. J Oral Maxillofac Surg, 2000, 58: 13101317.Google Scholar
Kulkarni, MM, Shah, AK, Ahire, S. Aggressive Osteoblastoma of the mandible: a case report. Int J Contemp Dent, 2011, 2: 135138.Google Scholar
Manjunatha, BS, Sunit, P, Amit, M, et al. Osteoblastoma of the jaws: a report of a case and review of the literature. Clinics and Practice, 2011, 118: 256258.Google Scholar
Unni, KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases, Ed 5, Philadelphia, Lippincott-Raven, 1996.Google Scholar
Ohkubo, T, Hernendez, JC, Goya, K, et al. “Aggressive” osteoblastoma of the maxilla. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodo, 1989, 68: 6973.Google Scholar
Dal Cin, P, Sciot, R, Samson, J, et al. Osteoid osteoma and osteoblastoma with clonal chromosome changes. Br J Cancer, 1994, 78: 344348.Google Scholar
Mascarello, JT, Krous, HF, Carpenter, DM. Unbalanced translocation resecting in the loss of the chromosome 17 short arm in osteoblastoma. Cancer Genet Cytogenet, 1993, 69: 6567.Google Scholar
Bertoni, F, Unni, KK, Lucas, DR, et al. Osteoblasoma with cartilagninous matrix an unusual morphologic presentation in 18 cases. Am J Surg Pathol, 1993, 17: 6974.Google Scholar
Ahmed, MS, Nwoky, AL. Benign osteoblastoma of the mandibular ramus. Review of the literature and report of a case. J Oral Maxillofac Surg, 2000, 58: 13101317.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 8793.Google Scholar
Zwimpfer, JJ, Tucker, WS, Faulkner, JF. Osteoid osteoma of the cervical spine. Case reports and review of the literature. Can J Surg, 1982, 25: 637641.Google Scholar
Pettine, KA, Klassen, RA. Osteoid-osteoma and osteoblastoma of the spine. J Bone Joint Surg Am, 1986, 68A: 354361.Google Scholar
Frassica, FJ, Waltarip, RL, Sponseller, PD, et al. Clinicopathologic features and treatment of osteoid osteoma and osteoblastoma in children and adolescents. Orthop Clin North A, 1996, 27: 559574.Google Scholar
Gitelis, S, Schajowiet, F. Osteoid osteoma and osteoblastoma. Orthop Clin North Am, 1989, 20: 313325.Google Scholar
Greenspan, A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical imaging, pathologic and differential considerations. Skeletal Radiol, 1993, 22: 485500.Google Scholar
Raskas, DS, Graziano, GP, Herzenberg, FJ, et al. Osteoid osteoma and osteoblastoma of the spine. J Spinal Disor, 1992, 5: 204211.Google Scholar
Scheine, NJ, Malone, M, Ashworth, MA, Jacques, TS. Diagnostic Pediatric Surgical Pathology. Churchill Livingstone, Elsevier, 2000, p. 231.Google Scholar
Gamba, JL, Martinez, S, Apple, J, et al. Computed tomography of axial skeletal osteoid osteomas. AJR Am Roent Genol, 1984, 142: 769772.Google Scholar
O’Connell, JS, Nanthakumar, SS, Nielsen, GP, et al. Osteoid ostoma: the uniquely innervated bone tumor. Mod Pathol, 1998, 11: 175180.Google Scholar
Rosenthal, DI, Hornicek, FJ, Wolfe, MW, et al. Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am, 1998, 80: 815821.Google Scholar
Nielsen, GP, Rosenberg, AE. Update on bone forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 8793.Google Scholar
Garrington, GE, Scofield, HJ, Cornyn, J, et al. Osteosarcoma of the jaws. Analysis of 56 cases. Cancer, 1967, 20: 377391.Google Scholar
Saito, Y, Miyajima, C, Nakao, K, et al. Highly malignant submandibular extra skeletal osteosarcoma in a young patient. Auris Nasus Larynx, 2008, 35: 576578.Google Scholar
Jasnau, S, Meyer, U, Potratz, J, et al. Craniofacial osteosarcoma: experience of the cooperative German-Austrain-Swiss osteosarcoma study group. Oral Oncology, 2008, 44: 286294.Google Scholar
Huh, WW, Holsinger, FC, Levy, A, et al. Osteosarcoma of the jaw in children and young adults. Head and Neck, 2012, 34: 981984.Google Scholar
Kim, HJ, McLawhorn, AS, Boland, PJ. Malignant osseous tumors of the pediatric spine. J Am Acad Orthopedic Sufg, 2012, 20: 646656.Google Scholar
Salvati, M, Ciappeta, P, Raco, A. Osteosarcoma of the skull. Clinical remarks on 19 cases. Cancer, 1993, 71: 22102216.Google Scholar
Lei, YY, Vantassel, P, Nauert, C, et al. Craniofacial osteosarcomas plain film, CT and MRI findings in 46 cases. AJR Am J Roentgerol, 1988, 150: 13971402.Google Scholar
Bertoni, F, Dallera, P, Bacchini, P, et al. The insituto Rizzoli-Beretta experience with osteosarcoma of the jaws. Cancer, 1991, 68: 15551563.Google Scholar
Clark, JL, Unni, KK, Dahlin, DC, et al. Osteosarcoma of the jaw. Cancer, 1983, 51: 23112316.Google Scholar
Shives, TC, Dahlin, DC, Sim, FH, et al. Osteosarcoma of the spine. J Bone Joint Surg Am, 1986, 86A: 660668.Google Scholar
Barwick, KW, Huvos, AG, Smith, J. Primary osteogenic sarcoma of the vertebral column: a clinicopathologic correlation of ten patients. Cancer, 1980, 46: 595604.Google Scholar
Kebudi, R, Ayan, I, Darendelier, F, et al. Primary osteosarcoma of the cervical spine. A pediatric case report and review of the literature. Med Pediatr Oncol, 1994, 23: 162165.Google Scholar
Chan, CW, Kung, TM, Ma, L. Telangietic osteosarcoma of the mandible. Cancer, 1986, 58: 21102115.Google Scholar
Giangaspero, F, Stracca, V, Visona, A, et al. Small cell-osteosarcoma of the mandible. Case report. Appl Pathol, 1984, 2: 2831.Google Scholar
Kurt, AM, Unni, K, McLeod, RA, et al. Low grade intraosseous osteosarcoma. Cancer, 1990, 65: 14181438.Google Scholar
Garbe, LR, Monges, GM, Pellegrin, FM, et al. Ultrastructural study of osteosarcomas. Hum Pathol, 1981, 12: 891896.Google Scholar
Badawi-EL, ZH, Muhammad, EM, Noaman, HH. Role of immunohistochemical cyclo-oxygenase-2 (COX-2) and osteocalcin in differentiating between osteoblastomas and osteosarcomas. Mallays J Pathol, 2012, 34: 1523.Google Scholar
Araki, N, Uchida, A, Kimura, T, et al. Involvement of the retroblastoma gene in primary osteosarcomas and other bone and soft tissue tumors. Clin Orthop Relat Res, 1991, 271–277.Google Scholar
Reissman, PT, Simon, MA, Lee, WH, et al. Studies of the retinoblastoma gene in human sarcomas. Oncogene, 1989, 4: 839843.Google Scholar
Wadayama, B, Toguchida, J, Shimizy, T, et al. Mutation spectrum of the retroblastoma gene in osteosarcomas. Cancer Res, 1994, 54: 30423048.Google Scholar
Biegel, JA, Womer, BA, Emanuel, BS. Complex karyotypes in a series of pediatric osteosarcomas. Cancer Genet Cytogenet, 1989, 38: 89100.Google Scholar
vanDaniel, M, Hulsebos, TJ. Amplification and over expression of genes 17p 11.2-p1c in osteosarcoma. Cancer Genet Cytogenet, 2004, 153: 7780.Google Scholar
Minio, AJ. Periosteal osteosarcoma of the mandible. Int J Oral Maxillofac Surg, 1995, 24: 226228.Google Scholar
Patterson, A, Greer, RO, Howard, D. Periosteal osteosarcoma of the maxilla. A case report and review of literature. J Oral Maxillofac Surg, 1990, 48: 522526.Google Scholar
Bridge, JA, Nelson, M, McComb, F, et al. Cytogenetic findings in 73 osteosarcoma specimens and review of the literature. Cancer Genet Cytogenet, 1997, 95: 7487.Google Scholar
Millar, BG, Browne, RM, Flood, TR. Juxtacortical osteosarcomas of the jaws. Br J Oral Maxillofac Surg, 1990, 28: 7379.Google Scholar
Kumar, R, Moser, P, Madewelll, JF, et al. Parosteal osteosarcoma arising in cranial bones. Clinical and radiologic features in eight patients. AJR Am J Roentgerol, 1990, 155: 113117.Google Scholar
Longhi, A, Errani, C, Pepaolis, M, et al. Primary bone osteosarcoma in the pediatric age. State of the art. Cancer Treat Rev, 2006, 32: 423436.Google Scholar
Daw, NC, Mahmoud, HH, Meyer, WH, et al. Bone sarcomas of the head and neck in children. The St. Jude Children’s Research hospital Experience. Cancer, 2000, 88: 21722180.Google Scholar
Unni, KK. Parosteal osteosarcoma. In Fletcher, CDM, Unni, KK, Mertens, F (eds) Pathology and Genetics of Tumours of Soft Tissue. France, IARC Press, 2002, pp. 279281.Google Scholar
Lee, JS, Fetsch, JF, Wasdhal, DA, et al. A review of 40 patients with extra skeletal osteosarcoma. Cancer, 1995, 76: 22532259.Google Scholar
Rieske, P, Bartkowiak, JK, Szadowska, AM, et al. A comparative study of p53/MDM2 genes alterations and p53/MDM2 proteins immunoreactivity in soft tissue sarcomas. J Exp Clin Cancer Res, 1999, 18: 403416.Google Scholar
Kebudi, R, Ayan, I, Darendeliler, E, et al. Primary osteosarcoma of the cervical spine. A pediatric case report and review of the literature. Med Pediatr Oncol, 1994, 23: 162165.Google Scholar
Matsuzaka, K, Shimono, M, Uchiyama, et al. Lesions related to the formation of bone, cartilage or cementum arising in the oral area: a statistical study and review of the literature. Bull Tokyo Dent Coll, 2002, 43: 173180.Google Scholar
Huvos, AG. Bone Tumors. Diagnosis, Treatment and Prognosis, Ed 1, Phildelphia, WB Saunders, 1991.Google Scholar
Dahlin, DC, Unni, KK. Bone Tumors: General Aspects and Data on 8,542, Charles C Thomas Publishers, Springfield, Ed 4, 1986.Google Scholar
Schajowicz, F. Tumors and Tumor-Like Lesions of Bone. Pathology, Radiology and Treatment, Ed 2, New York, Springer-Verlag, 1994.Google Scholar
Mira, JM. Bone Tumors. Clinical Radiologic and Pathologic Correlations. Philadelphia Lea & Febiger, 1989.Google Scholar
Inwards, CY. Update on cartilage forming tumors of the head and neck. Head and Neck Pathol, 2007, 1: 6774.Google Scholar
Fu, Y-S, Perzin, KH. Non-epithelial tumors of the nasal cavity, paranasal sinuses and nasopharynx: a clinicopathologic study. III. Cartilaginous tumors (chondromas, chondrosarcomas) Cancer, 1974, 34: 453463.Google Scholar
Kilby, D, Ambegaokar, A. The nasal chondroma: 2 case reports and a survey of the literature. J Laryngol Otolgy, 1977, 91: 415426.Google Scholar
Ghogawala, Z, Moore, M, Strand, R, et al. Clival Chondroma in a child with Ollier’s disease. Case report. Pediat Neuro Surg, 1991, 17: 5356.Google Scholar
Rathore, PK, Mandal, S, Meher, R, et al. Giant ossifying chondroma of the skull. Int J Pediatr Otorhinolaryngol, 2005, 69: 17091711.Google Scholar
Kosaki, N, Yabe, H, Anazawa, U, et al. Bilateral multiple malignant transformation of Ollier’s disease. Skeletal Radiol, 2005, 34: 477484.Google Scholar
Cook, PL, Evans, PG. Chondrosarcoma of the skull in Maffucci’s syndrome. Br J Radiol, 1977, 50: 833836.Google Scholar
Hopyan, S, Gokgoz, N, Poon, R, et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet, 2002, 30: 306210.Google Scholar
Gnepp, DR. Diagnostic Surgical Pathology of the Head and Neck, Ed 2, Philadelphia, Saunders Elsevier, 2009, p. 743.Google Scholar
Saglik, Y, Altay, M, Unai, VS, et al. Manifestations and management of osteochondromas: a retrospective analysis of 382 patients. Acta Orthop, 2006, 72: 748755.Google Scholar
Dahlin, DC. Bone Tumors: General Aspects and Data on 6,221 Cases, Ed 3, Charles C Thomas, Springfield, IL, 1978.Google Scholar
Khurana, J, Abdul-Karim, F, Boree, JVMG. Osteochondroma. In Fletcher, CDM, Unni, KK, Metens, F. (eds) World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon, France, IRAC, 2002, pp. 234236.Google Scholar
Canella, P, Gardin, F, Borriani, S. Exostosis: development, evolution and relationships to malignant degeneration. Ital J Orthop Traumatol, 1981, 7: 293298.Google Scholar
Niedzwiecka, M, Kaczmarek, P, Krawczy, T. Benign but fatal. A case of a newborn with congenital osteochondroma. Bone, 2013, 54: 169171.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology. A Rationale for Diagnosis and Treatment, Ed 1, Chicago. Hanover Park, IL, Quintessence Publishing Company, 2012.Google Scholar
Shore, RM, Pozanski, AK, Anandappa, EC, et al. Arterial and venous compromise by osteochondroma. Pediatr Kadiol, 1994, 24: 3940.Google Scholar
Mehta, M, White, LM, Knapp, T, et al. MR imaging of symptomatic osteochondromas with pathologic correlations. Skeletal Radio, 1998, 27: 427436.Google Scholar
Garrison, RG, Uni, KK, McLeod, RA. Chondrosarcoma arising in osteochondroma. Cancer, 1982, 49: 18901897.Google Scholar
Ahn, J, Ludecke, H-J, Lidow, S, et al. Cloning of the putative suppressor gene for hereditary multiple exostoses (EXT1) Nat Genet, 1995, 11: 137143.Google Scholar
Zak, BM, Crawford, BE, Esko, JD. Hereditary multiple exostoses and heparin sulfate polymerization. Biochim Biophys Acta, 2002, 1573: 346355.Google Scholar
Feeley, MG, Boehm, AK, Bridge, RS, et al. Cytogenetic and molecular cytogenetic evidence of recurrent 8q 24.1 loss in osteochondroma. Cancer Genet Cytogenet, 2002, 137: 102107.Google Scholar
Ostuk, C, Tezer, M, Hamzaoglu, A. Solitary osteochondroma of the cervical spine causing spinal cord compression. Acta Orthop Belg, 2007, 73: 133136.Google Scholar
Chiurco, AA. Multiple exostoses of bone with fatal spinal cord compression, report of a case and brief review of the literature. Neurology, 1970, 20: 275278.Google Scholar
Kitsoulis, P, Vassiliki, G, Kallopi, S, et al. Osteochondromas: review of the clinical radiological and pathological features. In Vivo, 2008, 22: 633646.Google Scholar
Jaffe, HL, Lichtensteen, L. Chondromyxoid fibroma of bone: a distinctive benign tumor likely mistaken for chondrosarcoma. Arch Pathol, 1948, 45: 541551.Google Scholar
Rahimi, A, Beabout, JW, Ivins, JC, et al. Chondromyxoid fibroma: a clinicopathologic study of 76 cases. Cancer, 1972, 30: 726736.Google Scholar
Huvos, AG. Bone Tumors: Diagnosis Treatment and Prognosis. Philadelphia, W.B. Saunders, 1991, pp. 319330.Google Scholar
Batsakis, JG, Raymond, AK. Pathology consultation: chondromyxoid fibroma. Ann Otol Rhinol Laryngol, 1989, 98: 571572.Google Scholar
Hammad, H, Hammond, HL, Kurago, ZB. Chondromyxoid fibroma of the jaws: case report and review of the literature. Oral Surg Oral Med Oral Radiol Oral Pathol and Endod, 1998, 85: 293300.Google Scholar
Khatana, S, Singh, V, Gupta, A. Unilocular anterior mandibular swelling. Int J Pediatr Otolargol, 2013, 77: 964971.Google Scholar
Oh, N, Korsandi, AS, Scheri, S, et al. Chondromyxoid fibroma of the mastoid portion of the temporal bone. MRI and PET/CT findings and their correlation with histology. Ear Nose Throat J, 2013, 92: 201203.Google Scholar
Gupta, S, Heman-Ackah, SE, Harris, JA, et al. Chondromyxoid fibroma of the temporal bone. Oto Neuro Fol, 2012, 33: e71e72.Google Scholar
Sharma, M, Velho, V, Ginayake, R, et al. Chondromyxoid fibroma of the temporal bone: a rare entity. Neurosci, 2012, 7: 211214.Google Scholar
Aegerter, E, Kirkpatrick, JA. Orthopedic Diseases. Physiology Radiology. Phildaelphia, W.B. Saunders, 1963, pp. 580587.Google Scholar
Fotiadis, E, Akritopoulos, P, Samoladas, E. Chondromyxoid fibroma. A rare tumor with an unusual location. Arch Orthop Trauma Surg, 2008, 128: 371375.Google Scholar
Safar, A, Nelson, M, Neff, JR, et al. Recurrent anomalies of 6[inv(6)(p25q13] in chondromyxoid fibroma. Human Pathol, 2000, 31: 306311.Google Scholar
Justin, J, Akpalo, H, Gambarotti, M, et al. Phenotypic diversity in chondromyxoid fibroma reveals differentiation pattern of tumor mimicking fetal cartilage canals development. Am J Pathol, 2010, 177: 10721078.Google Scholar
Durr, HR, Liehemann, , Nerlich, A, et al. Chondromyxoid fibroma of bone. Arch Orthop Trauma Surg, 2000, 120: 4247.Google Scholar
Jaffe, H, Lichtenstein, L. Benign chondroblastoma of bone. A reinterpretation of the so called calcifying or chondromatous giant cell tumor. Am J Pathol, 1942, 18: 969991.Google Scholar
Springfield, DS, Capanna, R, Gherlinzoni, F, et al. Chondroblastoma. A review of seventy cases. J Bone Joint Surg Am, 1985, 67: 748755.Google Scholar
Sailhan, F, Chotel, F, Parot, R. Chondroblastoma of bone in a pediatric population. J Bone Joint Surg Am, 2009, 91: 21592168.Google Scholar
Kurt, AM, Unni, KK, Sim, FH, et al. Chondroblastoma of bone. Hum Pathol, 1989, 20: 965976.Google Scholar
Bertoni, F, Unni, KK, Beabout, W, et al. Chondroblastoma of the skull and facial bones. Am J Clin Pathol, 1987, 88: 19.Google Scholar
Nwoku, AL, Koch, H. Temporomandibular joint. A rare localization for bone tumors. J Maxillofac Surg, 1974, 2: 113.Google Scholar
Kondoh, T, Hamada, Y, Kamei, K, et al. Chondroblastoma of the mandibular condyle. Report of a case. J Oral Maxillofac Surg, 2002, 60: 198203.Google Scholar
Turwtto, RE, Kurt, AM, Sim, FH, et al. Chondroblastoma. Hum Pathol, 1993, 24: 944949.Google Scholar
Edel, G, Ueda, Y, Nakanishi, J, et al. Chondroblastoma of bone. A clinical, radiological, light and immunohistochemical study. Virhows Arch, 1992, 421: 355366.Google Scholar
Wolff, DA, Stevenson, S, Goldberg, VM. S-100 protein immunostaining identifies cells expressing a chondrocytic phenotype during articular cartilage repair. J Orthop Res, 1992, 10: 4957.Google Scholar
Nakamura, Y, Becker, LE, Marks, A. S-100 protein in tumors of cartilage and bone. Cancer, 1983, 52: 18201825.Google Scholar
Kyriakos, M, Land, VJ, Penning, HL, et al. Metastatic chondroblastoma. Report of a fatal case with a review of the literature on atypical, aggressive, and malignant chondroblastoma. Cancer, 1985, 55: 17701789.Google Scholar
Hohlweg, B, Metzger, MC, Bohin, J, et al. Advanced image findings and complete-assisted surgery of suspected synovial chondromatosis in the temporomandibular joint. J Magnetu Resonance Imaging, 2008, 28(5): 12511257.Google Scholar
Van Arx, DP, Simpson, MJ, Batman, P. Synovial chondromatosis of the temporomandibular joint. Br. J Oral Maxillofac Surg, 1988, 26: 297305.Google Scholar
Koyama, J, Ito, J, Hayashi, T, et al. Synovial chondromatosis in the temporomandibular joint complicated by displacement and calcification of the articular disk: report of two cases. AJNR Am J Neuroradiol, 2001, 22: 12031206.Google Scholar
Chen, A, Wong, LY, Sheu, CY. Distinguishing multiple rice body formation in chronic subacromial-subdeltoid bursitis from synovial chondromatosis. Skeletal Radiol, 2002, 31: 119121.Google Scholar
Kim, HG, Park, KH, Huh, JK. Magnetic resonance imaging characteristics of synovial chondromatosis of the temporomandibular joint. J Orofac Pain, 2002, 16: 148153.Google Scholar
Voge, TJ, Abolmaalin, N, Maurer, J. Neoplasms of the temporomandibular joint (TMJ). Diagnosis, differential diagnosis and intervention. Radiology, 2001, 41: 760771.Google Scholar
Guarda-Nardini, L, et al. Synovial chondromatosis of the temporomandibular joint: a case description with systemic review of the literature. Int J Oral Maxillofac Surg, 2010, 39: 745755Google Scholar
Fujita, S, Yoshida, H, Tojyo, I, et al. Synovial chondromatosis of the temporomandibular joint. Clinical and immunohistopathological considerations. Br J Oral Maxillofac Surg, 2004, 42: 259260.Google Scholar
Hohlweg-Majert, B, Schon, R, Schmelzeisen, R, et al. A navigational maxillofacial surgery using virtual models. World J Surg, 2005, 29: 15301538.Google Scholar
Chou, P, Mehta, S, Gonzalez-Crussi, F. Chondrosarcoma of the head in children. Pediatr Pathol, 1990, 10: 945958.Google Scholar
Pones, HAR, Pontes, FSC, deAbreu, MC, et al. Clinicopathological analysis of head and neck chondrosarcoma: three case reports and literature review. Int J Oral Maxillofac Surg, 2012, 41: 203210.Google Scholar
Prado Ornellas, F, Nishimoto, IN, deCruz Perez, DE. Head and neck chondrosarcoma: analysis of 16 cases. Br J Oral Maxillofac Surg, 2009, 47: 555557.Google Scholar
Huvos, AG, Marcove, RC. Chondrosarcoma in the young. A clinicopathologic analysis of patients younger than 25 years of age. Am J Surg Pathol, 1987, 11: 930942.Google Scholar
Liu, J, Hudkins, PG, Swee, RG et al. Bone sarcomas associated with Ollier’s disease. Cancer, 1987, 59: 13761385.Google Scholar
Garrington, GE, Scofield, HJ, Cornyn, J, et al. Osteosarcoma of the jaws: analysis of 56 cases. Cancer, 1967, 20: 377391.Google Scholar
Gupta, S. Mesenchymal chondrosarcoma of maxilla: a rare case report. Med Oral Pathol Oral Cir Bucal, 2011, 16: e493e496.Google Scholar
Turner, S, Kebudi, R, Peksayor, G, et al. Congenital mesenchymal chondrosarcoma of the orbit. Case report and review of the literature. Ophthalmology, 2004, 111: 10161022.Google Scholar
Gonzales-Lois, C, Cuevas, C, Abdullah, O, et al. Intracranial extra skeletal myxoid chondrosarcoma: case report and review of the literature. Acta Neurochir, 2002, 144: 735740.Google Scholar
Devaney, KS, Ferlito, A, Silver, CL.Cartilaginous tumors of the larynx. Otol Phinol Laryngol, 1995, 104: 251255.Google Scholar
Slootweg, PJ, Clear-cell chondrosarcoma of the maxilla. Report of a case. Oral Surg, Oral Med, Oral Pathol, 1980, 50: 233237.Google Scholar
Pang, ZG, He, XZ, Wu, LY, et al. Clinicopathologic and immunohistochemical study of 23 cases of mesenchymal chondrosarcoma. Zhonghu Bing Xue Za Zhi, 2011, 40: 368372.Google Scholar
Meis-Kundblom, JM, Bergh, P, Gunterberg, B, et al. Extra skeletal myxoid chondrosarcoma. A reappraisal of its morphologic spectrum and prognostic factors based on 17 cases. Am J Surg Pathol, 1999, 23: 636650.Google Scholar
Antonseon, CR, Argani, P, Erlandson, RA, et al. Skeletal and extra skeletal myxoid chondrosarcoma: a comparative clinicopathologic ultra structural and molecular study. Cancer, 1998, 83: 15041521.Google Scholar
Tarkkauren, M, Wiklend, T, Virolainen, M, et al. Differentiated chondrosarcoma with t(9;22) (q34; q11-12). Genes Chromosomes. Cancer, 1994, 9: 136140.Google Scholar
Stehman, G, Anderson, H, Mandahl, N, et al. Translocation of t(9;22) (q22;q12) is a primary cytogenetic abnormality in extraskeletal myxoid chondrosarcoma. Int J. Cancer, 1995, 62: 398402.Google Scholar
Szuhai, K, Cleton-Hansen, A-M, Pancras, GW, et al. Molecular pathology and its diagnostic use in bone tumors. Cancer Genetics, 2012, 205: 193204.Google Scholar
Gadwal, SR, Fanburg-Smith, JC, Gannon, FH, et al. Primary chondrosarcoma of the head and neck in pediatric patients. A clinicopathologic study of 14 cases with review of the literature. Cancer, 2000, 88: 21812188.Google Scholar
Angiero, F, Vinci, R, Sidoni, A, et al. Mesenchymal chondrosarcoma of the left coronoid process. Report of a unique case with clinical histopathologic and immunohistochemical findings, and a review of the literature. Quintessence Int, 2007, 38: 349355.Google Scholar
Dahlin, DC, MacCarty, CS. Chordoma: a study of 59 cases. Cancer, 1952, 5: 11701178.Google Scholar
Raffel, C, Wright, DC, Gutin, PH, Wilson, CB. Cranial chordomas: clinical presentation and results of operative and radiation therapy in twenty-six patients. Neurosurgery, 1985, 17: 703710.Google Scholar
Borba, LA, Al-Mefty, O, Mrak, RE, Suen, J. Cranial chordoma in children and adolescents. J Neurosurg, 1996, 84: 584591.Google Scholar
Omerod, R. A case of chordoma presenting in the nasopharynx. J Laryngol Otol, 1960, 74: 245254.Google Scholar
Whelan, MA, Reede, DL, Meisler, W, Bergeron, RT. CT of the base of the skull. Radiol Clin North Am, 1984, 22: 177217.Google Scholar
Erdem, E, Engardo, C, Antuaco, MD. Comprehensive review of intracranial chordoma. Radiographics, 2003, 23: 9951009.Google Scholar
Suba, Z, Hauser, P, Garami, M, Martonffy, K, et al. Skull base chordoma mimicking a preauricular neoplasm in a child: clinicopathological features and biological behaviour. J Craniomaxillofac Surg, 2007, 35: 3538.Google Scholar
Pamir, MN, Ozduman, K. Analysis of radiological features relative to histopathology in 42 skull-base chordomas and chondrosarcomas. Eru J Radiol, 2006, 58(3): 461470.Google Scholar
Chugh, R. Chordoma. The non-sarcoma primary bone tumor. Oncologist, 2007, 12: 13441350.Google Scholar
Oakley, GJ. Brachyury, Sox-9 and podoplanin, new markers in skull base chordomas vs chondrosarcoma differential. A tissue array-based comparative analysis. Mod Path, 2008, 21: 14611469.Google Scholar
Gosau, M, Draenert, FG, Winter, WA. Fibrosarcoma of the childhood mandible. Head and Face Medicine, 2008, 4: 2123.Google Scholar
Pereira, CM, Jorge, J, Hipolito, LP, et al. Primary intraosseous fibrosarcoma of the jaw. Int J Oral Maxillofac Surg, 2005, 34: 579581.Google Scholar
Kahn, LP, Vigorita, V. Fibrosarcoma of bone. In Fletcher, CDM, Unni, KK, Mertens, F, (eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon France, IARC Press, 2002, pp. 289290.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W., et al. A novel ETV-6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle tumors. Am J Surg Pathol, 2000, 24:937946.Google Scholar
Fletcher, CDM, Unni, KK, Mertens, I. World Health Organization Classification of Tumors, Pathology and Genetics of Soft Tissue and Bone: So-called Fibrohistocytic Tumors. Lyon, IARC Press, 2002, 120125.Google Scholar
Wanebo, HJ, Koness, RJ, MacFarlane, JK. Head and neck sarcoma: report of the head and neck sarcoma registry. Society of head & Neck Surgeons Committee on Research. Head and Neck, 1992, 14: 17.Google Scholar
Gorsky, M, Epstein, JB. Head and neck and inter-oral soft tissue sarcomas. Oral Oncol, 1998, 34: 292296.Google Scholar
Nagler, RM, Malkin, L, Ben-Arieh, Y, et al. Sarcoma of the maxillofacial region, follow-up of 25 cases. Anticancer Res, 2000, 20: 37353742.Google Scholar
Lee, JS, Fitz Gibbon, EJ, Chen, YR. Clinical guidelines for management of craniofacial fibrous dysplasia. Orphanet J Rare Dis, 2012, doi: 10.1186/1750-1172-7-51-52.Google Scholar
Tsai, EC, Santorreneos, S, Rutka, JT. Tumors of the skull bone in children: review of tumor types and management strategies. Neuro Surg Focus, 2002, 12: e1.Google Scholar
Riminucci, M, Liu, B, Corsi, A., et al. The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gsa gene: site-specific patterns and current histological hallmarks. J Pathol, 1999, 187: 249258.Google Scholar
Parekh, SG, Donthineni-Rao, R, Ricchetti, E., et al. Fibrous dysplasia. J Am Acad Orthop Surg, 2004, 12: 305313.Google Scholar
Valentini, V, Cassoni, A, Marianetti, TM, et al. Craniomaxillofacial fibrous dysplasia: conservative treatment or radical surgery? A retrospective study of 68 patients. Plastic and Reconstructive Surg, 2009, 123: 653660.Google Scholar
Michael, CB, Lee, AG, Patrinely, JR. Visual loss associated with fibrous dysplasia of the anterior skull base. Case report and review of the literature. J Neurosurg, 2000, 92: 350354.Google Scholar
Dian, E, Morris, DE, Lo, LJ, et al. Cyst degeneration in craniofacial fibrous dysplasia. Clinical presentation and management. J Neurosurg, 2007, 107: 504508.Google Scholar
Kelly, MH, Brillante, B, Collins, MT. Pain in fibrous dysplasia of bone: age-related changes and anatomical distribution of skeletal lesions. Osteoporos Int, 2008, 19: 5763.Google Scholar
Sciarretta, V, Pasquini, E, Frank, G., et al. Endoscopic treatment of benign tumors of the nose and paranasal sinuses. Report of 33 cases. Am J Rhinol, 2006, 20: 6471.Google Scholar
Long, JJ, Jung, HH, Lee, HM, et al. Monostatic fibrous dysplasia of temporal bone. Report of two cases and review of its characteristics. Acta Otolaryngol, 2005, 125: 11261129.Google Scholar
Chung, KF, Alaghband-Zadeh, J, Guz, A. Acromegaly and hyperprolactinemia in McCune-Albright syndrome. Evidence of hypothalamic dysfunction. Am J Dis Chil, 1983, 137: 134136.Google Scholar
Aarkkog, D, Tveteraas, E. McCune-Albright’s syndrome following adrenalectomy for Cushing’s syndrome in infancy. J Pediatr, 1968, 73: 8996.Google Scholar
Aoki, T, Kouho, H, Hisaoka, M., et al. Intramuscular myxoma with fibrous dysplasia: a report of two cases with a review of the literature. Path Int, 1995, 45: 65171.Google Scholar
Shi, RR, Zue-Fen, L, Zang, R, et al. GNAS mutational analysis in differentiating fibrous dysplasia and ossifying fibroma of the jaw. Modern Pathology, 2013, 26: 10231031.Google Scholar
Marx, KE, Stern, D. Oral and Maxillofacial Pathology: A Rational for Diagnosis and Treatment, Ed 2, Chicago, Quintessence Publishing Company, 2010, p. 791.Google Scholar
Ruggieri, P, Sim, FH, Band, JR, et al. Malignancies in fibrous dysplasia. Cancer, 1994, 73: 14111424.Google Scholar
Eversole, LR, Leider, AS, Nelson, K. Ossifying fibroma: a clinicopathologic study of sixty-four cases. Oral Surg, Oral Med, Oral Pathol, Oral Radio, Endod, 1985, 60: 505511.Google Scholar
Mintz, S, Velez, I. Central ossifying fibroma: an analysis of 20 cases and review of the literature. Quintessence Int, 2007, 38: 222227.Google Scholar
Waldron, CA. Fibro-osseous lesions of the jaws. J Oral Maxillofac Surg, 1993, 51: 828835.Google Scholar
Traiantafillidou, K, Venetis, G, Karakinaris, G., et al. Ossifying fibroma of the jaws: a clinical study of 14 cases and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiology Endod, 2012, 114: 193199.Google Scholar
Slootweg, PJ, El-Mofty, SK. Ossifying fibroma. In Barnes, L Everson, JW, Reichart, P, Sidransky, D (eds) Pathology and Genetics Head and Neck Tumors. Lyon, France, IARC Press, 2005, pp. 319320.Google Scholar
Su, L, Weathers, DR, Waldron, CA. Distinguishing features of focal cemento-osseous dysplasia and cemento-ossifying fibromas. II A clinical and radiographic spectrum of 316 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1997, 84: 540549.Google Scholar
El-Mofty, S. Psammomatoid and trabecular juvenile ossifying fibroma of the craniofacial skeleton. Two distinct clinicopathologic entities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93: 296304.Google Scholar
Slootweg, PJ, Muller, H. Juvenile ossifying fibroma. Report of four cases. J Craniomaxillofac Surg, 1990, 18: 125129.Google Scholar
Slootweb, PJ, Panders, AK, Loopmans, R., et al. Juvenile ossifying fibroma. An analysis of 33 cases with emphasis on histopathological aspects. J Oral Pathol Med, 1994, 23: 385388.Google Scholar
Johnson, LC, Youseti, TN, Heffiner, DK et al. Juvenile active ossifying fibroma; its nature dynamics and origin. Acta Otolaryngol Sluppl 1991, 448: 140.Google Scholar
Thankappan, S, Nair, S, Thomas, KP et al. Psammomatoid and trabecular varients of juvenile ossifying fibroma-two case reports. Indian J Radiol Imaging, 2009, 19: 116119.Google Scholar
Kaplan, I, Manor, R, Yahalom, R, et al. Giant cell granuloma associated with central ossifying fibromas of the jaws: a clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103: e35e41.Google Scholar
Chang, CC, Hung, HY, Chang, JX. Central ossifying fibroma: a clinicopathologic study of 28 caes. J Formos Med Assoc, 2008, 107: 288294.Google Scholar
Guriel, M, Uckan, N, Guler, N, et al. Surgical and reconstructive treatment of a large ossifying fibromas of the mandible. A retrognathic patient. J Oral Maxillofac Surg, 2001, 59: 10971100.Google Scholar
Gogl, H. Das Psammo-osteoid-fibroma der nas und ihreso neben humohlen. Monatsschr Ohrenheilk Lar Rhin, 1949, 83: 110.Google Scholar
Sawyer, JR, Tryka, AF, Bell, JM, et al. Non random chromosome break-points at Xq26 and 2q33 characteristic cemento-ossifying fibromas of the orbit. Cancer, 1995, 76: 18531859.Google Scholar
Dal Cin, P, Sciot, R, Fossion, E, et al. Chromosomal abnormalities in cemento ossifying fibroma. Cancer Genet Cytogenet, 1993, 71: 170172.Google Scholar
Barnes, L, Everson, JW, Reichart, et al. Pathology and Genetics. Head and Neck Tumors. WHO Classification of Tumors. Lyon, IARC Press, 2005.Google Scholar
Stauropoulos, J, Katz, J. Central giant cell granuloma; a systematic review of the radiographic characteristics with addition of 20 new cases. Dentomaxillofac Radiol, 2002, 31: 213217.Google Scholar
Kruse-Losler, B, Raihanatou, D, Gaetner, C, et al. Central giant cell granuloma of the jaws: a clinical, radiologic and histopathologic study of 26 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: 346354.Google Scholar
Liu, B, Yu, SF, Li, TJ. Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts. J Oral Pathol Med, 2003, 32: 367375.Google Scholar
Huvos, AG. Bone Tumors. Diagnosis, Treatment and Prognosis, Ed 2, Philadelphia, WB Saunders 1991.Google Scholar
Ardekian, L, Manor, R, Peled, M, et al. Bilateral central giant cell granulomas in a patient with neurofibromatosis. Report of a case and review of the literature. J Oral Maxillofac Surg, 1999, 57: 869872.Google Scholar
Catani, F, Pardi, E, Borsari, S., et al. Molecular pathogenesis of primary hyperthyroidism. J Endocraniol Invest, 2011, 34: 3539.Google Scholar
Itonaga, I, Hussein, I, Kudo, O, et al. Cellular mechanisms of osteoclast formation and lacunar resorption in giant cell granuloma of the jaw. J Oral Pathol Med, 2003, 32: 224231.Google Scholar
Amaral, FR, Diniz, GM, Bernardes, VF. WWOX expression in giant cell lesions of the jaws. Oral Surg, Oral Med, Oral Pathol, Oral Radio, 2013, 116: 210213.Google Scholar
Sezer, B, Koyuneu, B, Gomel, M, et al. Interlesional corticosteroid inject for central giant cell granuloma. A case report and review of the literature. Turk J Pediat, 2005, 47: 7581.Google Scholar
O’Regan, M, Gibb, DH, Odell, W. Rapid growth of giant ell granuloma in pregnancy treated with calcitonin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001, 92: 532538.Google Scholar
Kaban, LB, Troulis, MJ, Ebb, D, et al. Antiangiogenic therapy with interferon alpha for giant cell lesions of the jaws. J Oral Maxillofac Surg, 2002, 60: 11031113.Google Scholar
Wieneke, JA, Gannon, KH, Heffner, DK, et al. Giant cell tumor of the larynx. A clinicopathologic study of eight cases and a review of the literature. Neurosurgery, 2001, 48: 424429.Google Scholar
Ayclair, PL, Cucnin, P, Kratochuil, FJ, et al. A clinical and histomorphologic comparison of the central giant cell granuloma and the giant cell tumor. Oral Surg Oral Med Oral Pathol, 1988, 66: 197208.Google Scholar
Gingell, JC, Levy, BA, Beckerman, T, et al. Aneurysmal bone cyst. J Oral Maxillofac Surg, 1984, 42: 527534.Google Scholar
Martinez, V, Sissions, HA. Aneurysmal bone cyst. A review of 123 cases including primary lesions and those secondary to other bone pathology. Cancer, 1988, 61: 22912304.Google Scholar
Lee, HL, Cho, KS, Choi, KU. Aggressive aneurysmal bone cyst of the maxilla confused with telangiectic osteosarcoma. Auris Nasus Larynx, 2012, 39: 337340.Google Scholar
Panoutakopoulous, G, Pandis, N, Kyrlazoglou, I, et al. Recurrent t(16;17) (q22; p13) in aneurysmal bone cysts. Genes Chromosomes. Cancer, 1999, 26: 265266.Google Scholar
Ye Pringle, LM, Lau, AW, et al. TRE 17/USP6 oncogene translocation in aneurysmal bone cyst indices matrix metalloproteinase production via actiuation of N7-Kappa B. Oncogene, 2010, 29: 36193629.Google Scholar
Vergel DeDios, AM, Bond, JR, Shives, TC, et al. Aneurysmal bone cyst. A clinicopathologic study of 238 cases. Cancer, 1992, 69: 29212931.Google Scholar
Ruiter, DJ, van Rijssel, JG, van der Velde, EA. Aneurysmal bone cysts. A clinicopathological study of 105 cases. Cancer, 1977, 39: 22312235.Google Scholar
Briadley, GW, Greene, JF Jr, Frankel, LJ. Case reports: malignant transformation of aneurysmal bone cysts. Clin Orthop Relat Res, 2005, 438: 282287.Google Scholar
Kryiakos, M, Hardy, D. Malignant transformation of aneurysmal bone cyst with analysis of the literature. Cancer, 1991, 68: 17701780.Google Scholar
Goshen, O, Aviel-Ronen, S, Dori, S, Talmi, YP. Brown tumour of hyperparathyroidism in the mandible associated with atypical parathyroid adenoma. J Laryngol Otol, 2000, 114: 302304.Google Scholar
Guney, E, Yigibasi, OG, Bayram, F, et al. Brown tumor of the maxilla associated with primary hyperparathyroidism. Auris Nasus Larynx, 2001, 28: 369372.Google Scholar
Watanabe, T, Tsukamoto, F, Shimizu, T, et al. Familial isolated hyperparathyroidism caused by single adenoma: a distinct entity different from multiple endocrine neoplasia. Endocr J, 1998, 45: 637646.Google Scholar
Yamazaki, H, Ota, Y, Aoki, T, et al. Brown tumor of the maxilla and mandible: progressive mandibular brown tumor after removal of parathyroid adenoma. J Oral Maxillofac Surg, 2003, 61: 719722.Google Scholar
Scott, SN, Graham, SM, Sato, Y, Robinson, RA. Brown tumour of the palate in a patient with primary hyperparathyroidism. Ann Otol Rhinol Laryngol, 1999, 108: 9194.Google Scholar
Jebasingh, F, Jubbin, J, Shah, A, et al. Bilateral maxillary brown tumours as a first presentation of primary hyperparathyroidism. Oral Maxillofac Surg, 2008, 12: 97100.Google Scholar
Jones, WA. Familial multilocular cystic disease of the jaws. Am J Cancer, 1933, 17: 946.Google Scholar
Ueki, Y, Tiziani, V, Santanna, C, Fukai, N, et al. Mutations in the gene encoding c-Ab1-binding protein SH3BP2 cause Cherubism. Nat Genet, 2001, 28: 125126.Google Scholar
De Lange, J, Van den Akker, HP. Clinical and radiological features of central giant-cell lesions of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 99: 464470.Google Scholar
Kozakiewicz, M, Percynska-Partyka, W, Kobos, J. Cherubism – clinical picture and treatment. Oral Dis, 2001, 7: 123130.Google Scholar
Krompecher, Z. Zur histogenese and morpjologic den adamantinome and sonstiger kiefergeschwulste. Beitr Pathol Anat, 1918, 64: 165197.Google Scholar
Barrett, AW, Morgan, M, Ramsay, AD, Farthing, PM, Newman, L, Speight, PM. A clinicopathological and immunohistochemical analysis of melanotic neuroectodermal tumor of infancy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93: 688698.Google Scholar
Siddiqui, TH, Amin, MR, Bashar, MA, Ahmed, Z, et al. Melanotic neuroectodermal tumour of infancy. Mymensingh Med J, 2011, 20: 312315.Google Scholar
Agarwal, P, Saxena, S, Kumar, , GLupta, R. Melanotic neuroectodermal tumor of infancy: Presentation of a case affecting the maxilla. J Oral Maxillofac Pathol, 2010, 14: 2932.Google Scholar
Borello, ED, Gorlin, RJ. Melanotic neuroectodermal tumor of infancy – a neoplasm of neural crese origin. Report of a case associated with high urinary excretion of vanilmandelic acid. Cancer, 1966, 12: 196206.Google Scholar
Khoddami, M, Squire, J, Zielenska, M, Thorner, P. Melanotic neuroectodermal tumor of infancy: a molecular genetic study. Pediatr Dev Pathol, 1998, 1: 295299.Google Scholar
Kaya, S, Unal, OF, Sarac, S, Gedikoglu, G. Melanotic neuroectodermal tumor of infancy: report of two cases and review of literature. Int J Pediatr Otorhinolaryngol, 2000, 52: 169–72.Google Scholar
Dehner, LP, Sibley, RK, Sauk, JJ. Malignant neuroectodermal tumor of infancy. A clinical, pathologic, ultrastructural and tissue culture study. Cancer, 1979, 43: 389410.Google Scholar
deAlva, E, Pardo, J. Ewing’s tumor. Tumor biology and clinical application. Int J Surg Pathol, 2001, 9: 717.Google Scholar
Ries, LAG, Smith, MA, Garney, JG, et al. Cancer Incidence and Survival among Children and Adolescents. United States SEER Program. 1975–1995, NIH Pub. No 99-4649. Bethesda, National Cancer Institute SEER Program, 1999.Google Scholar
Linnoila, RI, Trokos, M, Triche, TJ, et al. Evidence for neural origin and PAS positive variants of the malignant small cell tumor of thoraco-pulmonary region. (Askin tumor). Am J Surg Pathol, 1985, 10: 124133.Google Scholar
Carvajal, R, Meyers, P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol Oncol Clin North Am, 2005, 19: 501525.Google Scholar
Windfuhr, JP. Primitive neuroectodermal tumor of the head and neck: incidence, diagnosis and management. Ann Otol Rhinol Laryngol, 2004, 113: 533543.Google Scholar
Dick, EA, McHugh, K, Kimber, C, et al. Imaging of non-central nervous system primitive neuroectodermal tumors. Diagnostic features and correlation with outcome. Clin Radiol, 2001, 56: 205215.Google Scholar
Ewing, J. Diffuse endothelioma of bone. Proc NY Pathol Soc, 1921, 21: 1724.Google Scholar
Folpe, AL, Goldblum, JR, Rubin, BP, et al. Morphologic and immunophenotype diversity in Ewing family tumors. A study of 66 genetically confirmed cases. Am J Surg Pathol, 2005, 29: 10251033.Google Scholar
Cangir, TJ, Vietti, EA, Gehan, G, et al. Ewing’s sarcoma metastatic at diagnosis. Cancer, 1990, 55: 887893.Google Scholar
Vaccani, JP, Forte, V, deJong, AL, et al. Ewing’s sarcoma of the head and neck in children. Int J Pediatric Otorhinolaryngol, 1999, 48: 209216.Google Scholar
Van Doominck, JA, Schaub, B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma. A report from Children’s Oncology Group. J Clin Oncol, 2010, 28: 19891994.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×