Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-25T02:59:06.687Z Has data issue: false hasContentIssue false

18 - Mouse Genetics – How Does It Inform Male Fertility Research?

Published online by Cambridge University Press:  25 May 2017

Christopher J. De Jonge
Affiliation:
University of Minnesota
Christopher L. R. Barratt
Affiliation:
University of Dundee
Ryuzo Yanagimachi
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Sperm Cell
Production, Maturation, Fertilization, Regeneration
, pp. 280 - 296
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boivin, J, Bunting, L, Collins, JA, Nygren, KG. International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum Reprod 2007; 22: 1,506–12.CrossRefGoogle ScholarPubMed
National Institute for Health and Clinical Excellence. Assessment and treatment for people with fertility problems. NICE Clinical Guideline 156. 2013.Google Scholar
Leifke, E, Nieschlag, E. Male infertility treatment in the light of evidence-based medicine. Andrologia 1996; 28 Suppl 1: 2330.Google ScholarPubMed
Matzuk, MM, Lamb, DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol 2002; 4 Suppl: s41–9.CrossRefGoogle ScholarPubMed
Ferlin, A, Raicu, F, Gatta, V, Zuccarello, D, Palka, G, Foresta, C. Male infertility: Role of genetic background. Reprod Biomed Online 2007; 14: 734–45.CrossRefGoogle ScholarPubMed
Tuttelmann, F, Gromoll, J. Novel genetic aspects of Klinefelter's syndrome. Mol Hum Reprod 2010; 16: 386–95.CrossRefGoogle ScholarPubMed
National Center for Biotechnology Information (US). Genes and disease. Available at http://www.ncbi.nlm.nih.gov/books/NBK22266/#A296.Google Scholar
Foresta, C, Moro, E, Ferlin, A. Y chromosome microdeletions and alterations of spermatogenesis. Endocr Rev 2001; 22: 226–39.Google ScholarPubMed
Chen, H, Ruan, YC, Xu, WM, Chen, J, Chan, HC. Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update 2012; 18: 703–13.CrossRefGoogle ScholarPubMed
American Society of Reproductive Medicine. Genetic considerations related to intracytoplasmic sperm injection (ICSI). Fertil Steril 2008; 90: S182–4.Google Scholar
Silver, LM. Mouse genetics: Concepts and applications. New York: Oxford University Press, 1995.Google Scholar
Beck, JA, Lloyd, S, Hafezparast, M, Lennon-Pierce, M, Eppig, JT, Festing, MF et al. Genealogies of mouse inbred strains. Nat Genet 2000; 24: 23–5.CrossRefGoogle ScholarPubMed
Waterston, RH, Lindblad-Toh, K, Birney, E, Rogers, J, Abril, JF, Agarwal, P et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420: 520–62.Google ScholarPubMed
Gama Sosa, MA, De Gasperi, R, Elder, GA. Animal transgenesis: An overview. Brain Struct Funct 2010; 214: 91109.CrossRefGoogle ScholarPubMed
Jamsai, D, O'Bryan, MK. Mouse models in male fertility research. Asian J Androl 2011; 13: 139–51.CrossRefGoogle ScholarPubMed
Jaenisch, R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA 1976; 73: 1,260–4.CrossRefGoogle ScholarPubMed
Gordon, JW, Scangos, GA, Plotkin, DJ, Barbosa, JA, Ruddle, FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 1980; 77: 7,380–4.CrossRefGoogle ScholarPubMed
Liu, C, Xie, W, Gui, C, Du, Y. Pronuclear microinjection and oviduct transfer procedures for transgenic mouse production. Methods Mol Biol 2013; 1,027: 217–32.CrossRefGoogle Scholar
Lois, C, Hong, EJ, Pease, S, Brown, EJ, Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295: 868–72.CrossRefGoogle ScholarPubMed
Brinster, RL, Avarbock, MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 1994; 91: 11,303–7.CrossRefGoogle ScholarPubMed
Kanatsu-Shinohara, M, Ogonuki, N, Inoue, K, Miki, H, Ogura, A, Toyokuni, S et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003; 69: 612–6.CrossRefGoogle ScholarPubMed
Nagano, M, Brinster, CJ, Orwig, KE, Ryu, BY, Avarbock, MR, Brinster, RL. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 2001; 98: 13,090–5.CrossRefGoogle ScholarPubMed
Kanatsu-Shinohara, M, Toyokuni, S, Shinohara, T. Transgenic mice produced by retroviral transduction of male germ line stem cells in vivo. Biol Reprod 2004; 71: 1,202–7.CrossRefGoogle ScholarPubMed
Hamra, FK, Gatlin, J, Chapman, KM, Grellhesl, DM, Garcia, JV, Hammer, RE et al. Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 2002; 99: 14,931–6.CrossRefGoogle ScholarPubMed
Dhup, S, Majumdar, SS. Transgenesis via permanent integration of genes in repopulating spermatogonial cells in vivo. Nat Methods 2008; 5: 601–3.CrossRefGoogle ScholarPubMed
Sehgal, L, Thorat, R, Khapare, N, Mukhopadhaya, A, Sawant, M, Dalal, SN. Lentiviral mediated transgenesis by in vivo manipulation of spermatogonial stem cells. PLoS One 2011; 6: e21975.CrossRefGoogle ScholarPubMed
Krejci, L, Altmannova, V, Spirek, M, Zhao, X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40: 5,795581.CrossRefGoogle ScholarPubMed
Hall, B, Limaye, A, Kulkarni, AB. Overview: Generation of gene knockout mice. In Current Protocols in Cell Biology 2009; chapter 19: 19.2.2.1–7.CrossRefGoogle Scholar
Tanaka, M, Hadjantonakis, AK, Vintersten, K, Nagy, A. Aggregation chimeras: Combining ES cells, diploid, and tetraploid embryos. Methods Mol Biol 2009; 530: 287309.CrossRefGoogle ScholarPubMed
Nobel Media. The 2007 Nobel Prize in Physiology or Medicine – Advanced Information. Available at http://www.nobelprize.org/nobel_prizes/medicine/laureates/2007/advanced.html.Google Scholar
Kuehn, MR, Bradley, A, Robertson, EJ, Evans, MJ. A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature 1987; 326: 295–8.CrossRefGoogle ScholarPubMed
Singh, AP, Rajender, S. CatSper channel, sperm function and male fertility. Reprod Biomed Online 2015; 30: 2838.CrossRefGoogle ScholarPubMed
Ren, D, Navarro, B, Perez, G, Jackson, AC, Hsu, S, Shi, Q et al. A sperm ion channel required for sperm motility and male fertility. Nature 2001; 413: 603–9.CrossRefGoogle ScholarPubMed
Quill, TA, Sugden, SA, Rossi, KL, Doolittle, LK, Hammer, RE, Garbers, DL. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci USA 2003; 100: 14,869–74.CrossRefGoogle ScholarPubMed
Qi, H, Moran, MM, Navarro, B, Chong, JA, Krapivinsky, G, Krapivinsky, L et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci USA 2007; 104: 1,219–23.CrossRefGoogle ScholarPubMed
Avenarius, MR, Hildebrand, MS, Zhang, Y, Meyer, NC, Smith, LL, Kahrizi, K et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet 2009; 84: 505–10.CrossRefGoogle ScholarPubMed
Avidan, N, Tamary, H, Dgany, O, Cattan, D, Pariente, A, Thulliez, M et al. CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur J Hum Genet 2003; 11: 497502.CrossRefGoogle ScholarPubMed
Adams, D, Baldock, R, Bhattacharya, S, Copp, AJ, Dickinson, M, Greene, ND et al. Bloomsbury report on mouse embryo phenotyping: Recommendations from the IMPC workshop on embryonic lethal screening. Disease Models Mech 2013; 6: 571–9.CrossRefGoogle ScholarPubMed
Nagy, A. Cre recombinase: The universal reagent for genome tailoring. Genesis 2000; 26: 99109.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Matthaei, KI. Genetically manipulated mice: A powerful tool with unsuspected caveats. J Physiol 2007; 582: 481–8.CrossRefGoogle ScholarPubMed
Garcia, EL, Mills, AA. Getting around lethality with inducible Cre-mediated excision. Semin Cell Dev Biol 2002; 13: 151–8.CrossRefGoogle ScholarPubMed
Bernstein, E, Kim, SY, Carmell, MA, Murchison, EP, Alcorn, H, Li, MZ et al. Dicer is essential for mouse development. Nat Genet 2003; 35: 215–7.Google ScholarPubMed
Papaioannou, MD, Pitetti, JL, Ro, S, Park, C, Aubry, F, Schaad, O et al. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 2009; 326: 250–9.CrossRefGoogle ScholarPubMed
Korhonen, HM, Meikar, O, Yadav, RP, Papaioannou, MD, Romero, Y, Da Ros, M et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One 2011; 6: e24821.CrossRefGoogle ScholarPubMed
Yeh, S, Tsai, MY, Xu, Q, Mu, XM, Lardy, H, Huang, KE et al. Generation and characterization of androgen receptor knockout (ARKO) mice: An in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci USA 2002; 99: 13,498503.CrossRefGoogle Scholar
De Gendt, K, Swinnen, JV, Saunders, PT, Schoonjans, L, Dewerchin, M, Devos, A et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA 2004; 101: 1,327–32.CrossRefGoogle ScholarPubMed
O'Hara, L, McInnes, K, Simitsidellis, I, Morgan, S, Atanassova, N, Slowikowska-Hilczer, J et al. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J 2015; 29: 894910.CrossRefGoogle ScholarPubMed
Welsh, M, Saunders, PT, Atanassova, N, Sharpe, RM, Smith, LB. Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 2009; 23: 4,218–30.CrossRefGoogle ScholarPubMed
Welsh, M, Sharpe, RM, Moffat, L, Atanassova, N, Saunders, PT, Kilter, S et al. Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics. PLoS One 2010; 5: e13632.CrossRefGoogle ScholarPubMed
Hazra, R, Corcoran, L, Robson, M, McTavish, KJ, Upton, D, Handelsman, DJ et al. Temporal role of Sertoli cell androgen receptor expression in spermatogenic development. Mol Endocrinol 2013; 27: 1224.CrossRefGoogle ScholarPubMed
Brockschnieder, D, Lappe-Siefke, C, Goebbels, S, Boesl, MR, Nave, KA, Riethmacher, D. Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol Cell Biol 2004; 24: 7,636–42.CrossRefGoogle ScholarPubMed
Rebourcet, D, O'Shaughnessy, PJ, Pitetti, JL, Monteiro, A, O'Hara, L, Milne, L et al. Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development 2014; 141: 2,139–49.CrossRefGoogle ScholarPubMed
Janne, M, Deol, HK, Power, SG, Yee, SP, Hammond, GL. Human sex hormone-binding globulin gene expression in transgenic mice. Mol Endocrinol 1998; 12: 123–36.CrossRefGoogle ScholarPubMed
Skarnes, WC, Rosen, B, West, AP, Koutsourakis, M, Bushell, W, Iyer, V et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 2011; 474: 337–42.CrossRefGoogle ScholarPubMed
Stanford, WL, Cohn, JB, Cordes, SP. Gene-trap mutagenesis: Past, present and beyond. Nat Rev Genet 2001; 2: 756–68.CrossRefGoogle ScholarPubMed
Acevedo-Arozena, A, Wells, S, Potter, P, Kelly, M, Cox, RD, Brown, SD. ENU mutagenesis, a way forward to understand gene function. Annu Rev Genom Hum Genet 2008; 9: 4969.CrossRefGoogle ScholarPubMed
Smith, LB, Milne, L, Nelson, N, Eddie, S, Brown, P, Atanassova, N et al. KATNAL1 regulation of Sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility. PLoS Genet 2012; 8: e1002697.CrossRefGoogle ScholarPubMed
Lyon, MF, Hawkes, SG. X-linked gene for testicular feminization in the mouse. Nature 1970; 227: 1,217–9.CrossRefGoogle ScholarPubMed
Pfaff, DW. Hormones, brain and behavior. Amsterdam/London: Academic Press, 2002.Google Scholar
Charest, NJ, Zhou, ZX, Lubahn, DB, Olsen, KL, Wilson, EM, French, FS. A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 1991; 5: 573–81.CrossRefGoogle ScholarPubMed
Gaspar, ML, Meo, T, Bourgarel, P, Guenet, JL, Tosi, M. A single base deletion in the Tfm androgen receptor gene creates a short-lived messenger RNA that directs internal translation initiation. Proc Natl Acad Sci USA 1991; 88: 8,606–10.CrossRefGoogle ScholarPubMed
Hughes, IA, Davies, JD, Bunch, TI, Pasterski, V, Mastroyannopoulou, K, MacDougall, J. Androgen insensitivity syndrome. Lancet 2012; 380: 1,419–28.CrossRefGoogle ScholarPubMed
Cattanach, BM, Iddon, CA, Charlton, HM, Chiappa, SA, Fink, G. Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 1977; 269: 338–40.CrossRefGoogle Scholar
Mason, AJ, Hayflick, JS, Zoeller, RT, Young, WS, Phillips, HS, Nikolics, K et al. A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 1986; 234: 1,366–71.CrossRefGoogle ScholarPubMed
Brioude, F, Bouligand, J, Trabado, S, Francou, B, Salenave, S, Kamenicky, P et al. Non-syndromic congenital hypogonadotropic hypogonadism: Clinical presentation and genotype-phenotype relationships. Eur J Endocrinol 2010; 162: 835–51.CrossRefGoogle ScholarPubMed
Ross, AJ, Waymire, KG, Moss, JE, Parlow, AF, Skinner, MK, Russell, LD et al. Testicular degeneration in Bclw-deficient mice. Nat Genet 1998; 18: 251–6.CrossRefGoogle ScholarPubMed
Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860921.Google ScholarPubMed
Worthey, EA. Analysis and annotation of whole-genome or whole-exome sequencing-derived variants for clinical diagnosis. In Current Protocols in Human Genetics 2013; chapter 79: 79.9.24.9.1–9.CrossRefGoogle Scholar
Genomes Project Consortium, Abecasis, GR, Altshuler, D, Auton, A, Brooks, LD, Durbin, RM et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1,061–73.Google ScholarPubMed
International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–96.Google Scholar
Cotton, RG, Auerbach, AD, Axton, M, Barash, CI, Berkovic, SF, Brookes, AJ et al. GENETICS. The Human Variome Project. Science 2008; 322: 861–2.Google ScholarPubMed
Kosova, G, Scott, NM, Niederberger, C, Prins, GS, Ober, C. Genome-wide association study identifies candidate genes for male fertility traits in humans. Am J Hum Genet 2012; 90: 950–61.CrossRefGoogle ScholarPubMed
Willems, A, Roesl, C, Mitchell, RT, Milne, L, Jeffery, N, Smith, S et al. Sertoli cell androgen receptor signalling in adulthood is essential for post-meiotic germ cell development. Mol Reprod Dev 2015:10.1002/mrd.22506.CrossRefGoogle ScholarPubMed
Ghadessy, FJ, Lim, J, Abdullah, AA, Panet-Raymond, V, Choo, CK, Lumbroso, R et al. Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions. J Clin Invest 1999; 103: 1,517–25.CrossRefGoogle ScholarPubMed
Wang, Y, Zheng, CG, Jiang, Y, Zhang, J, Chen, J, Yao, C et al. Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res 2012; 22: 637–48.CrossRefGoogle ScholarPubMed
Hay, CW, McEwan, IJ. The impact of point mutations in the human androgen receptor: Classification of mutations on the basis of transcriptional activity. PLoS One 2012; 7: e32514.CrossRefGoogle ScholarPubMed
Sander, JD, Joung, JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32: 347–55.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×