Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T01:47:45.043Z Has data issue: false hasContentIssue false

1 - Spermatogenesis

Clinical and Experimental Considerations

Published online by Cambridge University Press:  25 May 2017

Christopher J. De Jonge
Affiliation:
University of Minnesota
Christopher L. R. Barratt
Affiliation:
University of Dundee
Ryuzo Yanagimachi
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Sperm Cell
Production, Maturation, Fertilization, Regeneration
, pp. 1 - 20
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mascarenhas, MN, Flaxman, SR, Boerma, T, Vanderpoel, S, Stevens, GA. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med 2012; 9: 112.CrossRefGoogle ScholarPubMed
Agarwal, A, Mulgund, A, Hamada, A, Chyatte, MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol 2015; 13: 37.CrossRefGoogle ScholarPubMed
Witschi, E. Migration of germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contr Embryol Carnegie Inst 1948; 209: 6780.Google Scholar
De Felici, M, Pesce, M, Giustiniani, Q, Di Carlo, A. In vitro adhesiveness of mouse primordial germ cells to cellular and extracellular matrix component substrata. Microsc Res Tech 1998; 43: 258–64.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Farini, D, La Sala, G, Tedesco, M, De Felici, M. Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Dev Biol 2007; 306: 572–83.CrossRefGoogle ScholarPubMed
Doitsidou, M, Reichman-Fried, M, Stebler, J, Köprunner, M, Dörries, J, Meyer, D, Esguerra, CV, Leung, TC, Raz, E. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 2002; 111: 647–59.CrossRefGoogle ScholarPubMed
Mamsen, LS, Lutterodt, MC, Andersen, EW, Byskov, AG, Andersen, CY. Germ cell numbers in human embryonic and fetal gonads during the first two trimesters of pregnancy: Analysis of six published studies. Hum Reprod 2011; 26: 2,140–5.CrossRefGoogle ScholarPubMed
Hajkova, P. Epigenetic reprogramming in the germline: Towards the ground state of the epigenome. Philos Trans R Soc Lond B Biol Sci. 2011; 366: 2,266–73.CrossRefGoogle ScholarPubMed
del Castillo, EB, Trabucco, A, De Labalze, FA Syndrome produced by absence of germinal epithelium without impairment of Sertoli and Leydig cells. J Clin Endocrinol 1947; 7: 493502.CrossRefGoogle Scholar
Kent-First, M, Muallem, A, Shultz, J, Pryor, J, Roberts, K, Nolten, W, et al. Defining regions of the Y-chromosome responsible for male infertility and identification of a fourth AZF region (AZFd) by Y-chromosome microdeletion detection. Mol Reprod Dev 1999; 53: 2741.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Foresta, C, Moro, E, Rossi, A, Rossato, M, Garolla, A, Ferlin, A. Role of the AZFa candidate genes in male infertility. J Endocrinol Invest 2000; 23: 646–51.CrossRefGoogle ScholarPubMed
Tournaye, H, Liu, J, Nagy, Z, Camus, M, Goossens, A, Silber, S, Van Steirteghem, AC, Devroey, P. Correlation between testicular histology and outcome after intracytoplasmic sperm injection using testicular sperm. Hum Reprod 1996; 11: 127–32.CrossRefGoogle Scholar
Hayashi, Y, Saitou, M, Yamanaka, S. Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertil Steril 2012; 97: 1250–9.CrossRefGoogle ScholarPubMed
Nayernia, K, Nolte, J, Michelmann, HW, Lee, JH, Rathsack, K, Drusenheimer, N, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006; 11: 125–32.CrossRefGoogle ScholarPubMed
Panula, S, Medrano, JV, Kee, K, Bergström, R, Nguyen, HN, Byers, B, et al. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum Mol Genet 2011; 20: 752–62.CrossRefGoogle ScholarPubMed
Easley, CA, Phillips, BT, McGuire, MM, Barringer, JM, Valli, H, Hermann, BP, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2012; 2: 440–46.CrossRefGoogle ScholarPubMed
Mamsen, LS, Brøchner, CB, Byskov, AG, Møllgard, K. The migration and loss of human primordial germ stem cells from the hind gut epithelium towards the gonadal ridge. Int J Dev Biol 2012; 56: 771–8.CrossRefGoogle ScholarPubMed
de Kretser, DM, Damjanov, I. The 4th Copenhagen Workshop on Carcinoma in situ and Cancer of the Testis: Concluding remarks. APMIS 1998; 106: 259–63.CrossRefGoogle ScholarPubMed
Tournaye, H, Dohle, GR, Barratt, CL. Fertility preservation in men with cancer. Lancet 2014; 384: 1,295301.CrossRefGoogle ScholarPubMed
Culty, M. Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res C Embryo Today 2009; 87: 126CrossRefGoogle ScholarPubMed
Culty, M. Gonocytes, from the fifties to the present: Is there a reason to change the name? Biol Reprod 2013; 89: 46.CrossRefGoogle Scholar
Orth, JM, Jester, WF, Li, LH, Laslett, AL. Gonocyte–Sertoli cell interactions during development of the neonatal rodent testis. Curr Top Dev Biol 2000; 50: 103–24.CrossRefGoogle ScholarPubMed
Reik, W, Dean, W, Walter, J. Epigenetic reprogramming in mammalian development. Science. 2001; 293: 1089–93.CrossRefGoogle ScholarPubMed
Trasler, JM. Epigenetics in spermatogenesis. Mol Cell Endocrinol 2009; 306: 33–6.CrossRefGoogle ScholarPubMed
Huckins, C. Cell cycle properties of differentiating spermatogonia in adult Sprague–Dawley rats. Cell Tissue Kinet 1971; 4: 139–54.Google ScholarPubMed
Phillips, BT, Gassei, K, Orwig, KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc London B Biol Sci 2010; 365: 1,663–78.CrossRefGoogle ScholarPubMed
Oatley, MJ, Kaucher, AV, Racicot, KE, Oatley, JM. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 2011; 85: 347–56.CrossRefGoogle ScholarPubMed
Nakagawa, T, Sharma, M, Nabeshima, Y, Braun, RE, Yoshida, S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 2010; 328: 62–7.CrossRefGoogle ScholarPubMed
Ehmcke, J, Schlatt, S. A revised model for spermatogonial expansion in man: Lessons from non-human primates. Reproduction. 2006 Nov; 132: 673–80.CrossRefGoogle ScholarPubMed
Dym, M, Kokkinaki, M, He, Z. Spermatogonial stem cells: Mouse and human comparisons. Birth Defects Res C Embryo Today 2009; 87: 2734.CrossRefGoogle ScholarPubMed
Yoshida, S, Sukeno, M, Nabeshima, Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 2007; 317: 1,722–6.CrossRefGoogle ScholarPubMed
Meng, X, Lindahl, M, Hyvönen, ME, Parvinen, M, de Rooij, DG, Hess, MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000; 287: 1,489–93.CrossRefGoogle ScholarPubMed
Oatley, JM, Oatley, MJ, Avarbock, MR, Tobias, JW, Brinster, RL. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 2009; 136: 1,191–9.CrossRefGoogle ScholarPubMed
DeFalco, T, Potter, SJ, Williams, AV, Waller, B, Kan, MJ, Capel, B. Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 2015; 12: 1,107–19.CrossRefGoogle Scholar
Chemes, HE. Infancy is not a quiescent period of testicular development. Int J Androl 2001; 24: 27.CrossRefGoogle Scholar
Jahnukainen, K, Ehmcke, J, Hou, M, Schlatt, S. Testicular function and fertility preservation in male cancer patients. Best Pract Res Clin Endocrinol Metab 2011; 25: 287302.CrossRefGoogle ScholarPubMed
Van Saen, D, Pino Sánchez, J, Ferster, A, van der Werff Ten Bosch, J, Tournaye, H, Goossens, E. Is the protein expression window during testicular development affected in patients at risk for stem cell loss? Hum Reprod 2015; 30: 2,859–70.Google ScholarPubMed
Picton, HM, Wyns, C, Anderson, RA, Goossens, E, Jahnukainen, K, Kliesch, S, et al. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod 2015; 30: 2,463–75.CrossRefGoogle ScholarPubMed
Sadri-Ardekani, H, Mizrak, SC, van Daalen, SK, Korver, CM, Roepers-Gajadien, HL, Koruji, M, et al. Propagation of human spermatogonial stem cells in vitro. JAMA 2009; 302: 2,127–34.CrossRefGoogle ScholarPubMed
Baert, Y, Braye, A, Struijk, RB, van Pelt, AM, Goossens, E. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil Steril 2015; 104: 1,244–52.CrossRefGoogle Scholar
Van Saen, D, Goossens, E, De Block, G, Tournaye, H. Regeneration of spermatogenesis by grafting testicular tissue or injecting testicular cells into the testes of sterile mice: A comparative study. Fertil Steril 2009; 91: 2,264–72.CrossRefGoogle ScholarPubMed
Goossens, E, Van Saen, D, Tournaye, H. Spermatogonial stem cell preservation and transplantation: From research to clinic. Hum Reprod 2013; 28: 897907.CrossRefGoogle ScholarPubMed
Dovey, SL, Valli, H, Hermann, BP, Sukhwani, M, Donohue, J, Castro, CA, et al. Eliminating malignant contamination from therapeutic human spermatogonial stem cells. J Clin Invest 2013; 123: 1,833–43.CrossRefGoogle ScholarPubMed
Sadri-Ardekani, H, Homburg, CH, van Capel, TM, van den Berg, H, van der Veen, F, van der Schoot, CE, et al. Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: A pilot study. Fertil Steril 2014r; 101: 1,072–8.e1.CrossRefGoogle ScholarPubMed
Sharpe, RM. Sperm counts and fertility in men: A rocky road ahead. In Science & Society Series on Sex and Science. EMBO Rep 2012; 13: 398403.CrossRefGoogle Scholar
Chevrier, J, Dewaillyt, E, Ayotte, P, Mauriege, P, Despres, JP, Tremblay, A. Body weight loss increases plasma and adipose tissue concentrations of potentially toxic pollutants in obese individuals. Int J Obes Relat Metab Disord 2000; 24: 1,272–8.CrossRefGoogle ScholarPubMed
Hue, O, Marcotte, J, Berrigan, F, Simoneau, M, Dore, J, Marceau, P, et al. Plasma concentration of organochlorine compounds is associated with age and not obesity. Chemosphere 2007; 67: 1,463–7.CrossRefGoogle Scholar
Mocarelli, P, Gerthoux, PM, Patterson, DG Jr, Milani, S, Limonta, G, Bertona, M, et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect 2008; 116: 7077.CrossRefGoogle ScholarPubMed
Izawa, H, Kohara, M, Watanbe, G, Taya, K, Sagai, M. Effects of diesel exhaust particles on the male reproductive system in strains of mice with different aryl hydrocarbon receptor responsiveness. J Reprod Dev 2007; 53: 1191–7.CrossRefGoogle ScholarPubMed
Jensen, TK, Jørgensen, N, Punab, M, Haugen, TB, Suominen, J, Zilaitiene, B, et al. Association of in utero exposure smoking with reduced semen quality and testis size in adulthood: A cross-sectional study of 1770 young men from the general population in five European countries. Am J Epidemiol 2004; 159: 4958.CrossRefGoogle Scholar
Swan, SH, Liu, F, Overstreet, JW, Brazil, C, Skakkebaek, NE. Semen quality of fertile US males in relation to their mothers' beef consumption during pregnancy. Hum Reprod 2007; 22: 14971502.CrossRefGoogle ScholarPubMed
Sharpe, RM. Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc London B Biol Sci 2010; 365: 1,697712.CrossRefGoogle ScholarPubMed
Bartak, V. Sperm count, morphology, and motility after unilateral mumps orchitis. J Reprod Fertil 1973; 32: 491–3.Google ScholarPubMed
Adamopoulos, DA, Lawrence, DM, Vassilopoulos, P, Contoyiannis, PA, Swyer, GI. Pituitary–testicular interrelationships in mumps orchitis and other infections. BMJ 1978; i: 1,177–80.Google Scholar
Masarani, M, Wazait, H, Dinneen, M. Mumps orchitis. J R Soc Med 2006; 99: 573–5.CrossRefGoogle ScholarPubMed
Bojesen, A, Juul, S, Gravholt, CH. Prenatal and postnatal prevalence of Klinefelter syndrome: A national registry study. J Clin Endocrinol Metab 2003; 88: 622–6.CrossRefGoogle ScholarPubMed
Aksglaede, L, Wikström, AM, Rajpert-De Meyts, E, Dunkel, L, Skakkebaek, NE, Juul, A. Natural history of seminiferous tubule degeneration in Klinefelter syndrome. Hum Reprod Update 2006 Jan–Feb; 12(1): 3948.CrossRefGoogle ScholarPubMed
Tournaye, H, Staessen, C, Liebaers, I, Van Assche, E, Devroey, P, Bonduelle, M, et al. Testicular sperm recovery in nine 47,XXY Klinefelter patients. Hum Reprod 1996; 11: 1,644–9.CrossRefGoogle ScholarPubMed
Gies, I, Oates, R, de Schepper, J, Tournaye, H. Testicular biopsy and cryopreservation for fertility preservation of pre-pubertal boys with Klinefelter syndrome: A pro/con debate. Fertil Steril 2016; 105: 249–55.CrossRefGoogle Scholar
Sciurano, RB, Luna Hisano, CV, Rahn, MI, Brugo Olmedo, S, Rey Valzacchi, G, Coco, R et al. Focal spermatogenesis originates in euploid germ cells in classical Klinefelter patients. Hum Reprod 2009; 24: 2,353–60.CrossRefGoogle ScholarPubMed
Van Saen, D, Gies, I, De Schepper, J, Tournaye, H, Goossens, E. Can pubertal boys with Klinefelter syndrome benefit from spermatogonial stem cell banking? Hum Reprod 2012; 27: 323–30.CrossRefGoogle ScholarPubMed
Staub, C. A century of research on mammalian male germ cell meiotic differentiation in vitro. J Androl 2001; 22: 911–26.CrossRefGoogle ScholarPubMed
Cremades, N, Sousa, M, Bernabeu, R, Barros, A. Developmental potential of elongating and elongated spermatids obtained after in-vitro maturation of isolated round spermatids. Hum Reprod 2001; 16: 1,938–44.CrossRefGoogle ScholarPubMed
Stukenborg, JB, Schlatt, S, Simoni, M, Yeung, CH, Elhija, MA, Luetjens, CM, et al. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod 2009; 15: 521–9.CrossRefGoogle ScholarPubMed
Sato, T, Katagiri, K, Yokonishi, T, Kubota, Y, Inoue, K, Ogonuki, N et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 2011; 471: 504–7.CrossRefGoogle ScholarPubMed
Baert, Y, Stukenborg, JB, Landreh, M, De Kock, J, Jörnvall, H, Söder, O, et al. Derivation and characterization of a cytocompatible scaffold from human testis. Hum Reprod 2015; 30: 256–67.CrossRefGoogle ScholarPubMed
Venkatesh, D, Mruk, D, Herter, JM, Cullere, X, Chojnacka, K, Cheng, CY, Mayadas, TN. AKAP9, a regulator of microtubule dynamics, contributes to blood–testis barrier function. Am J Pathol 2016; 186: 270–84.CrossRefGoogle ScholarPubMed
Gupta, GS. Proteomics of spermatogenesis. Springer, 2006.Google Scholar
Hassold, T, Hunt, P. To err (meiotically) is human: The genesis of human aneuploidy. Nat Rev Genet 2001; 2: 280291.CrossRefGoogle Scholar
Vera, M, Peinado, V, Al-Asmar, N, Gruhn, J, Rodrigo, L, Hassold, T et al. Human male meiosis and sperm aneuploidies. In: Storchova, Z (Ed.), Aneuploidy in Health and Disease. Intech, 2012: 141–62.Google Scholar
Aran, B, Blanco, J, Vidal, F, Vendrell, JM, Egozcue, S, Barri, PN, et al. Screening for abnormalities of chromosomes X, Y, and 18 and for diploidy in spermatozoa from infertile men participating in an in vitro fertilization intracytoplasmic sperm injection program. Fertil Steri 1999; 72: 696701.CrossRefGoogle Scholar
Martin, RH. Meiotic errors in human oogenesis and spermatogenesis. Reprod Biomed Online 2008; 16: 523–31.CrossRefGoogle ScholarPubMed
Shapiro, E, Kinsella, TJ, Makuch, RW, Fraass, BA, Glatstein, E, Rosenberg, SA, et al. Effects of fractionated irradiation of endocrine aspects of testicular function. J Clin Oncol 1985; 3: 1,232–9.CrossRefGoogle ScholarPubMed
Ståhl, O, Boyd, HA, Giwercman, A, Lindholm, M, Jensen, A, Kjær, SK, et al. Risk of birth abnormalities in the offspring of men with a history of cancer: A cohort study using Danish and Swedish national registries. J Natl Cancer Inst 2011; 103: 398406.CrossRefGoogle Scholar
Bonde, JP, Storgaard, L. How work-place conditions, environmental toxicants and lifestyle affect male reproductive function. Int. J Androl 2002; 25: 262–8.CrossRefGoogle ScholarPubMed
Bonde, JP, Toft, G, Rylander, L, Rignell-Hydbom, A, Giwercman, A, Spano, M, et al. Fertility and markers of male reproductive function in Inuit and European populations spanning large contrasts in blood levels of persistent organochlorines. Environ Health Perspect 2008; 116: 269–77.CrossRefGoogle ScholarPubMed
Mieusset, R, Bujan, L. Testicular heating and its possible contributions to male infertility: A review. Int J Androl 1995; 18: 169–84.CrossRefGoogle ScholarPubMed
Nielsen, TL, Hagen, C, Wraae, K, Brixen, K, Petersen, PH, Haug, E, et al. Visceral and subcutaneous adipose tissue assessed by magnetic resonance imaging in relation to circulating androgens, sex hormone-binding globulin, and luteinizing hormone in young men. J Clin Endocrinol Metab 2007; 92: 2,696705.CrossRefGoogle ScholarPubMed
Taylor, KC, Small, CM, Dominguez, CE, Murray, LE, Tang, W, Wilson, MM, Bouzyk, M, Marcus, M. Alcohol, smoking, and caffeine in relation to fecundability, with effect modification by NAT2. Ann Epidemiol 2011; 21: 864–72.CrossRefGoogle ScholarPubMed
O'Donnell, L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 2015; 4: e979623.CrossRefGoogle ScholarPubMed
Dacheux, JL, Dacheux, F. New insights into epididymal function in relation to sperm maturation. Reproduction 2013; 147: R2742.CrossRefGoogle ScholarPubMed
McLachlan, RI. Approach to the patient with oligozoospermia. J Clin Endocrinol Metab 2013; 98: 873–80.CrossRefGoogle Scholar
Hyrapetian, M, Loucaides, EM, Sutcliffe, AG. Health and disease in children born after assistive reproductive therapies. J Reprod Immunol 2014; 106: 21–6.CrossRefGoogle ScholarPubMed
Davies, MJ, Moore, VM, Willson, KJ, Van Essen, P, Priest, K, Scott, H, Haan, EA, Chan, A. Reproductive technologies and the risk of birth defects. N Engl J Med 2012; 366: 1,803–13.CrossRefGoogle ScholarPubMed
Dam, AH, Feenstra, I, Westphal, JR, Ramos, L, van Golde, RJ, Kremer, JA. Globozoospermia revisited. Hum Reprod Update 2007; 13: 6375.CrossRefGoogle ScholarPubMed
Ortega, C, Verheyen, G, Raick, D, Camus, M, Devroey, P, Tournaye, H. Absolute asthenozoospermia and ICSI: What are the options? Hum Reprod Update 2011; 17: 684–92.CrossRefGoogle ScholarPubMed
Negri, L, Patrizio, P, Albani, E, Morenghi, E, Benaglia, R, Desgro, M, et al. ICSI outcome is significantly better with testicular spermatozoa in patients with necrozoospermia: A retrospective study. Gynecol Endocrinol 2014; 30: 4852.CrossRefGoogle ScholarPubMed
Tournaye, H, Liu, J, Nagy, Z, Verheyen, G, Van Steirteghem, A, Devroey, P. The use of testicular sperm for intracytoplasmic sperm injection in patients with necrozoospermia. Fertil Steril 1996; 66: 331–4.Google ScholarPubMed
Murdoch, FE, Goldberg, E. Male contraception: Another Holy Grail. Bioorg Med Chem Lett 2014; 24: 419–24.CrossRefGoogle ScholarPubMed
Chao, J, Page, ST, Anderson, RA. Male contraception. Best Pract Res Clin Obstet Gynaecol 2014; 28: 845–57.CrossRefGoogle ScholarPubMed
Mieusset, R, Bujan, L. The potential of mild testicular heating as a safe, effective and reversible contraceptive method for men. Int J Androl 1994: 17: 186–91.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×