Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-25T01:47:47.941Z Has data issue: false hasContentIssue false

2 - Sperm Chromatin Stability and Susceptibility to Damage in Relation to Its Structure

Published online by Cambridge University Press:  25 May 2017

Christopher J. De Jonge
Affiliation:
University of Minnesota
Christopher L. R. Barratt
Affiliation:
University of Dundee
Ryuzo Yanagimachi
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Sperm Cell
Production, Maturation, Fertilization, Regeneration
, pp. 21 - 35
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eirin-Lopez, JM, Ausio, J. Origin and evolution of chromosomal sperm proteins. Bioessays 2009; 31: 1,06270.CrossRefGoogle ScholarPubMed
Zhao, Y, Garcia, BA. Comprehensive catalog of currently documented histone modifications. Cold Spring Harbor Perspect Biol 2015; 7.Google ScholarPubMed
Luger, K, Mader, AW, Richmond, RK, Sargent, DF, Richmond, TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997; 389: 251–60.CrossRefGoogle ScholarPubMed
Ward, WS. Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol Reprod 1993; 48: 1,193201.CrossRefGoogle ScholarPubMed
Caterino, TL, Hayes, JJ. Structure of the H1 C-terminal domain and function in chromatin condensation. Biochem Cell Biol 2011; 89: 3544.CrossRefGoogle ScholarPubMed
Grunstein, M, Hecht, A, Fisher-Adams, G, Wan, J, Mann, RK, Strahl-Bolsinger, S, Laroche, T, Gasser, S. The regulation of euchromatin and heterochromatin by histones in yeast. J Cell Sci Suppl 1995; 19: 2936.CrossRefGoogle ScholarPubMed
Li, A, Maffey, AH, Abbott, WD, Conde e Silva, N, Prunell, A, Siino, J, Churikov, D, Zalensky, AO, Ausio, J. Characterization of nucleosomes consisting of the human testis/sperm-specific histone H2B variant (hTSH2B). Biochemistry 2005; 44: 2,529–35.CrossRefGoogle ScholarPubMed
Eirin-Lopez, JM, Frehlick, LJ, Ausio, J. Protamines, in the footsteps of linker histone evolution. J Biol Chem 2006; 281: 14.CrossRefGoogle ScholarPubMed
Francis, S, Yelumalai, S, Jones, C, Coward, K. Aberrant protamine content in sperm and consequential implications for infertility treatment. Hum Fertil (Camb) 2014; 17: 80–9.CrossRefGoogle ScholarPubMed
Nanassy, L, Liu, L, Griffin, J, Carrell, DT. The clinical utility of the protamine 1/protamine 2 ratio in sperm. Protein Pept Lett 2011; 18: 772–7.CrossRefGoogle ScholarPubMed
McKay, DJ, Renaux, BS, Dixon, GH. The amino acid sequence of human sperm protamine P1. Biosci Rep 1985; 5: 383–91.CrossRefGoogle ScholarPubMed
McKay, DJ, Renaux, BS, Dixon, GH. Human sperm protamines. Amino-acid sequences of two forms of protamine P2. Eur J Biochem 1986; 156: 58.CrossRefGoogle ScholarPubMed
Evdokimov, YM, Platonov, AL, Tikhonenko, AS, Varshavsky, YM. A compact form of double-stranded DNA in solution. FEBS Lett 1972; 23: 180–4.CrossRefGoogle ScholarPubMed
Hud, NV, Downing, KH. Cryoelectron microscopy of lambda phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc Natl Acad Sci U S A 2001; 98: 14,925–30.CrossRefGoogle ScholarPubMed
Hud, NV, Downing, KH, Balhorn, R. A constant radius of curvature model for the organization of DNA in toroidal condensates. Proc Natl Acad Sci U S A 1995; 92: 3,581–5.CrossRefGoogle ScholarPubMed
Ward, WS, Partin, AW, Coffey, DS. DNA loop domains in mammalian spermatozoa. Chromosoma 1989; 98: 153–9.CrossRefGoogle ScholarPubMed
Sotolongo, B, Lino, E, Ward, WS. Ability of hamster spermatozoa to digest their own DNA. Biol Reprod 2003; 69: 2,029–35.CrossRefGoogle ScholarPubMed
Kuretake, S, Kimura, Y, Hoshi, K, Yanagimachi, R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod 1996; 55: 789–95.CrossRefGoogle ScholarPubMed
Cho, C, Willis, WD, Goulding, EH, Jung-Ha, H, Choi, YC, Hecht, NB, Eddy, EM. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 2001; 28: 82–6.CrossRefGoogle ScholarPubMed
Meistrich, ML, Mohapatra, B, Shirley, CR, Zhao, M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma 2003; 111: 483–8.CrossRefGoogle ScholarPubMed
Singleton, S, Zalensky, A, Doncel, GF, Morshedi, M, Zalenskaya, IA. Testis/sperm-specific histone 2B in the sperm of donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod 2007; 22: 743–50.CrossRefGoogle ScholarPubMed
Evenson, DP. Sperm chromatin structure assay (SCSA(R)). Methods Mol Biol 2013; 927: 147–64.CrossRefGoogle Scholar
van der Heijden, GW, Derijck, AA, Ramos, L, Giele, M, van der Vlag, J, de Boer, P. Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 2006; 298: 458–69.CrossRefGoogle Scholar
van der Heijden, GW, Ramos, L, Baart, EB, van den Berg, IM, Derijck, AA, van der Vlag, J, Martini, E, de Boer, P. Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 2008; 8: 34.CrossRefGoogle ScholarPubMed
van der Heijden, GW, Dieker, JW, Derijck, AA, Muller, S, Berden, JH, Braat, DD, van der Vlag, J, de Boer, P. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 2005; 122: 1,008–22.CrossRefGoogle ScholarPubMed
Santenard, A, Ziegler-Birling, C, Koch, M, Tora, L, Bannister, AJ, Torres-Padilla, ME. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010; 12: 853–62.CrossRefGoogle ScholarPubMed
Gatewood, JM, Cook, GR, Balhorn, R, Bradbury, EM, Schmid, CW. Sequence-specific packaging of DNA in human sperm chromatin. Science 1987; 236: 962–4.CrossRefGoogle ScholarPubMed
Hammoud, SS, Nix, DA, Zhang, H, Purwar, J, Carrell, DT, Cairns, BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009; 460: 473–8.CrossRefGoogle ScholarPubMed
Arpanahi, A, Brinkworth, M, Iles, D, Krawetz, SA, Paradowska, A, Platts, AE, Saida, M, Steger, K, Tedder, P, Miller, D. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 2009; 19: 1,338–49.CrossRefGoogle ScholarPubMed
Erkek, S, Hisano, M, Liang, CY, Gill, M, Murr, R, Dieker, J, Schubeler, D, van der Vlag, J, Stadler, MB, Peters, AH. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 2013; 20: 868–75.Google ScholarPubMed
Carone, BR, Hung, JH, Hainer, SJ, Chou, MT, Carone, DM, Weng, Z, Fazzio, TG, Rando, OJ. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell 2014; 30: 1122.CrossRefGoogle ScholarPubMed
Risley, MS, Einheber, S, Bumcrot, DA. Changes in DNA topology during spermatogenesis. Chromosoma 1986; 94: 217–27.CrossRefGoogle ScholarPubMed
Kramer, JA, Krawetz, SA. Nuclear matrix interactions within the sperm genome. J Biol Chem 1996; 271: 11,619–22.CrossRefGoogle ScholarPubMed
Ward, WS, Coffey, DS. Identification of a sperm nuclear annulus: A sperm DNA anchor. Biol Reprod 1989; 41: 361–70.Google ScholarPubMed
Kalandadze, AG, Bushara, SA, Vassetzky, YS Jr., Razin, SV. Characterization of DNA pattern in the site of permanent attachment to the nuclear matrix located in the vicinity of replication origin. Biochem Biophys Res Commun 1990; 168: 915.CrossRefGoogle Scholar
Ward, WS, Coffey, DS. Specific organization of genes in relation to the sperm nuclear matrix. Biochem Biophys Res Commun 1990; 173: 20–5.Google Scholar
Martins, RP, Ostermeier, GC, Krawetz, SA. Nuclear matrix interactions at the human protamine domain: A working model of potentiation. J Biol Chem 2004; 279: 51,862–8.CrossRefGoogle Scholar
Ward, WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 2010; 16: 30–6.CrossRefGoogle ScholarPubMed
Pardoll, DM, Vogelstein, B, Coffey, DS. A fixed site of DNA replication in eucaryotic cells. Cell 1980; 19: 527–36.CrossRefGoogle ScholarPubMed
Wilson, RH, Coverley, D. Relationship between DNA replication and the nuclear matrix. Genes Cells 2013; 18: 1731.CrossRefGoogle ScholarPubMed
Dijkwel, PA, Hamlin, JL. Origins of replication and the nuclear matrix: The DHFR domain as a paradigm. Int Rev Cytol 1995; 162: 455–84.Google Scholar
Shaman, JA, Yamauchi, Y, Ward, WS. The sperm nuclear matrix is required for paternal DNA replication. J Cell Biochem 2007; 102: 680–8.CrossRefGoogle ScholarPubMed
Evenson, DP, Larson, KL, Jost, LK. Sperm chromatin structure assay: Its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 2002; 23: 2543.CrossRefGoogle ScholarPubMed
Sakkas, D, Manicardi, GC, Bizzaro, D. Sperm nuclear DNA damage in the human. Adv Exp Med Biol 2003; 518: 7384.CrossRefGoogle ScholarPubMed
Spano, SD. The significance of sperm nuclear DNA strand breaks on reproductive outcome. Curr Opin Obstet Gynecol 2005; in press.CrossRefGoogle ScholarPubMed
Agarwal, A, Said, TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003; 9: 331–45.CrossRefGoogle ScholarPubMed
De Jonge, C. The clinical value of sperm nuclear DNA assessment. Hum Fertil (Camb) 2002; 5: 51–3.CrossRefGoogle ScholarPubMed
Wykes, SM, Krawetz, SA. Conservation of the PRM1 –>PRM2 –>TNP2 domain. DNA Seq 2003; 14: 359–67.Google ScholarPubMed
Sgonc, R, Gruber, J. Apoptosis detection: an overview. Exp Gerontol 1998; 33: 525–33.CrossRefGoogle ScholarPubMed
Sakkas, D, Moffatt, O, Manicardi, GC, Mariethoz, E, Tarozzi, N, Bizzaro, D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod 2002; 66: 1,061–7.CrossRefGoogle ScholarPubMed
Marcon, L, Boissonneault, G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 2004; 70: 910–18.CrossRefGoogle ScholarPubMed
Seli, E, Gardner, DK, Schoolcraft, WB, Moffatt, O, Sakkas, D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 2004; 82: 378–83.CrossRefGoogle ScholarPubMed
Sun, JG, Jurisicova, A, Casper, RF. Detection of deoxyribonucleic acid fragmentation in human sperm: Correlation with fertilization in vitro. Biol Reprod 1997; 56: 602–7.CrossRefGoogle ScholarPubMed
Ballachey, BE, Hohenboken, WD, Evenson, DP. Heterogeneity of sperm nuclear chromatin structure and its relationship to bull fertility. Biol Reprod 1987; 36: 915–25.CrossRefGoogle ScholarPubMed
Evenson, D, Jost, L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci 2000; 22: 169–89.CrossRefGoogle ScholarPubMed
Gawecka, JE, Boaz, S, Kasperson, K, Nguyen, H, Evenson, DP, Ward, WS. Luminal fluid of epididymis and vas deferens contributes to sperm chromatin fragmentation. Hum Reprod 2015; 30: 2,725–36.Google ScholarPubMed
McVicar, CM, McClure, N, Williamson, K, Dalzell, LH, Lewis, SE. Incidence of Fas positivity and deoxyribonucleic acid double-stranded breaks in human ejaculated sperm. Fertil Steril 2004; 81 Suppl 1: 767–74.CrossRefGoogle ScholarPubMed
Nadel, B, de Lara, J, Finkernagel, SW, Ward, WS. Cell-specific organization of the 5S ribosomal RNA gene cluster DNA loop domains in spermatozoa and somatic cells. Biol Reprod 1995; 53: 1,222–8.CrossRefGoogle ScholarPubMed
Barone, JG, Christiano, AP, Ward, WS. DNA organization in patients with a history of cryptorchidism. Urology 2000; 56: 1,068–70.CrossRefGoogle ScholarPubMed
Kerr, JF, Wyllie, AH, Currie, AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–57.CrossRefGoogle ScholarPubMed
Print, CG, Loveland, KL. Germ cell suicide: New insights into apoptosis during spermatogenesis. Bioessays 2000; 22: 423–30.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Berensztein, EB, Sciara, MI, Rivarola, MA, Belgorosky, A. Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: High rate of testicular growth in newborns mediated by decreased apoptosis. J Clin Endocrinol Metab 2002; 87: 5,113–8.CrossRefGoogle ScholarPubMed
Billig, H, Furuta, I, Rivier, C, Tapanainen, J, Parvinen, M, Hsueh, AJ. Apoptosis in testis germ cells: Developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology 1995; 136: 512.CrossRefGoogle ScholarPubMed
Arama, E, Agapite, J, Steller, H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 2003; 4: 687–97.CrossRefGoogle Scholar
Blanco-Rodriguez, J, Martinez-Garcia, C. Apoptosis is physiologically restricted to a specialized cytoplasmic compartment in rat spermatids. Biol Reprod 1999; 61: 1,541–7.CrossRefGoogle ScholarPubMed
Sakkas, D, Mariethoz, E, St John, JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res 1999; 251: 350–5.CrossRefGoogle Scholar
Muratori, M, Maggi, M, Spinelli, S, Filimberti, E, Forti, G, Baldi, E. Spontaneous DNA fragmentation in swim-up selected human spermatozoa during long-term incubation. J Androl 2003; 24: 253–62.CrossRefGoogle ScholarPubMed
Aitken, RJ, Gordon, E, Harkiss, D, Twigg, JP, Milne, P, Jennings, Z, Irvine, DS. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 1998; 59: 1,037–46.CrossRefGoogle ScholarPubMed
Maione, B, Pittoggi, C, Achene, L, Lorenzini, R, Spadafora, C. Activation of endogenous nucleases in mature sperm cells upon interaction with exogenous DNA. DNA Cell Biol 1997; 16: 1,087–97.CrossRefGoogle ScholarPubMed
Oehninger, S, Morshedi, M, Weng, SL, Taylor, S, Duran, H, Beebe, S. Presence and significance of somatic cell apoptosis markers in human ejaculated spermatozoa. Reprod Biomed Online 2003; 7: 469–76.CrossRefGoogle ScholarPubMed
McPherson, SM, Longo, FJ. Nicking of rat spermatid and spermatozoa DNA: Possible involvement of DNA topoisomerase II. Dev Biol 1993; 158: 122–30.CrossRefGoogle ScholarPubMed
Chen, JL, Longo, FJ. Expression and localization of DNA topoisomerase II during rat spermatogenesis. Mol Reprod Dev 1996; 45: 6171.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
St. Pierre, J, Wright, DJ, Rowe, TC, Wright, SJ. DNA topoisomerase II distribution in mouse preimplantation embryos. Mol Reprod Dev 2002; 61: 335–46.Google ScholarPubMed
Jones, R. Sperm survival versus degradation in the mammalian epididymis: A hypothesis. Biol Reprod 2004; 71: 1,405–11.CrossRefGoogle ScholarPubMed
Cayli, S, Sakkas, D, Vigue, L, Demir, R, Huszar, G. Cellular maturity and apoptosis in human sperm: Creatine kinase, caspase-3 and Bcl-XL levels in mature and diminished maturity sperm. Mol Hum Reprod 2004; 10: 365–72.CrossRefGoogle ScholarPubMed
Paasch, U, Agarwal, A, Gupta, AK, Sharma, RK, Grunewald, S, Thomas, AJ Jr., Glander, HJ. Apoptosis signal transduction and the maturity status of human spermatozoa. Ann NY Acad Sci 2003; 1010: 486–8.CrossRefGoogle ScholarPubMed
Blanc-Layrac, G, Bringuier, AF, Guillot, R, Feldmann, G. Morphological and biochemical analysis of cell death in human ejaculated spermatozoa. Cell Mol Biol (Noisy-le-grand) 2000; 46: 187–97.Google ScholarPubMed
Weng, SL, Taylor, SL, Morshedi, M, Schuffner, A, Duran, EH, Beebe, S, Oehninger, S. Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod 2002; 8: 984–91.CrossRefGoogle ScholarPubMed
Evenson, DP, Jost, LK, Marshall, D, Zinaman, MJ, Clegg, E, Purvis, K, de Angelis, P, Claussen, OP. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 1999; 14: 1,039–49.CrossRefGoogle ScholarPubMed
Aravindan, GR, Bjordahl, J, Jost, LK, Evenson, DP. Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp Cell Res 1997; 236: 231–7.CrossRefGoogle ScholarPubMed
Van Kooij, RJ, de Boer, P, De Vreeden-Elbertse, JM, Ganga, NA, Singh, N, Te Velde, ER. The neutral comet assay detects double strand DNA damage in selected and unselected human spermatozoa of normospermic donors. Int J Androl 2004; 27: 140–6.CrossRefGoogle ScholarPubMed
Gorczyca, W, Traganos, F, Jesionowska, H, Darzynkiewicz, Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: Analogy to apoptosis of somatic cells. Exp Cell Res 1993; 207: 202–5.CrossRefGoogle ScholarPubMed
Taylor, SL, Weng, SL, Fox, P, Duran, EH, Morshedi, MS, Oehninger, S, Beebe, SJ. Somatic cell apoptosis markers and pathways in human ejaculated sperm: Potential utility as indicators of sperm quality. Mol Hum Reprod 2004; 10: 825–34.CrossRefGoogle ScholarPubMed
Wang, X, Sharma, RK, Sikka, SC, Thomas, AJ Jr., Falcone, T, Agarwal, A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril 2003; 80: 531–5.CrossRefGoogle ScholarPubMed
Gadella, BM, Harrison, RA. Capacitation induces cyclic adenosine 3',5'-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 2002; 67: 340–50.CrossRefGoogle ScholarPubMed
de Vries, KJ, Wiedmer, T, Sims, PJ, Gadella, BM. Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biol Reprod 2003; 68: 2,122–34.CrossRefGoogle ScholarPubMed
Guthrie, HD, Welch, GR. Impact of storage prior to cryopreservation on plasma membrane function and fertility of boar sperm. Theriogenology 2005; 63: 396410.CrossRefGoogle ScholarPubMed
Lachaud, C, Tesarik, J, Canadas, ML, Mendoza, C. Apoptosis and necrosis in human ejaculated spermatozoa. Hum Reprod 2004; 19: 607–10.CrossRefGoogle ScholarPubMed
Paasch, U, Grunewald, S, Dathe, S, Glander, HJ. Mitochondria of human spermatozoa are preferentially susceptible to apoptosis. Ann N Y Acad Sci 2004; 1030: 403–9.CrossRefGoogle ScholarPubMed
Aitken, RJ, Baker, MA, Nixon, B. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian J Androl 2015; 17: 633–9.CrossRefGoogle ScholarPubMed
Pujianto, DA, Curry, BJ, Aitken, RJ. Prolactin exerts a prosurvival effect on human spermatozoa via mechanisms that involve the stimulation of Akt phosphorylation and suppression of caspase activation and capacitation. Endocrinology 2010; 151: 1,269–79.CrossRefGoogle ScholarPubMed
Yamauchi, Y, Shaman, JA, Boaz, SM, Ward, WS. Paternal pronuclear DNA degradation is functionally linked to DNA replication in mouse oocytes. Biol Reprod 2007; 77: 407–15.CrossRefGoogle ScholarPubMed
Solovyan, VT, Bezvenyuk, ZA, Salminen, A, Austin, CA, Courtney, MJ. The role of topoisomerase II in the excision of DNA loop domains during apoptosis. J Biol Chem 2002; 277: 21,458–67.CrossRefGoogle ScholarPubMed
Li, TK, Chen, AY, Yu, C, Mao, Y, Wang, H, Liu, LF. Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev 1999; 13: 1,553–60.CrossRefGoogle ScholarPubMed
Ribas-Maynou, J, Gawecka, JE, Benet, J, Ward, WS. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance. Mol Hum Reprod 2014; 20: 330–40.CrossRefGoogle ScholarPubMed
Sakkas, D, Mariethoz, E, Manicardi, G, Bizzaro, D, Bianchi, PG, Bianchi, U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 1999; 4: 31–7.CrossRefGoogle ScholarPubMed
Aitken, RJ, Baker, MA, Sawyer, D. Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online 2003; 7: 6570.CrossRefGoogle ScholarPubMed
Sotolongo, B, Huang, TF, Isenberger, E, Ward, WS. An endogenous nuclease in hamster, mouse and human spermatozoa cleaves DNA into loop-sized fragments. J Androl 2005; 26: 272–80.CrossRefGoogle ScholarPubMed
Spadafora, C. Sperm cells and foreign DNA: A controversial relation. Bioessays 1998; 20: 955–64.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Pienta, KJ, Getzenberg, RH, Coffey, DS. Cell structure and DNA organization. Crit Rev Eukaryot Gene Expr 1991; 1: 355–85.Google ScholarPubMed
Sotolongo, B, Ward, WS. DNA loop domain organization: The three dimensional genomic code. J Cell Biochem 2000; 35: 23–6.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×