Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T05:47:28.788Z Has data issue: false hasContentIssue false

Chapter 8 - Systemic Lupus Erythematosus and Other Autoimmune Diseases (Mixed Connective Tissue Disease, Rheumatoid Arthritis, and Sjogren’s Syndrome)

Published online by Cambridge University Press:  01 March 2017

Xin Jin (Joseph) Zhou
Affiliation:
Baylor University Medical Center, Dallas
Zoltan G. Laszik
Affiliation:
University of California, San Francisco
Tibor Nadasdy
Affiliation:
Ohio State University
Vivette D. D'Agati
Affiliation:
Columbia University, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hochberg, MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997;40:1725.Google Scholar
Pollak, VE, Pirani, CL, Schwartz, FD. The natural history of the renal manifestations of systemic lupus erythematosus. J Lab Clin Med 1964;63:537–50.Google Scholar
Weening, JJ, D’Agati, VD, Schwartz, MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 2004;15:241–50.Google Scholar
Churg, JBJ, Glassock, R. Lupus nephritis. In Renal Disease: Classification and Atlas of Renal Disease. New York: Igaku-New Shoin; 1995: 151–5.Google Scholar
Churg, JSL. Renal Disease: Classification and Atlas of Renal Disease. Tokyo: Igaku-New Shoin; 1982.Google Scholar
Jennette, JC. The immunohistology of IgA nephropathy. Am J Kidney Dis 1988;12:348–52.Google Scholar
Nasr, SH, D’Agati, VD, Park, HR, et al. Necrotizing and crescentic lupus nephritis with antineutrophil cytoplasmic antibody seropositivity. Clin J Am Soc Nephrol 2008;3:682–90.Google Scholar
Appel, GB, Williams, GS, Meltzer, JI, Pirani, CL. Renal vein thrombosis, nephrotic syndrome, and systemic lupus erythematosus: an association in four cases. Ann Intern Med 1976;85:310–7.Google Scholar
Jennette, JC, Iskandar, SS, Dalldorf, FG. Pathologic differentiation between lupus and nonlupus membranous glomerulopathy. Kidney Int 1983;24:377–85.Google Scholar
Larsen, CP, Messias, NC, Silva, FG, Messias, E, Walker, PD. Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies. Modern Pathol 2013;26:709–15.Google Scholar
Austin, HA 3rd, Muenz, LR, Joyce, KM, et al. Prognostic factors in lupus nephritis. Contribution of renal histologic data. Am J Med 1983;75:382–91.Google Scholar
Appel, GB, Cohen, DJ, Pirani, CL, Meltzer, JI, Estes, D. Long-term follow-up of patients with lupus nephritis. A study based on the classification of the World Health Organization. Am J Med 1987;83:877–85.Google Scholar
Schwartz, MM, Bernstein, J, Hill, GS, Holley, K, Phillips, EA. Predictive value of renal pathology in diffuse proliferative lupus glomerulonephritis. Lupus Nephritis Collaborative Study Group. Kidney Int 1989;36:891–6.Google Scholar
Austin, HA 3rd, Boumpas, DT, Vaughan, EM, Balow, JE. Predicting renal outcomes in severe lupus nephritis: contributions of clinical and histologic data. Kidney Int 1994;45:544–50.Google Scholar
Hill, GS, Delahousse, M, Nochy, D, et al. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int 2001;59:304–16.Google Scholar
Hill, GS, Delahousse, M, Nochy, D, et al. A new morphologic index for the evaluation of renal biopsies in lupus nephritis. Kidney Int 2000;58:1160–73.Google Scholar
Park, MH, D’Agati, V, Appel, GB, Pirani, CL. Tubulointerstitial disease in lupus nephritis: relationship to immune deposits, interstitial inflammation, glomerular changes, renal function, and prognosis. Nephron 1986;44:309–19.Google Scholar
Chang, A, Henderson, SG, Brandt, D, et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J Immunol 2011;186:1849–60.Google Scholar
Espeli, M, Bokers, S, Giannico, G, et al. Local renal autoantibody production in lupus nephritis. J Am Soc Nephrol 2011;22:296305.Google Scholar
Winchester, R, Wiesendanger, M, Zhang, HZ, et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell beta-chain clonotypes in progressive lupus nephritis. Arthritis Rheum 2012;64:1589–600.Google Scholar
Mori, Y, Kishimoto, N, Yamahara, H, et al. Predominant tubulointerstitial nephritis in a patient with systemic lupus nephritis. Clin Exp Nephrol 2005;9:7984.Google Scholar
Makker, SP. Tubular basement membrane antibody-induced interstitial nephritis in systemic lupus erythematosus. Am J Med 1980;69:949–52.Google Scholar
Howie, AJ, Turhan, N, Adu, D. Powerful morphometric indicator of prognosis in lupus nephritis. Q J Med 2003;96:411–20.CrossRefGoogle ScholarPubMed
Hunter, MG, Hurwitz, S, Bellamy, CO, Duffield, JS. Quantitative morphometry of lupus nephritis: the significance of collagen, tubular space, and inflammatory infiltrate. Kidney Int 2005;67:94102.Google Scholar
Barber, C, Herzenberg, A, Aghdassi, E, et al. Evaluation of clinical outcomes and renal vascular pathology among patients with lupus. Clin J Am Soc Nephrol 2012;7:757–64.Google Scholar
Wu, LH, Yu, F, Tan, Y, et al. Inclusion of renal vascular lesions in the 2003 ISN/RPS system for classifying lupus nephritis improves renal outcome predictions. Kidney Int 2013;83:715–23.Google Scholar
Banfi, G, Bertani, T, Boeri, V, et al. Renal vascular lesions as a marker of poor prognosis in patients with lupus nephritis. Gruppo Italiano per lo Studio della Nefrite Lupica (GISNEL). Am J Kidney Dis 1991;18:240–8.Google Scholar
Miyakis, S, Lockshin, MD, Atsumi, T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006;4:295306.Google Scholar
Nochy, D, Daugas, E, Droz, D, et al. The intrarenal vascular lesions associated with primary antiphospholipid syndrome. J Am Soc Nephrol 1999;10:507–18.Google Scholar
Daugas, E, Nochy, D, Huong, DL, et al. Antiphospholipid syndrome nephropathy in systemic lupus erythematosus. J Am Soc Nephrol 2002;13:4252.Google Scholar
Cervino, AC, Tsinoremas, NF, Hoffman, RW. A genome-wide study of lupus: preliminary analysis and data release. Ann NY Acad Sci 2007;1110:131–9.Google Scholar
Graham, RR, Cotsapas, C, Davies, L, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nature Genetics 2008;40:1059–61.Google Scholar
Hom, G, Graham, RR, Modrek, B, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008;358:900–9.Google Scholar
Kozyrev, SV, Abelson, AK, Wojcik, J, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nature Genetics 2008;40:211–6.Google Scholar
International Consortium for Systemic Lupus Erythematosus Genetics, Harley, JB, Alarcon-Riquelme, ME, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics 2008;40:204–10.Google Scholar
Guerra, SG, Vyse, TJ, Cunninghame Graham, DS. The genetics of lupus: a functional perspective. Arthritis Res Ther 2012;14:211.Google Scholar
Kremer Hovinga, IC, Koopmans, M, Baelde, HJ, et al. Chimerism occurs twice as often in lupus nephritis as in normal kidneys. Arthritis Rheum 2006;54:2944–50.Google Scholar
Garg, AX, Suri, RS, Barrowman, N, et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. J Am Med Assoc 2003;290:1360–70.Google Scholar
Hahn, BH. Antibodies to DNA. N Engl J Med 1998;338:1359–68.Google Scholar
He, B, Qiao, X, Cerutti, A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 2004;173:4479–91.Google Scholar
Pawar, RD, Patole, PS, Ellwart, A, et al. Ligands to nucleic acid-specific toll-like receptors and the onset of lupus nephritis. J Am Soc Nephrol 2006;17:3365–73.Google Scholar
Mannik, M, Merrill, CE, Stamps, LD, Wener, MH. Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus. J Rheumatol 2003;30:1495–504.Google Scholar
Kalaaji, M, Fenton, KA, Mortensen, ES, et al. Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int 2007;71:664–72.Google Scholar
Zhao, Z, Weinstein, E, Tuzova, M, et al. Cross-reactivity of human lupus anti-DNA antibodies with alpha-actinin and nephritogenic potential. Arthritis Rheum 2005;52:522–30.Google Scholar
Peterson, KS, Huang, JF, Zhu, J, et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest 2004;113:1722–33.Google Scholar
Baechler, EC, Batliwalla, FM, Karypis, G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003;100:2610–5.Google Scholar
Qing, X, Putterman, C. Gene expression profiling in the study of the pathogenesis of systemic lupus erythematosus. Autoimmunity Rev 2004;3:505–9.Google Scholar
Schwartz, N, Rubinstein, T, Burkly, LC, et al. Urinary TWEAK as a biomarker of lupus nephritis: a multicenter cohort study. Arthritis Res Ther 2009;11:R143.Google Scholar
Dooley, MA, Hogan, S, Jennette, C, Falk, R. Cyclophosphamide therapy for lupus nephritis: poor renal survival in black Americans. Glomerular Disease Collaborative Network. Kidney Int 1997;51:1188–95.Google Scholar
Lewis, EJ, Kawala, K, Schwartz, MM. Histologic features that correlate with the prognosis of patients with lupus nephritis. Am J Kidney Dis 1987;10:192–7.Google Scholar
Najafi, CC, Korbet, SM, Lewis, EJ, et al. Significance of histologic patterns of glomerular injury upon long-term prognosis in severe lupus glomerulonephritis. Kidney Int 2001;59:2156–63.Google Scholar
Korbet, SM, Schwartz, MM, Evans, J, Lewis, EJ. Severe lupus nephritis: racial differences in presentation and outcome. J Am Soc Nephrol 2007;18:244–54.Google Scholar
Yokoyama, H, Wada, T, Hara, A, et al. The outcome and a new ISN/RPS 2003 classification of lupus nephritis in Japanese. Kidney Int 2004;66:2382–8.Google Scholar
Mittal, B, Hurwitz, S, Rennke, H, Singh, AK. New subcategories of class IV lupus nephritis: are there clinical, histologic, and outcome differences? Am J Kidney Dis 2004;44:1050–9.Google Scholar
Hill, GS, Delahousse, M, Nochy, D, Bariety, J. Class IV-S versus class IV-G lupus nephritis: clinical and morphologic differences suggesting different pathogenesis. Kidney Int 2005;68:2288–97.Google Scholar
Hiramatsu, N, Kuroiwa, T, Ikeuchi, H, et al. Revised classification of lupus nephritis is valuable in predicting renal outcome with an indication of the proportion of glomeruli affected by chronic lesions. Rheumatology (Oxford) 2008;47:702–7.Google Scholar
Kojo, S, Sada, KE, Kobayashi, M, et al. Clinical usefulness of a prognostic score in histological analysis of renal biopsy in patients with lupus nephritis. J Rheumatol 2009;36:2218–23.Google Scholar
Kim, YG, Kim, HW, Cho, YM, et al. The difference between lupus nephritis class IV-G and IV-S in Koreans: focus on the response to cyclophosphamide induction treatment. Rheumatology (Oxford) 2008;47:311–4.Google Scholar
Grootscholten, C, Bajema, IM, Florquin, S, et al. Interobserver agreement of scoring of histopathological characteristics and classification of lupus nephritis. Nephrol Dial Transplant 2008;23:223–30.Google Scholar
Schwartz, MM, Korbet, SM, Lewis, EJ. The prognosis and pathogenesis of severe lupus glomerulonephritis. Nephrol Dial Transplant 2008;23:1298–306.Google Scholar
Yu, F, Tan, Y, Wu, LH, et al. Class IV-G and IV-S lupus nephritis in Chinese patients: a large cohort study from a single center. Lupus 2009;18:1073–81.Google Scholar
Haring, CM, Rietveld, A, van den Brand, JA, Berden, JH. Segmental and global subclasses of class IV lupus nephritis have similar renal outcomes. J Am Soc Nephrol 2012;23:149–54.Google Scholar
Najafi, CC, Korbet, SM, Lewis, EJ, et al. Significance of histologic patterns of glomerular injury upon long-term prognosis in severe lupus glomerulonephritis. Kidney Int 2001;59:2156–63.Google Scholar
Pasquali, S, Banfi, G, Zucchelli, A, et al. Lupus membranous nephropathy: long-term outcome. Clin Nephrol 1993;39:175–82.Google Scholar
Waldman, M, Appel, GB. Update on the treatment of lupus nephritis. Kidney Int 2006;70:1403–12.Google Scholar
Bomback, AS, Appel, GB. Updates on the treatment of lupus nephritis. J Am Soc Nephrol 2010;21:2028–35.Google Scholar
Baranowska-Daca, E, Choi, YJ, Barrios, R, et al. Nonlupus nephritides in patients with systemic lupus erythematosus: a comprehensive clinicopathologic study and review of the literature. Hum Pathol 2001;32:1125–35.Google Scholar
Dube, GK, Markowitz, GS, Radhakrishnan, J, Appel, GB, D’Agati, VD. Minimal change disease in systemic lupus erythematosus. Clin Nephrol 2002;57:120–6.Google Scholar
Hertig, A, Droz, D, Lesavre, P, Grunfeld, JP, Rieu, P. SLE and idiopathic nephrotic syndrome: coincidence or not? Am J Kidney Dis 2002;40:1179–84.Google Scholar
Kraft, SW, Schwartz, MM, Korbet, SM, Lewis, EJ. Glomerular podocytopathy in patients with systemic lupus erythematosus. J Am Soc Nephrol 2005;16:175–9.Google Scholar
Larsen, CP, Beggs, ML, Saeed, M, Walker, PD. Apolipoprotein L1 risk variants associate with systemic lupus erythematosus-associated collapsing glomerulopathy. J Am Soc Nephrol 2013;24:722–5.Google Scholar
Salvatore, SP, Barisoni, LM, Herzenberg, AM, et al. Collapsing glomerulopathy in 19 patients with systemic lupus erythematosus or lupus-like disease. Clin J Am Soc Nephrol 2012;7:914–25.Google Scholar
Marshall, S, Dressler, R, D’Agati, V. Membranous lupus nephritis with antineutrophil cytoplasmic antibody-associated segmental necrotizing and crescentic glomerulonephritis. Am J Kidney Dis 1997;29:119–24.Google Scholar
Zabaleta-Lanz, ME, Munoz, LE, Tapanes, FJ, et al. Further description of early clinically silent lupus nephritis. Lupus 2006;15:845–51.Google Scholar
Bennett, WM, Bardana, EJ, Norman, DJ, Houghton, DC. Natural history of “silent” lupus nephritis. Am J Kidney Dis 1982;1:359–63.Google Scholar
Wada, Y, Ito, S, Ueno, M, et al. Renal outcome and predictors of clinical renal involvement in patients with silent lupus nephritis. Nephron Clin Pract 2004;98:c10511.Google Scholar
Huerta, A, Bomback, AS, Liakopoulos, V, et al. Renal-limited ‘lupus-like’ nephritis. Nephrol Dial Transplant 2012;27:2337–42.Google Scholar
Hess, E. Drug-related lupus. N Engl J Med 1988;318:1460–2.Google Scholar
Sarzi-Puttini, P, Atzeni, F, Capsoni, F, Lubrano, E, Doria, A. Drug-induced lupus erythematosus. Autoimmunity 2005;38:507–18.Google Scholar
Vasoo, S. Drug-induced lupus: an update. Lupus 2006;15:757–61.CrossRefGoogle ScholarPubMed
Mor, A, Bingham, C 3rd, Barisoni, L, Lydon, E, Belmont, HM. Proliferative lupus nephritis and leukocytoclastic vasculitis during treatment with etanercept. J Rheumatol 2005;32:740–3.Google Scholar
Stokes, MB, Foster, K, Markowitz, GS, et al. Development of glomerulonephritis during anti-TNF-alpha therapy for rheumatoid arthritis. Nephrol Dial Transplant 2005;20:1400–6.Google Scholar
Vogt, BA, Kim, Y, Jennette, JC, et al. Antineutrophil cytoplasmic autoantibody-positive crescentic glomerulonephritis as a complication of treatment with propylthiouracil in children. J Pediatr 1994;124:986–8.Google Scholar
Chang, BG, Markowitz, GS, Seshan, SV, Seigle, RL, D’Agati, VD. Renal manifestations of concurrent systemic lupus erythematosus and HIV infection. Am J Kidney Dis 1999;33:441–9.Google Scholar
Sharp, GC, Irvin, WS, Tan, EM, Gould, RG, Holman, HR. Mixed connective tissue disease – an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). Am J Med 1972;52:148–59.Google Scholar
Kitridou, RC, Akmal, M, Turkel, SB, et al. Renal involvement in mixed connective tissue disease: a longitudinal clinicopathologic study. Semin Arthritis Rheum 1986;16:135–45.Google Scholar
Danieli, MG, Fraticelli, P, Salvi, A, Gabrielli, A, Danieli, G. Undifferentiated connective tissue disease: natural history and evolution into definite CTD assessed in 84 patients initially diagnosed as early UCTD. Clin Rheumatol 1998;17:195201.Google Scholar
Aringer, M, Steiner, G, Smolen, JS. Does mixed connective tissue disease exist? Yes. Rheum Dis Clin North Am 2005;31:411–20.Google Scholar
Cappelli, S, Bellando Randone, S, Martinovic, D, et al. “To be or not to be,” ten years after: evidence for mixed connective tissue disease as a distinct entity. Semin Arthritis Rheum 2012;41:589–98.Google Scholar
Bennett, R. Mixed connective tissue disease. In Grishman, EC, Churg, J, Needle, MA, Venkataseshan, VS, editors. The Kidney in Collagen Vascular Diseases. New York: Raven Press; 1993: 167.Google Scholar
Sawai, T, Murakami, K, Kurasono, Y. Morphometric analysis of the kidney lesions in mixed connective tissue disease (MCTD). Tohoku J Exp Med 1994;174:141–54.Google Scholar
Arnett, FC, Edworthy, SM, Bloch, DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315–24.Google Scholar
Aletaha, D, Neogi, T, Silman, AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 2010;69:1580–8.Google Scholar
Boers, M. Renal disorders in rheumatoid arthritis. Semin Arthritis Rheum 1990;20:5768.Google Scholar
Couverchel, L, Maugars, Y, Prost, A. Outcomes of thirty-four rheumatoid arthritis patients with renal amyloidosis, including twelve given alkylating agents. Rev Rhum Engl Ed 1995;62:7985.Google Scholar
Nakamura, T, Higashi, S, Tomoda, K, Tsukano, M, Shono, M. Effectiveness of etanercept vs cyclophosphamide as treatment for patients with amyloid A amyloidosis secondary to rheumatoid arthritis. Rheumatology (Oxford) 2012;51:2064–9.Google Scholar
Nanra, RS. Renal papillary necrosis in rheumatoid arthritis. Med J Aust 1975;1:194–7.Google Scholar
Radford, MG Jr, Holley, KE, Grande, JP, et al. Reversible membranous nephropathy associated with the use of nonsteroidal anti-inflammatory drugs. J Am Med Assoc 1996;276:466–9.Google Scholar
Cohen, DJ, Appel, GB. Cyclosporine: nephrotoxic effects and guidelines for safe use in patients with rheumatoid arthritis. Semin Arthritis Rheum 1992;21:43–8.Google Scholar
Rodriguez, F, Krayenbuhl, JC, Harrison, WB, et al. Renal biopsy findings and followup of renal function in rheumatoid arthritis patients treated with cyclosporin A. An update from the International Kidney Biopsy Registry. Arthritis Rheum 1996;39:1491–8.Google Scholar
Hall, CL. The natural course of gold and penicillamine nephropathy: a longterm study of 54 patients. Adv Exp Med Biol 1989;252:247–56.Google Scholar
Almirall, J, Alcorta, I, Botey, A, Revert, L. Penicillamine-induced rapidly progressive glomerulonephritis in a patient with rheumatoid arthritis. Am J Nephrol 1993;13:286–8.Google Scholar
Nanke, Y, Akama, H, Terai, C, Kamatani, N. Rapidly progressive glomerulonephritis with D-penicillamine. Am J Med Sci 2000;320:398402.Google Scholar
Korpela, M, Mustonen, J, Pasternack, A, Helin, H. Mesangial glomerulopathy in rheumatoid arthritis patients. Clinical follow-up and relation to antirheumatic therapy. Nephron 1991;59:4650.Google Scholar
Honkanen, E, Tornroth, T, Pettersson, E, Skrifvars, B. Membranous glomerulonephritis in rheumatoid arthritis not related to gold or D-penicillamine therapy: a report of four cases and review of the literature. Clin Nephrol 1987;27:8793.Google Scholar
Goto, A, Mukai, M, Notoya, A, Kohno, M. Rheumatoid arthritis complicated with myeloperoxidase antineutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis: a case report. Mod Rheumatol 2005;15:118–22.Google Scholar
Mustila, A, Korpela, M, Mustonen, J, et al. Perinuclear antineutrophil cytoplasmic antibody in rheumatoid arthritis: a marker of severe disease with associated nephropathy. Arthritis Rheum 1997;40:710–7.Google Scholar
Hsieh, HS, Chang, CF, Yang, AH, et al. Antineutrophil cytoplasmic antibody-negative pauci-immune crescentic glomerulonephritis associated with rheumatoid arthritis: an unusual case report. Nephrology (Carlton) 2003;8:243–7.Google Scholar
Nomura, M, Okada, J, Tateno, S, Kobayashi, Y, Kondo, H. Renal thrombotic microangiopathy in a patient with rheumatoid arthritis and antiphospholipid syndrome: successful treatment with cyclophosphamide pulse therapy and anticoagulant. Intern Med 1994;33:484–7.Google Scholar
Moreland, L, DiBartolomeo, A, Brick, J. Rheumatoid vasculitis with intrarenal aneurysm formation. J Rheumatol 1988;15:845–9.Google Scholar
Helin, HJ, Korpela, MM, Mustonen, JT, Pasternack, AI. Renal biopsy findings and clinicopathologic correlations in rheumatoid arthritis. Arthritis Rheum 1995;38:242–7.Google Scholar
Sjogren, H. Zur Kenntnis De Keratoconjunctivitis Sicca (Kratitis Folliforms Bei Hypojunktion Der Tramemdrusen). Acta Opthlamol Copenh 1933;11:1151.Google Scholar
Reveille, JD, Wilson, RW, Provost, TT, Bias, WB, Arnett, FC. Primary Sjogren’s syndrome and other autoimmune diseases in families. Prevalence and immunogenetic studies in six kindreds. Ann Intern Med 1984;101:748–56.Google Scholar
Aasarod, K, Haga, HJ, Berg, KJ, Hammerstrom, J, Jorstad, S. Renal involvement in primary Sjogren’s syndrome. Q J Med 2000;93:297304.Google Scholar
Font, J, Cervera, R, Lopez-Soto, A, Darnell, A, Ingelmo, M. Mixed membranous and proliferative glomerulonephritis in primary Sjogren’s syndrome. Br J Rheumatol 1989;28:548–50.Google Scholar
Kau, CK, Hu, JC, Lu, LY, et al. Primary Sjogren’s syndrome complicated with cryoglobulinemic glomerulonephritis, myocarditis, and multi-organ involvement. J Formos Med Assoc 2004;103:707–10.Google Scholar
Fox, RI, Pearson, G, Vaughan, JH. Detection of Epstein–Barr virus-associated antigens and DNA in salivary gland biopsies from patients with Sjogren’s syndrome. J Immunol 1986;137:3162–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×