Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T12:21:50.688Z Has data issue: false hasContentIssue false

Chapter 5 - Glomerular Diseases Associated Primarily with Asymptomatic or Gross Hematuria

Published online by Cambridge University Press:  01 March 2017

Xin Jin (Joseph) Zhou
Affiliation:
Baylor University Medical Center, Dallas
Zoltan G. Laszik
Affiliation:
University of California, San Francisco
Tibor Nadasdy
Affiliation:
Ohio State University
Vivette D. D'Agati
Affiliation:
Columbia University, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sawsan, M. Alzahrani, I H, Furness, P N: Glomerular changes in microscopic haematuria, studied by quantitative immunoelectron microscopy and in situ zymography. Nephol Dial Transplant 17:15861593, 2002.Google Scholar
Berger, J, Hinglas, N: Les depots intercapillaires IgA–IgG. J Urol Nephrol (Paris) 74:694–95, 1968.Google Scholar
D’Amico, G: Natural history of idiopathic IgA nephropathy: Role of clinical and histological prognostic factors. Am J Kidney Dis 36:227237, 2000.Google Scholar
Lu, J C, Zhang, H, Zhou, Y, et al.: Natural history and predictive factors of prognosis: A long term follow up of 204 cases in China. Nephrology (Carlton) 13:242246, 2008..Google Scholar
The United States Renal Data System Annual Data Report 2015. www.usrds.org.Google Scholar
Sugiyama, H, Yokoyama, H, Sato, H, et al.: Committee for Standardization of Renal Pathological Diagnosis; Committee for Kidney Disease Registry; Japanese Society of Nephrology: Japan Renal Biopsy Registry and Japan Kidney Disease Registry: Committee Report for 2009 and 2010. Clin Exp Nephrol 17:155173, 2013.Google Scholar
Galla, J: IgA nephropathy. Kidney Int 47:377387, 1995.Google Scholar
Hoy, W E, Samuel, T,Mott, S A, et al.: Renal biopsy findings among Indigenous Australians: A nationwide review. Kidney Int 82:13211331, 2012.Google Scholar
D’Amico, G: The commonest glomerulonephritis in the world: IgA nephropathy. Q J Med 64:709727, 2001.Google Scholar
Sinniah, R: Occurrence of mesangial IgA and IgM deposits in a control necropsy population. J Clin Pathol 36:276279, 1983.Google Scholar
Galla, J H, Kohaut, E C, Alexander, R, et al.: Racial differencein the prevalence of IgA-associated nephropathies. Lancet 2:522, 1984.CrossRefGoogle Scholar
Jennette, J C, Wall, S D, Wilkman, A S: Low incidence of IgA nephropathy in blacks. Kidney Int 28:944950, 1985.Google Scholar
McQuarrie, E P, Mackinnon, B, McNeice, V, Fox, J G, Geddes, C C: The incidence of biopsy-proven IgA nephropathy is associated with multiple socioeconomic deprivation. Kidney Int 85:198203, 2014.Google Scholar
Wyatt, R J, Julian, B A: IgA nephropathy. N Engl J Med 368:2402–14, 2013.Google Scholar
Wyatt, R J, Julian, B A, Baehler, R W, et al.: Epidemiology of IgA nephropathy in central and eastern Kentucky for the period 1975 through 1994. J Am Soc Nephrol 9:853858, 1998.Google Scholar
Wyatt, R J, Kritchevsky, S B, Woodford, S Y, et al.: IgA nephropathy: Long-term prognosis for pediatric patients. J Pediatr 127:913919, 1995.Google Scholar
Philibert, D, Cattran, D, Cook, T: Clinicopathologic correlation in IgA nephropathy. Semin Nephrol 28:1017, 2008.CrossRefGoogle ScholarPubMed
Herlitz, L C, Bomback, A S, Stokes, M B, et al.: IgA nephropathy with minimal change disease. Clin J Am Soc Nephrol 9:10331039, 2014.CrossRefGoogle ScholarPubMed
Yang, Y-Z, Shi, S-F,Chen, Y-Q, et al.: Clinical features of IgA nephropathy with serum ANCA-positivity: A retrospective case–control study. Clin Kidney J 8:482488, 2015.CrossRefGoogle ScholarPubMed
Emancipator, S N: IgA nephropathy and Henoch–Scholein syndrome. In Jennette, J. C., Olson, J. L., Schwartz, M. M., and Silva, F. G., eds., Heptinstall’s Pathology of the Kidney, 5th ed., vol. 1 (Philadelphia: Lippincott-Raven, 1998), pp. 479539.Google Scholar
Hogg, R J, Silva, F G, Wyatt, R J, et al.: Prognostic indicators in children with IgA nephropathy – Report of the Southwest Pediatric Nephrology Study Group. Pediatr Nephrol 8:1520, 1994.Google Scholar
Ibels, L S, Gyory, A Z: IgA nephropathy: Analysis of the natural history, important factors in the progression of renal disease, and a review of the literature. Medicine 73:79102, 1994.Google Scholar
Tang, Z, Wu, Y, Wang, Q W, et al.: Idiopathic IgA nephropathy with diffuse crescent formation. Am J Nephrol 22:480486, 2002.Google Scholar
Tumlin, J A, Hennigar, R A: Clinical presentation, natural history, and treatment of crescentic proliferative IgA nephropathy. Semin Nephrol 24:256268, 2004.CrossRefGoogle ScholarPubMed
D’Amico, G, Napodano, P, Ferrario, F, Rastaldi, M P, Arrigo, G: Idiopathic IgA nephropathy with segmental necrotizing lesions of the capillary wall. Kidney Int 59:682692, 2001.Google Scholar
Haas, M, Jafri, J, Bartosh, S M, et al.: ANCA-associated crescentic glomerulonephritis with mesangial IgA deposits. Am J Kidney Dis 36:709718, 2000.Google Scholar
Lee, S M, Rao, V M, Franklin, W A, et al.: IgA nephropathy: Morphologic predictors of progressive renal disease. Hum Pathol 13:314322, 1982.CrossRefGoogle ScholarPubMed
Meadow, S R, Glasgow, E F, White, R H, et al.: Schonlein–Henoch nephritis. Quart J Med 41:241258, 1972.Google Scholar
Haas, M: Histological subclassification of IgA nephropathy: A clinicopathologic study of 244 cases. Am J Kidney Dis 29:829842, 1997.Google Scholar
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Cattran, D C, Coppo, R, et al.: The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification. Kidney Int 76:534545, 2009.Google Scholar
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Roberts, I S, Cook, H T, et al.: The Oxford classification of IgA nephropathy: Pathology definitions, correlations, and reproducibility. Kidney Int 76:546556, 2009.Google Scholar
Kawamura, T, Joh, K, Okonogi, H, et al.: Study Group Special IgA Nephropathy: A histologic classification of IgA nephropathy for predicting long-term prognosis: Emphasis on end-stage renal disease. J Nephrol 26:350357, 2013.Google Scholar
Zeng, C H, Le, W, Ni, Z, et al.: A multicenter application and evaluation of the Oxford Classification of IgA Nephropathy in adult Chinese patients. Am J Kidney Dis 60:812820, 2012.Google Scholar
Le, W, Zeng, C H, Liu, Z, et al.: Validation of the Oxford Classification of IgA nephropathy for pediatric patients from China. BMC Nephrol 13:158, 2012.Google Scholar
Katafuchi, R, Ninomiya, T, Nagata, M, Mitsuiki, K, Hirakata, H: Validation study of oxford classification of IgA nephropathy: The significance of extracapillary proliferation. Clin J Am Soc Nephrol 6:28062813, 2011.Google Scholar
Tumlin, J A, Lohavichan, V, Hennigar, R: Crescentic proliferative IgA nephropathy: Clinical and histologic response to methyl prednisolone and intravenous cyclophosphamide. Nephrol Dial Transplant 18:13211392, 2003.Google Scholar
Karoui, K E, Hill, G S, Karras, K, et al.: A clinicopathologic study of thrombotic microangiopathy in IgA nephropathy. J Am Soc Nephrol 23:137148, 2012.Google Scholar
Gu, X, Herrera, G A: The value of electron microscopy in the diagnosis of IgA nephropathy. Ultrastruct Pathol 26:203210, 2003.Google Scholar
Lee, H S, Choi, Y, Lee, J S, Yu, B H, Koh, H I: Ultrastructural changes in IgA nephropathy in relation to histologic and clinical data. Kidney Int 35:880886, 1989.Google Scholar
Morita, M, Sakaguchi, H: A quantitative study of glomerular basement membrane changes in IgA nephropathy. J Pathol 154:718, 1988.Google Scholar
Vogler, C, Eliason, S C, Wood, E G: Glomerular membranopathy in children with IgA nephropathy and Henoch Schonlein purpura. Pediatr Dev Pathol 2:227235, 1999.Google Scholar
Norby, S M, Cosio, F G: Thin basement membrane nephropathy associated with other glomerular diseases. Semin Nephrol 25:176179, 2005.Google Scholar
Westhoff, T H, Waldherr, R, Loddenkemper, C, et al.: Mesangial IgA deposition in minimal change nephrotic syndrome: Coincidence of different entities or variant of minimal change disease? Clin Nephrol 65:203207, 2006.Google Scholar
Nasr, S H, Markowitz, G S, Whelan, J D, et al.: IgA-dominant acute poststaphylococcal glomerulonephritis complicating diabetic nephropathy. Hum Pathol 34:12351241, 2003.Google Scholar
Koyama, A, Sharmin, S, Sakurai, H, Shimizu, Y, et al:. Staphylococcus aureus cell envelope antigen is a new candidate for the induction of IgA nephropathy. Kidney Int 66:121132, 2004.CrossRefGoogle ScholarPubMed
Satoskar, A A, Nadasdy, G, Plaza, J A, et al.: Staphylococcus infection-associated glomerulonephritis mimicking IgA nephropathy. Clin J Am Soc Nephrol 1:11791186, 2006.Google Scholar
Newell, G: Cirrhotic glomerulonephritis: Incidence, morphology, clinical features and pathogenesis. Am J Kid Dis 9:183190, 1987.Google Scholar
Haas, M: IgA nephropathy and IgA vasculitis (Henoch–Scholein purpura) nephritis. In Jennette, J. C., Olson, J. L., Silva, F. G., D’Agati, V. D. eds., Heptinstall’s Pathology of the Kidney, 7th ed., vol. 1 (Philadelphia: Wolters Kluwer, 2015), pp. 463523.Google Scholar
Pouria, S, Barratt, J: Secondary IgA nephropathy. Semin Nephrol 28:2737, 2008.Google Scholar
Smerud, H K, Fellström, B, Hällgren, R, et al.: Gluten sensitivity in patients with IgA nephropathy. Nephrol Dial Transplant 24:24762248, 2009.Google Scholar
Gerntholtz, T E, Goetsch, S J W, Katz, I: HIV-related nephropathy: A South African perspective. Kidney Int 69:18851891, 2006.Google Scholar
Beaufils, H, Jouanneau, C, Katlama, C, Sazdovitch, V, Hauw, J J: HIV-associated IgA nephropathy – A post-mortem study. Nephrol Dial Transplant 10:3538, 1995.Google ScholarPubMed
Woof, J M, Russell, M W: Structure and function relationship in IgA. Mucosal Immunol 4:590597, 2011.Google Scholar
Smith, A C, de Wolff, J F, Molyneux, K, Feehally, J, Barratt, J: O-Glycosylation of serum IgD in IgA nephropathy. J Am Soc Nephrol 17:11921199, 2006.Google Scholar
Barratt, J, Smith, A C, Feehally, J: The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy. Nephrology (Carlton) 12:275284, 2007.Google Scholar
Tomana, M, Matousovic, K, Julian, B A, et al.: Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 52:509516, 1997.Google Scholar
Allen, A C, Bailey, E M, Brenchley, P E, et al.: Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: Observations in three patients. Kidney Int 60:969973, 2001.Google Scholar
Suzuki, H, Kiryluk, K, Novak, J, et al.: The pathophysiology of IgA nephropathy. J Am Soc Nephrol 22:17951803, 2011.Google Scholar
Kiryluk, K, Novak, J, Gharavi, A G: Pathogenesis of immunoglobulin A nephropathy: Recent insight from genetic studies. Annu Rev Med 64:339356, 2013.Google Scholar
Mestecky, J, Raska, M, Julian, B A, et al.: IgA nephropathy: Molecular mechanisms of the disease. Annu Rev Pathol 8:217240, 2013.CrossRefGoogle ScholarPubMed
Magistroni, R, D’Agati, V D, Appel, G B, Kirluk, K: New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int 8:974989, 2015.Google Scholar
Novak, J, Renfrow, M B, Gharavi, A G, Julian, B A: Pathogenesis of immunoglobulin A nephropathy. Curr Opin Nephrol Hypertens 22:287294, 2013.Google Scholar
Boyd, J K, Cheung, C K, Molyneux, K, Feehally, J, Barratt, J: An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int 81:833843, 2012.Google Scholar
Barratt, J, Eitner, F, Feehally, J, Floege, J: Immune complex formation in IgA nephropathy: A case of the ‘right’ antibodies in the ‘wrong’ place at the ‘wrong’ time? Nephrol Dial Transplant 24:36203623, 2009.Google Scholar
Serino, G, Sallustio, F, Cox, S N, Pesce, F, Schena, F P: Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol 23:814824, 2012.Google Scholar
Suzuki, H, Fan, R, Zhang, Z, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119:16681677, 2009.Google Scholar
Novak, J, Julian, B A, Mestecky, J, Renfrow, M B: Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol 34:365382, 2012.Google Scholar
Vuong, M T, Hahn-Zoric, M, Lundberg, S, et al.: Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int 78:12811287, 2010.Google Scholar
Moura, I C, Centelles, M N, Arcos-Fajardo, M, et al.: Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 194:417425, 2001.Google Scholar
Kaneko, Y, Otsuka, T, Tsuchida, Y, Gejyo, F, Narita, I: Integrin α1/β1 and α2/β1 as a receptor for IgA1 in human glomerular mesangial cells in IgA nephropathy. Int Immunol 24:219232, 2012.Google Scholar
Amore, A, Conti, G, Cirina, P, et al.: Aberrantly glycosylated IgA molecules downregulate the synthesis and secretion of vascular endothelial growth factor in human mesangial cells. Am J Kidney Dis 36:12421252, 2000.Google Scholar
Lai, K N: Pathogenesis of IgA nephropathy. Nat Rev Nephrol 8:275283, 2012.Google Scholar
Lai, K N, Leung, J C, Chan, L Y, et al.: Activation of podocytes by mesangial derived TNF-alpha: Glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol 294:F945F955, 2008.Google Scholar
Daha, M R, van Kooten, C: Deposition of IgA in primary IgA nephropathy: It takes at least four to tango. Nephrol Dial Transplant 28:794797, 2013.Google Scholar
BenMkaddem, S, Rossato, E, Heming, N, Monteiro, R C: Anti-inflammatory role of the IgA Fc receptor (CD89): From autoimmunity to therapeutic perspectives. Autoimmun Rev 12:666669, 2013.Google Scholar
Nadalutti, C A, Korponay-Szabo, I R, Kaukinen, K, et al.: Celiac disease patient IgA antibodies induce endothelial adhesion and cell polarization defects via extracellular transglutaminase. Cell Mol Life Sci 71:13151326, 2014.Google Scholar
Tissandié, E, Morelle, W, Berthelot, L, et al.: Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89–IgA and IgG–IgA complexes: Common mechanisms for distinct diseases. Kidney Int 80:13521363, 2011.Google Scholar
Novak, J, Julian, B A: Sugars and alcohol: IgA-associated renal diseases in alcoholic cirrhosis. Kidney Int 80:12521254, 2011.Google Scholar
Zhu, L, Zhang, Q, Shi, S, et al.: Synergistic effect of mesangial cell-induced CXCL1 and TGF-b1 in promoting podocyte loss in IgA nephropathy. PLoS ONE 8:e73425, 2013.Google Scholar
Cox, S N, Sallustio, F, Serino, G, et al.: Activated innate immunity and the involvement of CX3CR1-fractalkine in promoting hematuria in patients with IgA nephropathy. Kidney Int 82:548560, 2012.CrossRefGoogle ScholarPubMed
Eitner, F, Floege, J: In search of a better understanding of IgA nephropathy associated hematuria. Kidney Int 82:513515, 2012.Google Scholar
Carlsson, M C, Bakoush, O, Tengroth, L, et al.: Galectin-8 in IgA nephritis: Decreased binding of IgA by galectin-8 affinity chromatography and associated increased binding in non-IgA serum glycoproteins. J Clin Immunol 32:246255, 2012.Google Scholar
Tamouza, H, Chemouny, JM, Raskova Kafkova, L, et al.: The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int 82:12841296, 2012.Google Scholar
Jin, J, Xiao, Y, Chang, J H, et al.: The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-kB signaling. Nat Immunol 13:11011109, 2012.Google Scholar
Nagai, K, Miyoshi, M, Kake, T, et al.: Dual involvement of growth arrest-specific gene 6 in the early phase of human IgA nephropathy. PLoS ONE 8:e66759, 2013.Google Scholar
Wang, Y Y, Zhang, L, Zhao, P W, et al.: Functional implications of regulatory B cells in human IgA nephropathy. Scand J Immunol 79:5160, 2014.CrossRefGoogle ScholarPubMed
Takechi, H, Oda, T, Hotta, O, et al.: Clinical and immunological implications of increase in CD2081 dendritic cells in tonsils of patients with immunoglobulin A nephropathy. Nephrol Dial Transplant 28:30043013, 2013.Google Scholar
Wada, T, Nangaku, M: Novel roles of complement in renal diseases and their therapeutic consequences. Kidney Int 84:441450, 2013.Google Scholar
Scolari, F, Amoroso, A, Savoldi, S, et al. Familial clustering of IgA nephropathy: Further evidence in an Italian population. Am J Kid Dis 33:857865, 1999.Google Scholar
Moldoveanu, Z, Wyatt, R J, Lee, J Y, et al.: Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:11481154, 2007.Google Scholar
Gharavi, A G, Moldoveanu, Z, Wyatt, R J, et al.: Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19:10081014, 2008.Google Scholar
Lin, X, Ding, J, Zhu, L, et al.: Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transplant 24:33723375, 2009.Google Scholar
Feehally, J, Farrall, M, Boland, A, et al.: HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol 21:17911797, 2010Google Scholar
Gharavi, A G, Kiryluk, K, Choi, M, et al.: Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321327, 2011.Google Scholar
Kiryluk, K, Li, Y, Sanna-Cherchi, S, et al.: Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8:e1002765, 2012.Google Scholar
Lin, X, Ding, J, Zhu, L, et al.: Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transplant 24:33723375, 2009.Google Scholar
Li, G S, Nie, G J, Zhang, H, et al.: Do the mutations of C1GALT1C1 gene play important roles in the genetic susceptibility to Chinese IgA nephropathy? BMC Med Genet 10:101, 2009.Google Scholar
Pirulli, D, Crovella, S, Ulivi, S, et al.: Genetic variant of C1GalT1 contributes to the susceptibility to IgA nephropathy. J Nephrol 22:152159, 2009.Google Scholar
Buck, K S, Smith, A C, Molyneux, K, et al.: B-cell O-galactosyltransferase activity, and expression of O-glycosylation genes in bone marrow in IgA nephropathy. Kidney Int 73:11281136, 2008.Google Scholar
Ding, J X, Xu, L X, Zhu, L, et al.: Activity of alpha2,6-sialyltransferase and its gene expression in peripheral B lymphocytes in patients with IgA nephropathy. Scand J Immunol 69:174180, 2009.Google Scholar
Zhu, L, Tang, W, Li, G, et al.: Interaction between variants of two glycosyltransferase genes in IgA nephropathy. Kidney Int 76:190198, 2009.Google Scholar
Li, R, Xue, C, Li, C, et al.: TRAC variants associate with IgA nephropathy. J Am Soc Nephrol 20:13591367, 2009.Google Scholar
Woo, K T, Lau, Y K, Wong, K S, Zhao, Y, Chan, C M: Parallel genotyping of 10,204 single nucleotide polymorphisms to screen for susceptible genes for IgA nephropathy. Ann Acad Med Singapore 38:894899, 2009.Google Scholar
Yamamoto, R, Nagasawa, Y, Shoji, T, et al.: A candidate gene approach to genetic prognostic factors of IgA nephropathy: A result of Polymorphism REsearch to Distinguish genetic factors Contributing To progression of IgA Nephropathy (PREDICT-IgAN). Nephrol Dial Transplant 24:36863694, 2009.Google Scholar
Chin, H J, Cho, H J, Lee, T W, et al.: The heme oxygenase-1 genotype is a risk factor to renal impairment of IgA nephropathy at diagnosis, which is a strong predictor of mortality. J Korean Med Sci 24(Suppl):S30S37, 2009.Google Scholar
Ai, Z, Li, M, Liu, W, et al: Low α-defensin gene copy number increases the risk for IgA nephropathy and renal dysfunction. Sci Transl Med 8(345):345ra88, 2016.Google Scholar
Lim, C S, Kim, S M, Oh, Y K, et al.: Megsin 2093T–2180C haplotype at the 3ʹ untranslated region is associated with poor renal survival in Korean IgA nephropathy patients. Clin Nephrol 70:101109, 2008.Google Scholar
Vuong, M T, Lundberg, S, Gunnarsson, I, et al.: Genetic variation in the transforming growth factor beta 1 gene is associated with susceptibility to IgA nephropathy. Nephrol Dial Transplant 24:30613067, 2009.Google Scholar
Kim, S M, Chin, H J, Oh, Y K, et al.: Blood pressure-related genes and the progression of IgA nephropathy. Nephron Clin Pract 113:c301c308, 2009.Google Scholar
Cao, H X, Li, M, Nie, J, et al.: Human leukocyte antigen DRB1 alleles predict risk and disease progression of immunoglobulin A nephropathy in Han Chinese. Am J Nephrol 28:684691, 2008.Google Scholar
Hahn, W H, Cho, B S, Kim, S D, Kim, S K, Kang, S: Interleukin-1 cluster gene polymorphisms in childhood IgA nephropathy. Pediatr Nephrol 24:13291336, 2009.Google Scholar
Bertinetto, F E, Calafell, F, Roggero, S, et al.: European IgA Nephropathy Consortium: Search for genetic association between IgA nephropathy and candidate genes selected by function or by gene mapping at loci IGAN2 and IGAN3. Nephrol Dial Transplant 27:23282337, 2012.Google Scholar
Zhou, X J, Cheng, F J, Qi, Y Y, et al.: FCGR2B and FCRLB gene polymorphisms associated with IgA nephropathy. PLoS ONE 8:e61208, 2013.Google Scholar
Yamamoto, R, Nagasawa, Y, Shoji, T, et al.: A candidate gene approach to genetic contributors to the development of IgA nephropathy. Nephrol Dial Transplant 27:10201030, 2012.Google Scholar
Yang, C, Jie, W, Yanlong, Y, et al.: Genome-wide association study identifies TNFSF13 as a susceptibility gene for IgA in a South Chinese population in smokers. Immunogenetics 64:747753, 2012.Google Scholar
Yu, X Q, Li, M, Zhang, H, et al.: A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 44:178182, 2012.Google Scholar
Lasseur, C, Allen, A C, Deminiere, C, et al.: Henoch–Schonlein purpura with immunoglobulin A nephropathy and abnormalities of immunoglobulin A in a Wiskott–Aldrich syndrome carrier. Am J Kidney Dis 29:285287, 1997.Google Scholar
Zickerman, A M, Allen, A C, Talwar, V, et al.: IgA myeloma presenting as Henoch–Schonlein purpura with nephritis. Am J Kidney Dis 36:E19, 2000.Google Scholar
Roccatello, D, Picciotto, G, Torchio, M, et al.: Removal systems of immunoglobulin A and immunoglobulin A containing complexes in IgA nephropathy and cirrhosis patients. The role of asialoglycoprotein receptors. Lab Invest 69:714723, 1993.Google Scholar
Pouria, S, Feehally, J: Glomerular IgA deposition in liver disease. Nephrol Dial Transplant 14:22792282, 1999.Google Scholar
Feehally, J, Beattie, T J, Brenchley, P E, et al.: Response of circulating immune complexes to food challenge in relapsing IgA nephropathy. Pediatr Nephrol 1:581586, 1987.Google Scholar
Papista, C, Lechner, S, Mkaddem, S B, et al.: Gluten exacerbates IgA nephropathy in humanized mice through gliadin–CD89 interaction. Kidney Int 88:276285, 2015.Google Scholar
Kidney Disease Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group: KDIGO clinical practice guideline for glomerulonephritis. Kidney Int 2(Suppl):139274, 2012.Google Scholar
Barbour, S J, Reich, H N: Risk stratification of patients with IgA nephropathy. Am J Kidney Dis 59:865873, 2012.Google Scholar
Chou, Y H, Lien, Y C, Hu, F C, et al.: Clinical outcomes and predictors for ESRD and mortality in primary GN. Clin J Am Soc Nephrol 7:14011408, 2012.Google Scholar
Le, W, Liang, S, Hu, Y, et al.: Long-term renal survival and related risk factors in patients with IgA nephropathy: Results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial Transplant 27:14791485, 2012.Google Scholar
Reich, H N, Troyanov, S, Scholey, J W, Cattran, D C: Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol 18:31773183, 2007.Google Scholar
Barbour, S J, Cattran, D C, Kim, S J, et al. Individuals of Pacific Asian origin with IgA nephropathy have an increased risk of progression to end-stage renal disease. Kidney Int 84:10171024, 2013.Google Scholar
Duan, Z Y, Cai, G Y, Chen, Y Z, et al.: Aging promotes progression of IgA nephropathy: A systematic review and meta-analysis. Am J Nephrol 38:241252, 2013.Google Scholar
Berthoux, F, Mariat, C, Maillard, N: Overweight/obesity revisited as a predictive risk factor in primary IgA nephropathy. Nephrol Dial Transplant 28(Suppl 4):iv160iv166, 2013.Google Scholar
Lv, J, Shi, S, Xu, D, et al.: Evaluation of the Oxford Classification of IgA nephropathy: A systematic review and meta-analysis. Am J Kidney Dis 62:891899, 2013.Google Scholar
Liu, L J, Li, G T, Zhou, Y, Lu, C, Zhang, H: Clinicopathologic features and outcomes in endocapillary proliferative IgA nephropathy. Nephron Clin Pract 115:c161c167, 2010.Google Scholar
Walsh, M, Sar, A, Lee, D, et al.: Histopathologic features aid in predicting risk for progression of IgA nephropathy. Clin J Am Soc Nephrol 5:425430, 2010.Google Scholar
Lu, J, Yang, Y, Zhang, H, et al.: Prediction of outcomes in crescentic IgA nephropathy in a multicenter cohort study. J Am Soc Nephrol 24:21182125, 2013.Google Scholar
Shimizu, A, Takei, T, Moriyama, T, et al.: Clinical and pathological studies of IgA nephropathy presenting as a rapidly progressive form of glomerulonephritis. Intern Med 52:24892494, 2013.Google Scholar
Gutiérrez, E, Zamora, I, Ballarín, J A, et al.: Long-term outcomes of IgA nephropathy presenting with minimal or no proteinuria. J Am Soc Nephrol 23:17531760, 2012.Google Scholar
Xu, L, Yang, H C, Hao, C M, et al.: Podocyte number predicts progression of proteinuria in IgA nephropathy. Mod Pathol 23:12411250, 2010.Google Scholar
Hill, G S, Karoui, K E, Karras, A, et al.: Focal segmental glomerulosclerosis plays a major role in the progression of IgA nephropathy. I. Immunohistochemical studies. Kidney Int 79:635642, 2011.Google Scholar
El Karoui, K, Hill, G S, Karras, A, et al.: Focal segmental glomerulosclerosis plays a major role in the progression of IgA nephropathy. II. Light microscopic and clinical studies. Kidney Int 79:643654, 2011.Google Scholar
Tsuboi, N, Kawamura, T, Koike, K, et al: Glomerular density in renal biopsy specimens predicts the long-term prognosis of IgA nephropathy. Clin J Am Soc Nephrol 5:3944, 2010.Google Scholar
Lee, H J, Choi, S Y, Jeong, K H, et al.: Association of C1q deposition with renal outcomes in IgA nephropathy. Clin Nephrol 80:98104, 2013.Google Scholar
Kim, S J, Koo, H M, Lim, B J, et al.: Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS ONE 7:e40495, 2012.Google Scholar
Wada, Y, Ogata, H, Takeshige, Y, et al.: Clinical significance of IgG deposition in the glomerular mesangial area in patients with IgA nephropathy. Clin Exp Nephrol 17:7382, 2013.Google Scholar
Liu, L L, Liu, N, Chen, Y, et al.: Glomerular mannose-binding lectin deposition is a useful prognostic predictor in immunoglobulin A nephropathy. Clin Exp Immunol 174:152160, 2013.Google Scholar
Tanaka, S, Ninomiya, T, Katafuchi, R, et al.: Development and validation of a prediction rule using the Oxford classification in IgA nephropathy. Clin J Am Soc Nephrol 8:20822090, 2013.Google Scholar
Xie, J, Kiryluk, K, Wang, W, et al.: Predicting progression of IgA nephropathy: New clinical progression risk score. PLoS ONE 7:e38904, 2012.Google Scholar
Berthoux, F, Mohey, H, Laurent, B, et al.: Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol 22:752761, 2011.Google Scholar
Fujimi-Hayashida, A, Ueda, S, Yamagishi, S, et al.: Association of asymmetric dimethylarginine with severity of kidney injury and decline in kidney function in IgA nephropathy. Am J Nephrol 33:16, 2011.Google Scholar
Peters, H P, Waanders, F, Meijer, E, et al.: High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy. Nephrol Dial Transplant 26:35813588, 2011.Google Scholar
Xu, P C, Zhang, J J, Chen, M, et al.: Urinary kidney injury molecule-1 in patients with IgA nephropathy is closely associated with disease severity. Nephrol Dial Transplant 26:32293236, 2011.Google Scholar
Meng, H, Zhang, L, E, X, et al.: Application of Oxford classification, and overexpression of transforming growth factor-b1 and immunoglobulins in immunoglobulin A nephropathy: Correlation with World Health Organization classification of immunoglobulin A nephropathy in a Chinese patient cohort. Transl Res 163:818, 2014.Google Scholar
Gutiérrez, E, Egido, J, Rubio-Navarro, A, et al.: Oxidative stress, macrophage infiltration and CD163 expression are determinants of long-term renal outcome in macrohematuria-induced acute kidney injury of IgA nephropathy. Nephron Clin Pract 121:c42c53, 2012.Google Scholar
Lin, F J, Jiang, G R, Shan, J P, et al.: Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand J Clin Lab Invest 72:221229, 2012.Google Scholar
Berthoux, F, Suzuki, H, Thibaudin, L, et al.: Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 23:15791587, 2012.Google Scholar
Beck, L, Bomback, A S, Choi, M J, et al.: KDOQI US commentary on the 2012 KDIGO clinical practice guideline for glomerulonephritis. Am J Kidney Dis 62:403441, 2013.Google Scholar
Li, P K, Kwan, B C, Chow, K M, Leung, C B, Szeto, C C: Treatment of early immunoglobulin A nephropathy by angiotensin-converting enzyme inhibitor. Am J Med 126:162168, 2013.Google Scholar
Praga, M, Gutierrez, E, Gonzalez, E, Morales, E, Hernandez, E: Treatment of IgA nephropathy with ACE inhibitors: A randomized and controlled trial. J Am Soc Nephrol 14:15781583, 2003.Google Scholar
Coppo, R, Peruzzi, L, Amore, A, et al.: IgACE: A placebo-controlled, randomized trial of angiotensin-converting enzyme inhibitors in children and young people with IgA nephropathy and moderate proteinuria. J Am Soc Nephrol 18:18801888, 2007.Google Scholar
Cheng, J, Zhang, X, Tian, J, Li, Q, Chen, J: Combination therapy an ACE inhibitor and an angiotensin receptor blocker for IgA nephropathy: A meta-analysis. Int J Clin Pract 66:917923, 2012.Google Scholar
Szeto, C C, Kwan, B C, Chow, K M, Leung, C B, Li, P K: The safety and short-term efficacy of aliskiren in the treatment of immunoglobulin a nephropathy– A randomized cross-over study. PLoS ONE 8:e62736, 2013.Google Scholar
Liu, L L, Wang, L N: ω-3 fatty acids therapy for IgA nephropathy: A meta-analysis of randomized controlled trials. Clin Nephrol 77:119125, 2012.Google Scholar
Chou, H H, Chiou, Y Y, Hung, P H, Chiang, P C, Wang, S T: Omega-3 fatty acids ameliorate proteinuria but not renal function in IgA nephropathy: A meta-analysis of randomized controlled trials. Nephron Clin Pract 121:c30c35, 2012.Google Scholar
Lv, J, Xu, D, Perkovic, V, et al.: Corticosteroid therapy in IgA nephropathy. J Am Soc Nephrol 23:11081116, 2012.Google Scholar
Lv, J, Zhang, H, Chen, Y, et al.: Combination therapy of prednisone and ACE inhibitor versus ACE inhibitor therapy alone in patients with IgA nephropathy: A randomized controlled trial. Am J Kidney Dis 53:2632, 2009.Google Scholar
Manno, C, Torres, D D, Rossini, M, Pesce, F, Schena, F P: Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol Dial Transplant 24:36943701, 2009.Google Scholar
Moriyama, T, Nakayama, K, Ochi, A, et al.: Comparison of inhibitors of renin–angiotensin–aldosterone system (RAS) and combination therapy of steroids plus RAS inhibitors for patients with advanced immunoglobulin A nephropathy and impaired renal function. Clin Exp Nephrol 16:231237, 2012.Google Scholar
Moriyama, T, Amemiya, N, Ochi, A, et al.: Comparison of steroids and angiotensin receptor blockers for patients with advanced IgA nephropathy and impaired renal function. Am J Nephrol 34:233240, 2011.Google Scholar
Tesar, V, Troyanov, S, Bellur, S, et al.: Corticosteroids in IgA Nephropathy: A Retrospective Analysis from the VALIGA Study. J Am Soc Nephrol 26:22482258, 2015.Google Scholar
Coppo, R: Is a legacy effect possible in IgA nephropathy? Nephrol Dial Transplant 28:16571662, 2013.Google Scholar
Wang, J, Juan, C, Huang, Q, Zeng, C, Liu, Z: Corticosteroid therapy in IgA nephropathy with minimal change-like lesions: A single-centre cohort study. Nephrol Dial Transplant 28:23392345, 2013.Google Scholar
Qin, J, Yang, Q, Tang, X, et al.: Clinicopathologic features and treatment response in nephrotic IgA nephropathy with minimal change disease. Clin Nephrol 79:3744, 2013.Google Scholar
Xu, G, Tu, W, Jiang, D, Xu, C: Mycophenolate mofetil treatment for IgA nephropathy: A meta-analysis. Am J Nephrol 29:362367, 2009.Google Scholar
Maes, B D, Oyen, R, Claes, K, et al.: Mycophenolate mofetil in IgA nephropathy: Results of a 3-year prospective placebo-controlled randomized study. Kidney Int 65:18421849, 2004.Google Scholar
Tang, S C, Tang, A W, Wong, S S, et al.: Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney Int 77:543549, 2010.Google Scholar
Hogg, R J, Bay, R C, Jennette, J C, et al.: Randomized controlled trial of mycophenolate mofetil in children, adolescents, and adults with IgA nephropathy. Am J Kidney Dis 66:783791, 2015.Google Scholar
US National Library of Medicine: A prospective, multicenter, randomized controlled trial of mycophenolate mofetil (MMF) in patients with IgA nephropathy (IgAN). ClinicalTrials.gov [online], http://clinicaltrials.gov/show/NCT00657059 (accessed December 30, 2014).Google Scholar
Pozzi, C, Andrulli, S, Pani, A, et al.: Addition of azathioprine to corticosteroids does not benefit patients with IgA nephropathy. J Am Soc Nephrol 21:17831790, 2010.Google Scholar
Ballardie, F W, Roberts, I S. Controlled prospective trial of prednisolone and cytotoxics in progressive IgA nephropathy. J Am Soc Nephrol 13:142148, 2002.Google Scholar
Faul, C, Donnelly, M, Merscher-Gomez, S, et al.: The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931938, 2008.Google Scholar
Kim, Y C, Chin, H J, Koo, H S, Kim, S: Tacrolimus decreases albuminuria in patients with IgA nephropathy and normal blood pressure: A double-blind randomized controlled trial of efficacy of tacrolimus on IgA nephropathy. PLoS ONE 8:e71545, 2013.Google Scholar
Liu, L L, Wang, L N, Jiang, Y, et al.: Tonsillectomy for IgA nephropathy: A meta-analysis. Am J Kidney Dis. 65:8087, 2015.Google Scholar
Canaud, G, Audard, V, Kofman, T, et al.: Recurrence from primary and secondary glomerulopathy after renal transplant. Transpl Int 25:812824, 2012.Google Scholar
Kamal Aziz, A, Mousson, C, Berthoux, F, Ducloux, D, Chalopin, JM: Renal transplantation outcome in selected recipients with IgA nephropathy as native disease: A bicentric study. Ann Transplant 17:4551, 2012.Google Scholar
Ortiz, F, Gelpi, R, Koskinen, P, et al.: IgA nephropathy recurs early in the graft when assessed by protocol biopsy. Nephrol Dial Transplant 27:25532558, 2012.Google Scholar
Sato, Y, Ishida, H, Shimizu, T, Tanabe, K: Evaluation of tonsillectomy before kidney transplantation in patients with IgA nephropathy. Transpl Immunol 30:1217, 2014.Google Scholar
Hotta, K, Fukasawa, Y, Akimoto, M, et al.: Tonsillectomy ameliorates histological damage of recurrent immunoglobulin A nephropathy after kidney transplantation. Nephrology (Carlton) 18:808812, 2013.Google Scholar
Heberden, W: De purpureis maculis. Chapter 78 in Commentaries on the History and Cure of Diseases. London, 1802.Google Scholar
Dr. Schönleins, J. L. allgemeine und specielle Pathologie und Therapie. Nach seinen Vorlesungen niedergeschrieben von einigen seiner Zuhörer und nicht autorisiert herausgegeben. Würzburg, Etlinger, 1832.Google Scholar
Henoch, E.: Über eine eigentümliche Form von Purpura. Berliner klinische Wochenschrift 11: 641, 1874.Google Scholar
Jennette, J C, Falk, R J, Bacon, P A, et al.: 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 65:111, 2013.Google Scholar
Trapani, S, Micheli, A, Grisolia, F, et al.: Henoch Schonlein purpura in childhood: Epidemiological and clinical analysis of 150 cases over a 5-year period and review of literature. Semin Arthritis Rheum 35(3):143153, 2005.Google Scholar
Gardner-Medwin, J M, Dolezalova, P, Cummins, C, Southwood, T R: Incidence of Henoch–Schonlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 360(9341):11971202, 2002.Google Scholar
Haugeberg, G, Bie, R, Bendvold, A, et al.: Primary vasculitis in a Norwegian community hospital: A retrospective study. Clin Rheumatol 17(5):364368, 1998.Google Scholar
Blanco, R, Martínez-Taboada, V M, Rodríguez-Valverde, V, García-Fuentes, M, González-Gay, M A: Henoch–Schönlein purpura in adulthood and childhood: Two different expressions of the same syndrome. Arthritis Rheum 40(5):859864, 1997.Google Scholar
Pillebout, E, Thervet, E, Hill, G, et al.: Henoch–Schönlein Purpura in adults: Outcome and prognostic factors. J Am Soc Nephrol 13(5):12711278, 2002.Google Scholar
Saulsbury, F T: Epidemiology of Henoch–Schonlein purpura. Clev Clin J Med 69(Suppl 2):8789, 2002.Google Scholar
Kellerman, P S: Henoch–Schonlein purpura in adults. Am J Kid Dis 48:10091016, 2006.Google Scholar
Mills, J A, Michel, B A, Bloch, D A, et al.: The American College of Rheumatology 1990 criteria for the classification of Henoch–Schonlein purpura. Arthritis Rheum 33:11141121, 1990.Google Scholar
Ozen, S, Pistorio, A, Iusan, S M, et al.: Paediatric Rheumatology International Trials Organisation (PRINTO): EULAR/PRINTO/ PRES criteria for Henoch–Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann Rheum Dis 69:798806, 2010.Google Scholar
Thrash, B, Patel, M, Shah, K R, Boland, C R, Menter, A: Cutaneous manifestations of gastrointestinal disease: Part II. J Am Acad Dermatol 68(2):211.e1–233; quiz 244246, 2013.Google Scholar
Chan, K H, Tang, W Y, Lo, K K: Bullous lesions in Henoch–Schonlein purpura. Pediatr Dermatol 24(3):325326, 2007.Google Scholar
Shiohama, T, Kitazawa, K, Omura, K, et al.: Intussusception and spontaneous ileal perforation in Henoch–Schönlein purpura. Pediatr Int 50:709710, 2008.Google Scholar
Bilici, S, Akgun, C, Melek, M, et al.: Acute appendicitis in two children with Henoch–Schönlein purpura. Paediatr Int Child Health 32(4):244245, 2012.Google Scholar
Ha, T S, Lee, J S: Scrotal involvement in childhood Henoch–Schonlein purpura. Acta Paediatr 96(4):552555, 2007.Google Scholar
Ozkaya, O, Bek, K, Alaca, N, et al.: Cerebral vasculitis in a child with Henoch–Schonlein purpura and familial Mediterranean fever. Clin Rheumatol 26(10):17291732, 2007.Google Scholar
Takeuchi, S, Soma, Y, Kawakami, T: IgM in lesional skin of adults with Henoch–Schönlein purpura is an indication of renal involvement. J Am Acad Dermatol 63(6):10261029, 2010.Google Scholar
Davin, J C, Coppo, R: Henoch–Schönlein purpura nephritis in children. Nat Rev Nephrol 10:563573, 2014.Google Scholar
Heaton, J M, Turner, D R, Cameron, J S: Localization of glomerular “deposits” in Henoch–Schonlein nephritis. Histopathology 1:93104, 1977.Google Scholar
Szeto, C C, Choi, P C, To, K F, et al.: Grading of acute and chronic renal lesions in Henoch–Schonlein purpura. Mod Pathol 14:635640, 2001.Google Scholar
Zollinger, H U, Mihatsch, M J, Gaboardi, F, et al.: Schonlein–Henoch glomerulonephritis. Characteristic ultrastructural changes in the glomerular basement membrane and localisation of osmiophilic deposits. Virchows Archiv A, Pathol Anat Histol 388:155165, 1980.Google Scholar
Ozaltin, F, Bakkaloglu, A, Ozen, S, et al.: The significance of IgA class of antineutrophil cytoplasmic antibodies (ANCA) in childhood Henoch–Schonlein purpura. Clin Rheumatol 23:426429, 2004.Google Scholar
Coppo, R, Cirina, P, Amore, A, et al.: Properties of circulating IgA molecules in Henoch–Schonlein purpura nephritis with focus on neutrophil cytoplasmic antigen IgA binding (IgA-ANCA): New insight into a debated issue. Italian Group of Renal Immunopathology Collaborative Study on Henoch–Schonlein purpura in adults and in children. Nephrol Dial Transplant 12:22692276, 1997.Google Scholar
Mookerjee, B K, Maddison, P J, Reichlin, M: Case report: Mesangial IgA–IgG deposition in mixed cryoglobulinemia. Am J Med Sci 276:221225, 1978.Google Scholar
Rollino, C, Dieny, A, Le Marc’hadour, F, et al.: Double monoclonal cryoglobulinemia, glomerulonephritis and lymphoma. Nephron 62:459464, 1992.Google Scholar
Yang, Y H, Huang, M T, Lin, S C, et al.: Increased transforming growth factor-beta (TGF-beta)-secreting T cells and IgA anti-cardiolipin antibody levels during acute stage of childhood Henoch–Schonlein purpura. Clin Exp Immunol 122:285290, 2000.Google Scholar
Kawakami, T, Watabe, H, Mizoguchi, M, Soma, Y: Elevated serum IgA anticardiolipin antibody levels in adult Henoch–Schonlein purpura. Brit J Dermatol 155:983987, 2006.Google Scholar
Rigante, D, Castellazzi, L, Bosco, A, Esposito, S: Is there a crossroad between infections, genetics, and Henoch–Schönlein purpura? Autoimmun Rev 12(10):10161021, 2013.Google Scholar
Masuda, M, Nakanishi, K, Yoshizawa, N, Iijima, K, Yoshikawa, N: Group A streptococcal antigen in the glomeruli of children with Henoch–Schonlein nephritis. Am J Kidney Dis 41:366370, 2003.Google Scholar
Ogura, Y, Suzuki, S, Shirakawa, T, et al.: Haemophilus parainfluenzae antigen and antibody in children with IgA nephropathy and Henoch–Schönlein nephritis. Am J Kidney Dis 36:4752, 2000.Google Scholar
Zurada, J M, Ward, K M, Grossman, M E: Henoch–Schonlein purpura associated with malignancy in adults. J Am Acad Dermatol 55(5 Suppl):6570, 2006.Google Scholar
Gonzalez-Gay, M A, Calvino, M C, Vazquez-Lopez, M E, et al. Implications of upper respiratory tract infections and drugs in the clinical spectrum of Henoch–Schonlein purpura in children. Clin Exp Rheumatol 22:781784, 2004.Google Scholar
Davin, J C, Ten Berge, I J, Weening, J J: What is the difference between IgA nephropathy and Henoch–Schönlein purpura nephritis? Kidney Int 59:823834, 2001.Google Scholar
Meadow, S R, Scott, D G: Berger disease: Henoch–Schönlein without the rash. J Pediatr 106:2732, 1985.Google Scholar
Allen, A C, Willis, F R, Beattie, T J, Feehally, J: Abnormal IgA glycosylation in Henoch–Schönlein purpura restricted to patients with clinical nephritis. Nephrol Dial Transplant 13:930934, 1998.Google Scholar
Davin, J C, Pierard, G, Dechenne, C, et al.: Possible pathogenic role of IgE in Henoch–Schönlein purpura. Pediatr Nephrol 8:169171, 1994.Google Scholar
Kawasaki, Y, Hosoya, M, Suzuki, H: Possible pathologenic role of interleukin-5 and eosino cationic protein in Henoch–Schönlein purpura nephritis. Pediatr Int 47:512517, 2005.Google Scholar
Namgoong, M K, Lim, B K, Kim, J S: Eosinophil cationic protein in Henoch–Schönlein purpura and in IgA nephropathy. Pediatr Nephrol 11:703706, 1997.Google Scholar
Davin, J-C.: Henoch–Schonlein purpura nephritis: Pathophysiology, treatment, and future strategy. Clin J Am Soc Nephrol 6:679689, 2011.Google Scholar
Lin, Q, Min, Y, Li, Y, et al.: Henoch–Schönlein purpura with hypocomplementemia. Pediatr Nephrol 27:801806, 2012.Google Scholar
Couser, W G: Basic and translational conceptys of immune-mediated glomerular diseases. J Am Soc Nephrol 23:381399, 2012.Google Scholar
Jennette, J C: Rapidly progressive crescentic glomerulonephritis. Kidney Int 63:11641177, 2003.Google Scholar
Hisano, S, Matsushita, M, Fujita, T, Iwasaki, H: Activation of the lectin complement pathway in Henoch–Schönlein purpura nephritis. Am J Kidney Dis 45:295302, 2005.Google Scholar
Roos, A, Rastaldi, M P, Calvaresi, N, et al.: Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17:17241734, 2006.Google Scholar
Espinosa, M, Ortega, R, Gomez-Carrasco, J M, et al.: Mesangial C4d deposition: A new prognostic factor in IgA nephropathy. Nephrol Dial Transplant 24:886891, 2009.Google Scholar
Levy, M: Familial cases of Berger’s disease and anaphylactoid purpura. Kidney Int 60:16111612, 2001.Google Scholar
Julian, B A, Quiggins, P A, Thompson, J S, et al.: Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N Engl J Med 312:202208, 1985.Google Scholar
Meadow, S R, Scott, D G: Berger disease: Henoch–Schönlein syndrome without the rash. J Pediatr 106:2732, 1985.Google Scholar
Kiryluk, K, Moldoveanu, Z, Sanders, J T, Eison, TM: Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch–Schönlein purpura nephritis. Kidney Int 80:7987, 2011.Google Scholar
He, X, Yu, C, Zhao, P, et al.: The genetics of Henoch–Schönlein purpura: A systematic review and meta-analysis. Rheum Int 33:13871395, 2013.Google Scholar
Altug, U, Ensari, C, Sayin, D B, Ensari, A: MEFV gene mutations in Henoch–Schönlein purpura. Int J Rheum Dis 16:347351, 2013.Google Scholar
López-Mejías, R, Genre, F, Pérez, B S, et al.: Association of HLA–DRB1*01 with IgA vasculitis (Henoch–Schönlein). Arthritis Rheum 67:823827, 2015.Google Scholar
Yoshikawa, N, White, R H, Cameron, A H: Prognostic significance of the glomerular changes in Henoch–Schoenlein nephritis. Clin Nephrol 16:223229, 1981.Google Scholar
Meadow, S R, Glasgow, E F, White, R H, et al.: Schonlein–Henoch nephritis. Q J Med 41:241258, 1972.Google Scholar
Saulsbury, F T: Clinical update: Henoch–Schönlein purpura. Lancet 369:976978, 2007.Google Scholar
Waldo, F B: Is Henoch–Schönlein purpura the systemic form of IgA nephropathy? Am J Kidney Dis 12:373377, 1988.Google Scholar
Nakamoto, Y, Asano, Y, Dohi, K, et al.: Primary IgA glomerulonephritis and Schönlein–Henoch purpura nephritis: Clinicopathological and immunohistological characteristics. Q J Med 47:495516, 1978.Google Scholar
Calvino, M C, Llorca, J, Garcia-Porrua, C, et al.: Henoch–Schonlein purpura in children from northwestern Spain: A 20-year epidemiologic and clinical study. Medicine (Baltimore) 80:279290, 2001.Google Scholar
Narchi, H: Risk of long term renal impairment and duration of follow up recommended for Henoch–Schonlein purpura with normal or minimal urinary findings: A systematic review. Arch Dis Child 90:916920, 2005.Google Scholar
Saulsbury, F T: Henoch–Schonlein purpura in children – Report of 100 patients and review of the literature. Medicine 78:395409, 1999.Google Scholar
Goldstein, A R, White, R H R, Akuse, R, Chantler, C: Long-term follow-up of childhood Henoch–Schonlein nephritis. Lancet 339:280282, 1992.Google Scholar
Scharer, K, Krmar, R, Querfeld, U, et al.: Clinical outcome of Schonlein–Henoch purpura nephritis in children. Pediatr Nephrol 13:816823, 1999.Google Scholar
Ronkainen, J, Nuutinen, M, Koskimies, O: The adult kidney 24 years after childhood Henoch–Schonlein purpura: A retrospective cohort study. Lancet 360:666670, 2002.Google Scholar
Edstrom-Halling, S, Soderberg, M P, Berg, U B: Predictors of outcome in Henoch–Schonlein nephritis. Pediatr Nephrol 25:11011108, 2010.Google Scholar
Wakaki, H, Ishikura, K, Hataya, H, et al.: Henoch–Schönlein purpura nephritis with nephrotic state in children: Predictors of poor outcomes. Pediatr Nephrol 26:921925, 2011.Google Scholar
Xia, Y, Mao, J, Chen, Y, et al.: Clinical outcomes in children with Henoch–Schönlein purpura nephritis grade IIIa or IIIb. Pediatr Nephrol 26:10831088, 2011.Google Scholar
Deng, F, Lu, L, Zhang, Q, et al.: Henoch–Schönlein purpura in childhood: Treatment and prognosis. Analysis of 425 cases over a 5-year period. Clin Rheumatol 29:369374, 2010.Google Scholar
Bunchman, T E, Mauer, S M, Sibley, R K, Vernier, R L: Anaphylactoid purpura: Characteristics of 16 patients who progressed to renal failure. Pediatr Nephrol 2:393397, 1988.Google Scholar
Niaudet, P, Murcia, I, Beaufils, H, Broyer, M, Habib, R: Primary IgA nephropathies in children: Prognosis and treatment. Adv Nephrol Necker Hospital 22:121140, 1993.Google Scholar
Nussinovitch, N, Elishkevitz, K, Volovitz, B, Nussinovitch, M: Hypertension as a late sequela of Henoch–Schonlein purpura. Clin Pediatr 44:543547, 2005.Google Scholar
Kaku, Y, Nohara, K, Honda, S: Renal involvement in Henoch–Schonlein purpura: A multivariate analysis of prognostic factors. Kidney Int 53:17551759, 1998.Google Scholar
Sano, H, Izumida, M, Shimizu, H, Ogawa, Y: Risk factors of renal involvement and significant proteinuria in Henoch–Schonlein purpura. Eur J Ped 161:196201, 2002.Google Scholar
Poterucha, T J, Wetter, D A, Gibson, L E, Camilleri, M J, Lohse, C M: Histopathology and correlates of systemic disease in adult Henoch–Schonlein purpura: A retrospective study of microscopic and clinical findings in 68 patients at Mayo Clinic. J Am Acad Dermatol 68:420e3424e3, 2013.Google Scholar
Guo, Y N, Wang, Z, Lu, J: The relationship between children kidney diseases and adult ESRD – An epidemiological investigation of 700 cases. Ren Fail 35:13531357, 2013.Google Scholar
Kellerman, P S: Henoch–Schonlein purpura in adults. Am J Kidney Dis 48:10091016, 2006.Google Scholar
Coppo, R, Andrulli, S, Amore, A, et al.: Predictors of outcome in Henoch–Schonlein nephritis in children and adults. Am J Kidney Dis 47:9931003, 2006.Google Scholar
Shrestha, S, Sumingan, N, Tan, J, et al.: Henoch Schonlein purpura with nephritis in adults: Adverse prognostic indicators in a UK population. Quart J Med 99:253265, 2006.Google Scholar
Coppo, R, Mazzucco, G, Cagnoli, L, Lupo, A, Schena, F P: Long-term prognosis of Henoch–Schonlein nephritis in adults and children. Italian Group of Renal Immunopathology Collaborative Study on Henoch Schonlein purpura. Nephrol Dial Transplant 12:22772283, 1997.Google Scholar
Zaffanello, M, Fanos, V: Treatment-based literature of Henoch–Schonlein purpura nephritis in childhood. Pediatr Nephrol 24:19011911, 2009.Google Scholar
Ronkainen, J, Koskimies, O, Ala-Houhala, M, et al.: Early prednisone therapy in Henoch–Schonlein purpura: A randomized, double-blind, placebocontrolled trial. J Pediatr 149:241247, 2006.Google Scholar
Jauhola, O, Ronkainen, J, Koskimies, O, et al.: Outcome of Henoch–Schönlein purpura 8 years after treatment with a placebo or prednisone at disease onset. Pediatr Nephrol 27:933939, 2012.Google Scholar
Dudley, J, Smith, G, Llewelyn-Edwards, A, et al.: Randomised, double-blind, placebo-controlled trial to determine whether steroids reduce the incidence and severity of nephropathy in Henoch–Schonlein Purpura (HSP). Arch Dis Child 98:756763, 2013.Google Scholar
Niaudet, P, Habib, R: Methylprednisolone pulse therapy in the treatment of severe forms of SchonleiniHenoch purpura nephritis. Pediatr Nephrol 12:238243, 1998.Google Scholar
Tarshish, P, Bernstein, J, Edelmann, C M Jr: Henoch–Schonlein purpura nephritis: Course of disease and efficacy of cyclophosphamide. Pediatr Nephrol 19:5156, 2004.Google Scholar
Kawasaki, Y, Suzuki, J, Suzuki, H: Efficacy of methylprednisolone and urokinase pulse therapy combined with or without cyclophosphamide in severe Henoch–Schoenlein nephritis: A clinical and histopathological study. Nephrol Dial Transplant 19:858864, 2004.Google Scholar
Pillebout, E, Alberti, C, Guillevin, L, et al.: Addition of cyclophosphamide to steroids provides no benefit compared with steroids alone in treating adult patients with severe Henoch Schonlein Purpura. Kidney Int 78:495502, 2010.Google Scholar
Park, J M, Won, S C, Shin, J I, Yim, H, Pai, K S: Cyclosporin A therapy for Henoch–Schönlein nephritis with nephrotic-range proteinuria. Pediatr Nephrol 26:411417, 2011.Google Scholar
Kalliakmani, P, Benou, E, Goumenos, D S: Cyclosporin A in adult patients with Henoch–Schönlein purpura nephritis and nephrotic syndrome; 5 case reports. Clin Nephrol 75:380383, 2011.Google Scholar
Du, Y, Hou, L, Zhao, C, Han, M, Wu, Y: Treatment of children with Henoch–Schönlein purpura nephritis with mycophenolate mofetil. Pediatr Nephrol 27:765771, 2012.Google Scholar
Ren, P, Han, F, Chen, L, et al.: The combination of mycophenolate mofetil with corticosteroids induces remission of Henoch–Schönlein purpura nephritis. Am J Nephrol 36:271277, 2012.Google Scholar
Han, S S, Sun, H K, Lee, J P, et al.: Outcome of renal allograft in patients with Henoch–Schönlein nephritis: Single-center experience and systematic review. Transplantation 89:721726, 2010.Google Scholar
Alport, A C: Heriditary familial congenital haemorrhagic nephritis. Br Med J 1:504506, 1927.Google Scholar
Williamson, D A: Alport’s syndrome of hereditary nephritis with deafness. Lancet 2:13211323, 1961Google Scholar
Barker, D F, Hostikka, S L, Zhou, J, et al.: Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248:12241227, 1990.Google Scholar
Kashtan, C E: Familial hematuria. Pediatr Nephrol 24:19511958, 2009.Google Scholar
Kruegel, J, Rubel, D, Gross, O: Alport syndrome – Insights from basic and clinical research. Nat Rev Nephrol 9:170178, 2013.Google Scholar
Savige, J, Sheth, S, Leys, A, et al.: Ocular features in Alport syndrome: Pathogenesis and clinical significance. Clin J Am Soc Nephrol 10:703709, 2015.Google Scholar
Ahmed, F, Kamae, K K, Jones, D J, et al.: Temporal macular thinning associated with X-linked Alport syndrome. JAMA Ophthalmol 9:16, 2013.Google Scholar
Citirik, M, Batman, C, Men, G, Tuncel, M, Zilelioglu, O: Electron microscopic examination of the anterior lens capsule in a case of Alport’s syndrome. Clin Exp Optom 90:367370, 2007.Google Scholar
Miner, J H: Alport syndrome with diffuse leiomyomatosis. When and when not? Am J Pathol 154:16331635, 1999.Google Scholar
Thielen, B K, Barker, D F, Nelson, R D, et al.: Deletion mapping in Alport syndrome and Alport syndrome-diffuse leiomyomatosis reveals potential mechanisms of visceral smooth muscle overgrowth. Hum Mutat 22:419, 2003.Google Scholar
Dagher, H, Buzza, M, Colville, D, et al.: A comparison of the clinical, histopathologic, and ultrastructural phenotypes in carriers of X-linked and autosomal recessive Alport’s syndrome. Am J Kidney Dis 38:12171228, 2001.Google Scholar
Mazzucco, G, Barsotti, P, Muda, A O, et al.: Ultrastructural and immunohistochemical findings in Alport’s syndrome: a study of 108 patients from 97 Italian families with particular emphasis on COL4A5 gene mutation correlations. J Am Soc Nephrol 9:10231031, 1998.Google Scholar
Gong, W, Liu, Z H, Chen, H P, et al.: Spectrum of clinical features and type IV collagen alpha-chain distribution in Chinese patients with Alport syndrome. Nephrol Dial Transplant 21:31463154, 2006.Google Scholar
Rizzoni, G, Massella, L: Differential diagnosis between X-linked Alport syndrome and thin basement membrane nephropathy. Kidney Int 66:12891290, 2004.Google Scholar
van der Loop, F T, Heidet, L, Timmer, E D, et al.: Autosomal dominant Alport syndrome caused by a COL4A3 splice site mutation. Kidney Int 58:18701875, 2000.Google Scholar
Spear, G S, Slusser, R J: Alport’s syndrome. Emphasizing electron microscopic studies of the glomerulus. Am J Pathol 69:213224, 1972.Google Scholar
Liapis, H, Gokden, N, Hmiel, P, Miner, J H: Histopathology, ultrastructure, and clinical phenotypes in thin glomerular basement membrane disease variants. Hum Pathol 33:836845, 2002.Google Scholar
Nadasdy, T, Abdi, R, Pitha, Jan P, Slakey, D, Racusen, L: Diffuse glomerular basement membrane lamellation in renal allografts from pediatric donors to adult recipients. Am J Surg Pathol 23:437442, 1999.CrossRefGoogle ScholarPubMed
Meleg-Smith, S: Alport disease: A review of the diagnostic difficulties. Ultrastruct Pathol 25:193200, 2001.Google Scholar
Mazzucco, G, De Marchi, M, Monga, G: Renal biopsy interpretation in Alport Syndrome. Semin Diag Pathol 19:133145, 2002.Google Scholar
Jais, J P, Knebelmann, B, Giatras, I, et al.: X-linked Alport syndrome: Natural history and genotype–phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol 14:26032610, 2003.Google Scholar
Cangiotti, A M, Sessa, A, Meroni, M, et al.: Evolution of glomerular basement membrane lesions in a male patient with Alport syndrome: Ultrastructural and morphometric study. Nephrol Dial Transplant 11:18291834, 1996.Google Scholar
Hudson, B G, Tryggvason, K, Sundaramoorthy, M, Neilson, E G: Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 348:25432556, 2003.Google Scholar
Hudson, B G: The molecular basis of Goodpasture and Alport syndromes: Beacons for the discovery of the collagen IV family. J Am Soc Nephrol 15:25142527, 2004.Google Scholar
Heidet, L, Cai, Y, Guicharnaud, L, Antignac, C, Gubler, M C: Glomerular expression of type IV collagen chains in normal and X-linked Alport syndrome kidneys. Am J Pathol 156:19011910, 2000.Google Scholar
Parkin, J D, San Antonio, J D, Pedchenko, V, et al.: Mapping structural landmarks, ligand binding sites, and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions, and variation in phenotypes in inherited diseases affecting basement membranes. Hum Mutat 32:127143, 2011.Google Scholar
Kabosova, A, Azar, D T, Bannikov, G A, et al.: Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci 48:49894999, 2007.Google Scholar
Savige, J, Liu, J, DeBuc, D C, et al.: Retinal basement membrane abnormalities and the retinopathy of Alport syndrome. Invest Ophthalmol Vis Sci 51:16211627, 2010.Google Scholar
Hertz, J M, Thomassen, M, Storey, H, Flinter, F: Clinical utility gene card for: Alport syndrome. Eur J Hum Genet 20:20, 2012.Google Scholar
Kalluri, R, Shield, C F, Todd, P: Isoform switching of type IV collagen is developmentally arrested in X- linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest 99:24702478, 1997.Google Scholar
Malone, A F, Phelan, P J, Hall, G, et al.: Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis Kidney Int 86:12531259, 2014.Google Scholar
Xie, J, Wu, X, Ren, H, et al.: COL4A3 mutations cause focal segmental glomerulosclerosis. J Mol Cell Biol 6:498505, 2014.Google Scholar
Savige, J, Gregory, M, Gross, O, et al.: Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol 24:364375, 2013.Google Scholar
Webb, N J, Shahinfar, S, Wells, T G, et al.: Losartan and enalapril are comparable in reducing proteinuria in children with Alport syndrome. Pediatr Nephrol 28:737743, 2013.Google Scholar
Charbit, M, Gubler, M C, Dechaux, M, et al.: Cyclosporin therapy in patients with Alport syndrome. Pediatr Nephrol 22:5763, 2007.Google Scholar
Olaru, F, Luo, W, Wang, X P, et al.: Quaternary epitopes of a345(IV) collagen initiate Alport post-transplant anti-GBM nephritis. J Am Soc Nephrol 24:889895, 2013.Google Scholar
Wang, X P, Fogo, A B, Colon, S, et al.: Distinct epitopes for anti-glomerular basement membrane alport alloantibodies and Goodpasture autoantibodies within the noncollagenous domain of alpha3(IV) collagen: A Janus-faced antigen. J Am Soc Nephrol 16:35633571, 2005.Google Scholar
Borza, D B: Autoepitopes and alloepitopes of type IV collagen: Role in the molecular pathogenesis of anti-GBM antibody glomerulonephritis. Nephron Exp Nephrol 106:e3743, 2007.Google Scholar
Kashtan, C E: Alport syndrome and thin glomerular basement membrane disease. J Am Soc Nephrol 9:17361750, 1998.Google Scholar
Armstead, S, Hellmark, T, Wieslander, J, et al.: A case of Alport syndrome with post-transplant anti-glomerular basement membrane disease despite negative anti-glomerular basement membrane antibodies by ELISA treated with plasmapheresis and intravenous immunoglobulin. Case Rep Transplant 2013:164916, 2013.Google Scholar
Baehr, G.: Benign and curable form of hemorrhagic nephritis. J Am Med Assoc 86:10011004, 1926.Google Scholar
McConville, J M, McAdams, A J: Familial and nonfamilal benign hematuria. J Pediatr 69:207214, 1996.Google Scholar
Rogers, P W, Kurtzman, N A, Bunn, S M, White, M G: Famalial benign essential hematuria. Arch Intern Med 131:237262, 1973.Google Scholar
Wang, Y Y, Rana, K, Tonna, S, et al.: COL4A3 mutations and their clinical consequences in thin basement membrane nephropathy (TBMN). Kidney Int 65:786790, 2004.Google Scholar
Lemmink, H H, Nillesen, W N, Mochizuki, T, et al.: Benign familial hematuria due to mutation of the type IV collagen alpha4 gene. J Clin Invest 98:11141118, 1996.Google Scholar
Tryggvason, K, Patrakka, J: Thin basement membrane nephropathy. J Am Soc Nephrol 17:813822, 2006.Google Scholar
Haas, M: Thin glomerular basement membrane nephropathy: Incidence in 3471 consecutive renal biopsies examined by electron microscopy. Arch Pathol Lab Med 130:699706, 2006.Google Scholar
Savige, J, Rana, K, Tonna, S, et al.: Thin basement membrane nephropathy. Kidney Int 64:11691178, 2003.Google Scholar
van Paassen, P, van Breda Vriesman, P J, van Rie, H, Tervaert, J W: Signs and symptoms of thin basement membrane nephropathy: A prospective regional study on primary glomerular disease – The Limburg Renal Registry. Kidney Int 66:909913, 2004.Google Scholar
Voskarides, K, Damianou, L, Neocleous, V, et al.: COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol 18:30043016, 2007.Google Scholar
Norby, S M, Cosio, F G: Thin basement membrane nephropathy associated with other glomerular diseases. Semin Nephrol 25:176179, 2005.Google Scholar
Foster, K, Markowitz, G S, D’Agati, V D: Pathology of thin basement membrane nephropathy. Semin Nephrol 25:149158, 2005.Google Scholar
Churg, J, Bernstein, J, Glassock, R J (eds): Renal Disease: Classification and Atlas of Glomerular Diseases (2nd ed). (New York, Igaku-Shoin, 1995).Google Scholar
Ivanyi, B, Pap, R, Ondrik, Z: Thin basement membrane nephropathy: Diffuse and segmental types. Arch Pathol Lab Med 130:15331537, 2006.Google Scholar
Rana, K, Wang, Y Y, Buzza, M, et al.: The genetics of thin basement membrane nephropathy. Semin Nephrol 25:163170, 2005.Google Scholar
Szeto, C C, Mac-Moune Lai, F, Kwan, B C, et al.: The width of the basement membrane does not influence clinical presentation or outcome of thin glomerular basement membrane disease with persistent hematuria. Kidney Int 78:10411046, 2010.Google Scholar
Tonna, S, Wang, Y Y, MacGregor, D, et al.: The risks of thin basement membrane nephropathy. Semin Nephrol 25:171175, 2005.Google Scholar
Temme, J, Peters, F, Lange, K, et al.: Incidence of renal failure and nephroprotection by RAAS inhibition in heterozygous carriers of X-chromosomal and autosomal recessive Alport mutations. Kidney Int 81:779783, 2012.Google Scholar
Ierino, F L, Kanellis, J: Thin basement membrane nephropathy and renal transplantation. Semin Nephrol 25:184187, 2005.Google Scholar
Sakai, K, Muramatsu, M, Ogiwara, H, et al.: Living related kidney transplantation in a patient with autosomal-recessive Alport syndrome. Clin Transplant 17(Suppl 10):48, 2003.Google Scholar
Little, P J, Sloper, J S, de Wardener, HE: A syndrome of loin pain and haematuria associated with disease of peripheral renal arteries. Quart J Med 36:253259, 1967.Google Scholar
Spetie, D N, Nadasdy, T, Nadasdy, G, et al.: Proposed pathogenesis of idiopathic loin pain-hematuria syndrome. Am J Kidney Dis 47:419427, 2006.Google Scholar
Dube, G K, Hamilton, S E, Ratner, L E, Nasr, S H, Radhakrishnan, J: Loin pain hematuria syndrome. Kidney Int 70:21522155, 2006.Google Scholar
Taba Taba Vakili, S, Alam, T, Sollinger, H: Loin pain hematuria syndrome. Am J Kidney Dis 64:460472, 2014.Google Scholar
Lall, R, Mailis, A, Rapoport, A: Hematuria-loin pain syndrome: Its existence as a discrete clinicopathological entity cannot be supported. Clin J Pain 13:171177, 1997.Google Scholar
Bultitude, M, Young, J, Bultitude, M, Allan, J. Loin pain haematuria syndrome: Distress resolved by pain relief. Pain 76(1–2):209, 1998.Google Scholar
Gambaro, G, Fulignati, P, Spinelli, A, Rovella, V, Di Daniele, N: Percutaneous renal sympathetic nerve ablation for loin pain haematuria syndrome. Nephrol Dial Transplant 28:23932395, 2013.Google Scholar
Diwakar, R, Andrews, P A: Renal transplantation in a patient with loin pain hematuria syndrome. Clin Nephrol 66:144146, 2006.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×