We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report the results of a computer enumeration that found that there are 3155 perfect 1-factorisations (P1Fs) of the complete graph $K_{16}$. Of these, 89 have a nontrivial automorphism group (correcting an earlier claim of 88 by Meszka and Rosa [‘Perfect 1-factorisations of $K_{16}$ with nontrivial automorphism group’, J. Combin. Math. Combin. Comput.47 (2003), 97–111]). We also (i) describe a new invariant which distinguishes between the P1Fs of $K_{16}$, (ii) observe that the new P1Fs produce no atomic Latin squares of order 15 and (iii) record P1Fs for a number of large orders that exceed prime powers by one.
The $W$-operator, $W([n])$, generalises the cut-and-join operator. We prove that $W([n])$ can be written as the sum of $n!$ terms, each term corresponding uniquely to a permutation in $S_{\!n}$. We also prove that there is a correspondence between the terms of $W([n])$ with maximal degree and noncrossing partitions.
We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula generalises Menon’s identity.
Qi and Chapman [‘Two closed forms for the Bernoulli polynomials’, J. Number Theory159 (2016), 89–100] gave a closed form expression for the Bernoulli polynomials as polynomials with coefficients involving Stirling numbers of the second kind. We extend the formula to the degenerate Bernoulli polynomials, replacing the Stirling numbers by degenerate Stirling numbers of the second kind.
In the field $\mathbb{K}$ of formal power series over a finite field $K$, we consider some lacunary power series with algebraic coefficients in a finite extension of $K(x)$. We show that the values of these series at nonzero algebraic arguments in $\mathbb{K}$ are $U$-numbers.
In this note we examine Littlewood’s proof of the prime number theorem. We show that this can be extended to provide an equivalence between the prime number theorem and the nonvanishing of Riemann’s zeta-function on the one-line. Our approach goes through the theory of almost periodic functions and is self-contained.
We generalise a result of Chern [‘A curious identity and its applications to partitions with bounded part differences’, New Zealand J. Math.47 (2017), 23–26] on distinct partitions with bounded difference between largest and smallest parts. The generalisation is proved both analytically and bijectively.
Let $p$ be an odd prime number and $E$ an elliptic curve defined over a number field $F$ with good reduction at every prime of $F$ above $p$. We compute the Euler characteristics of the signed Selmer groups of $E$ over the cyclotomic $\mathbb{Z}_{p}$-extension. The novelty of our result is that we allow the elliptic curve to have mixed reduction types for primes above $p$ and mixed signs in the definition of the signed Selmer groups.
Let $\mathfrak{F}$ be a class of finite groups and $G$ a finite group. Let ${\mathcal{L}}_{\mathfrak{F}}(G)$ be the set of all subgroups $A$ of $G$ with $A^{G}/A_{G}\in \mathfrak{F}$. A chief factor $H/K$ of $G$ is $\mathfrak{F}$-central in $G$ if $(H/K)\rtimes (G/C_{G}(H/K))\in \mathfrak{F}$. We study the structure of $G$ under the hypothesis that every chief factor of $G$ between $A_{G}$ and $A^{G}$ is $\mathfrak{F}$-central in $G$ for every subgroup $A\in {\mathcal{L}}_{\mathfrak{F}}(G)$. As an application, we prove that a finite soluble group $G$ is a PST-group if and only if $A^{G}/A_{G}\leq Z_{\infty }(G/A_{G})$ for every subgroup $A\in {\mathcal{L}}_{\mathfrak{N}}(G)$, where $\mathfrak{N}$ is the class of all nilpotent groups.
Given a positive integer $m$, a finite $p$-group $G$ is called a $BC(p^{m})$-group if $|H_{G}|\leq p^{m}$ for every nonnormal subgroup $H$ of $G$, where $H_{G}$ is the normal core of $H$ in $G$. We show that $m+2$ is an upper bound for the nilpotent class of a finite $BC(p^{m})$-group and obtain a necessary and sufficient condition for a $p$-group to be of maximal class. We also classify the $BC(p)$-groups.
This note contains a (short) proof of the following generalisation of the Friedman–Mineyev theorem (earlier known as the Hanna Neumann conjecture): if $A$ and $B$ are nontrivial free subgroups of a virtually free group containing a free subgroup of index $n$, then $\text{rank}(A\cap B)-1\leq n\cdot (\text{rank}(A)-1)\cdot (\text{rank}(B)-1)$. In addition, we obtain a virtually-free-product analogue of this result.
An automorphism of a graph product of groups is conjugating if it sends each factor to a conjugate of a factor (possibly different). In this article, we determine precisely when the group of conjugating automorphisms of a graph product satisfies Kazhdan’s property (T) and when it satisfies some vastness properties including SQ-universality.
Let $\mathbf{H}_{\mathbb{H}}^{n}$ denote the $n$-dimensional quaternionic hyperbolic space. The linear group $\text{Sp}(n,1)$ acts on $\mathbf{H}_{\mathbb{H}}^{n}$ by isometries. A subgroup $G$ of $\text{Sp}(n,1)$ is called Zariski dense if it neither fixes a point on $\mathbf{H}_{\mathbb{H}}^{n}\cup \unicode[STIX]{x2202}\mathbf{H}_{\mathbb{H}}^{n}$ nor preserves a totally geodesic subspace of $\mathbf{H}_{\mathbb{H}}^{n}$. We prove that a Zariski dense subgroup $G$ of $\text{Sp}(n,1)$ is discrete if for every loxodromic element $g\in G$ the two-generator subgroup $\langle f,gfg^{-1}\rangle$ is discrete, where the generator $f\in \text{Sp}(n,1)$ is a certain fixed element not necessarily from $G$.
which was originally conjectured by Long and later proved by Swisher. This confirms a conjecture of the second author [‘A $q$-analogue of the (L.2) supercongruence of Van Hamme’, J. Math. Anal. Appl.466 (2018), 749–761].
We show how some Ulam stability issues can be approached for functions taking values in 2-Banach spaces. We use the example of the well-known Cauchy equation $f(x+y)=f(x)+f(y)$, but we believe that this method can be applied for many other equations. In particular we provide an extension of an earlier stability result that has been motivated by a problem of Th. M. Rassias. The main tool is a recent fixed point theorem in some spaces of functions with values in 2-Banach spaces.
It is proved that the free topological vector space $\mathbb{V}([0,1])$ contains an isomorphic copy of the free topological vector space $\mathbb{V}([0,1]^{n})$ for every finite-dimensional cube $[0,1]^{n}$, thereby answering an open question in the literature. We show that this result cannot be extended from the closed unit interval $[0,1]$ to general metrisable spaces. Indeed, we prove that the free topological vector space $\mathbb{V}(X)$ does not even have a vector subspace isomorphic as a topological vector space to $\mathbb{V}(X\oplus X)$, where $X$ is a Cook continuum, which is a one-dimensional compact metric space. This is also shown to be the case for a rigid Bernstein set, which is a zero-dimensional subspace of the real line.
We introduce a notion of modulated topological vector spaces, that generalises, among others, Banach and modular function spaces. As applications, we prove some results which extend Kirk’s and Browder’s fixed point theorems. The theory of modulated topological vector spaces provides a very minimalist framework, where powerful fixed point theorems are valid under a bare minimum of assumptions.
We show that almost stable constant mean curvature hypersurfaces contained in a sufficiently small ball of a manifold of bounded sectional curvature are close to geodesic spheres.