Skip to main content Accessibility help
×
Home

THE NUMBER OF CYCLIC SUBGROUPS OF FINITE ABELIAN GROUPS AND MENON’S IDENTITY

  • MARIUS TĂRNĂUCEANU (a1)

Abstract

We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula generalises Menon’s identity.

Copyright

References

Hide All
[1] Haukkanen, P., ‘Menon’s identity with respect to a generalized divisibility relation’, Aequationes Math. 70 (2005), 240246.
[2] Haukkanen, P. and McCarthy, P. J., ‘Sums of values of even functions’, Port. Math. 48 (1991), 5366.
[3] Haukkanen, P. and Sivaramakrishnan, R., ‘On certain trigonometric sums in several variables’, Collect. Math. 45 (1994), 245261.
[4] Haukkanen, P. and Wang, J., ‘A generalisation of Menon’s identity with respect to a set of polynomials’, Port. Math. 53 (1996), 331337.
[5] Li, Y. and Kim, D., ‘A Menon-type identity with many tuples of group of units in residually finite Dedekind domains’, J. Number Theory 175 (2017), 4250.
[6] Li, Y. and Kim, D., ‘Menon-type identities derived from actions of subgroups of general linear groups’, J. Number Theory 179 (2017), 97112.
[7] Li, Y., Hu, X. and Kim, D., ‘A Menon-type identity with multiplicative and additive characters’, Taiwanese J. Math. (2019), to appear.
[8] McCarthy, P. J., Introduction to Arithmetical Functions, Universitext (Springer, New York, 1986).
[9] Menon, P. K., ‘On the sum ∑(a - 1, n)[(a, n) = 1]’, J. Indian Math. Soc. 29 (1965), 155163.
[10] Miguel, C., ‘Menon’s identity in residually finite Dedekind domains’, J. Number Theory 137 (2014), 179185.
[11] Miguel, C., ‘A Menon-type identity in residually finite Dedekind domains’, J. Number Theory 164 (2016), 4351.
[12] Nageswara Rao, K., ‘On certain arithmetical sums’, in: The Theory of Arithmetic Functions, Lecture Notes in Mathematics, 251 (eds. Gioia, A. A. and Goldsmith, D. L.) (Springer, Berlin, Heidelberg, 1972), 181192.
[13] Neumann, P., ‘A lemma that is not Burnside’s’, Math. Sci. 4 (1979), 133141.
[14] Richards, I. M., ‘A remark on the number of cyclic subgroups of a finite group’, Amer. Math. Monthly 91 (1984), 571572.
[15] Schmidt, R., Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics, 14 (de Gruyter, Berlin, 1994).
[16] Sita Ramaiah, V., ‘Arithmetical sums in regular convolutions’, J. Reine Angew. Math. 303/304 (1978), 265283.
[17] Sury, B., ‘Some number-theoretic identities from group actions’, Rend. Circ. Mat. Palermo 58 (2009), 99108.
[18] Tărnăuceanu, M., ‘An arithmetic method of counting the subgroups of a finite abelian group’, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53(101) (2010), 373386.
[19] Tărnăuceanu, M., ‘A generalization of Menon’s identity’, J. Number Theory 132 (2012), 25682573.
[20] Tóth, L., ‘Menon’s identity and arithmetical sums representing functions of several variables’, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), 97110.
[21] Tóth, L., ‘On the number of cyclic subgroups of a finite abelian group’, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55(103) (2012), 423428.
[22] Tóth, L., ‘Menon-type identities concerning Dirichlet characters’, Int. J. Number Theory 14 (2018), 10471054.
[23] Zhao, X.-P. and Cao, Z.-F., ‘Another generalization of Menon’s identity’, Int. J. Number Theory 13 (2017), 23732379.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

THE NUMBER OF CYCLIC SUBGROUPS OF FINITE ABELIAN GROUPS AND MENON’S IDENTITY

  • MARIUS TĂRNĂUCEANU (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed