[1]
Haukkanen, P., ‘Menon’s identity with respect to a generalized divisibility relation’, Aequationes Math.
70 (2005), 240–246.

[2]
Haukkanen, P. and McCarthy, P. J., ‘Sums of values of even functions’, Port. Math.
48 (1991), 53–66.

[3]
Haukkanen, P. and Sivaramakrishnan, R., ‘On certain trigonometric sums in several variables’, Collect. Math.
45 (1994), 245–261.

[4]
Haukkanen, P. and Wang, J., ‘A generalisation of Menon’s identity with respect to a set of polynomials’, Port. Math.
53 (1996), 331–337.

[5]
Li, Y. and Kim, D., ‘A Menon-type identity with many tuples of group of units in residually finite Dedekind domains’, J. Number Theory
175 (2017), 42–50.

[6]
Li, Y. and Kim, D., ‘Menon-type identities derived from actions of subgroups of general linear groups’, J. Number Theory
179 (2017), 97–112.

[7]
Li, Y., Hu, X. and Kim, D., ‘A Menon-type identity with multiplicative and additive characters’, Taiwanese J. Math. (2019), to appear.

[8]
McCarthy, P. J., Introduction to Arithmetical Functions, Universitext (Springer, New York, 1986).

[9]
Menon, P. K., ‘On the sum ∑(*a* - 1, *n*)[(*a*, *n*) = 1]’, J. Indian Math. Soc.
29 (1965), 155–163.

[10]
Miguel, C., ‘Menon’s identity in residually finite Dedekind domains’, J. Number Theory
137 (2014), 179–185.

[11]
Miguel, C., ‘A Menon-type identity in residually finite Dedekind domains’, J. Number Theory
164 (2016), 43–51.

[12]
Nageswara Rao, K., ‘On certain arithmetical sums’, in: The Theory of Arithmetic Functions, Lecture Notes in Mathematics, 251 (eds. Gioia, A. A. and Goldsmith, D. L.) (Springer, Berlin, Heidelberg, 1972), 181–192.

[13]
Neumann, P., ‘A lemma that is not Burnside’s’, Math. Sci.
4 (1979), 133–141.

[14]
Richards, I. M., ‘A remark on the number of cyclic subgroups of a finite group’, Amer. Math. Monthly
91 (1984), 571–572.

[15]
Schmidt, R., Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics, 14 (de Gruyter, Berlin, 1994).

[16]
Sita Ramaiah, V., ‘Arithmetical sums in regular convolutions’, J. Reine Angew. Math.
303/304 (1978), 265–283.

[17]
Sury, B., ‘Some number-theoretic identities from group actions’, Rend. Circ. Mat. Palermo
58 (2009), 99–108.

[18]
Tărnăuceanu, M., ‘An arithmetic method of counting the subgroups of a finite abelian group’, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)
53(101) (2010), 373–386.

[19]
Tărnăuceanu, M., ‘A generalization of Menon’s identity’, J. Number Theory
132 (2012), 2568–2573.

[20]
Tóth, L., ‘Menon’s identity and arithmetical sums representing functions of several variables’, Rend. Semin. Mat. Univ. Politec. Torino
69 (2011), 97–110.

[21]
Tóth, L., ‘On the number of cyclic subgroups of a finite abelian group’, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)
55(103) (2012), 423–428.

[22]
Tóth, L., ‘Menon-type identities concerning Dirichlet characters’, Int. J. Number Theory
14 (2018), 1047–1054.

[23]
Zhao, X.-P. and Cao, Z.-F., ‘Another generalization of Menon’s identity’, Int. J. Number Theory
13 (2017), 2373–2379.