Paper-based cell culture platforms have emerged as a promising approach for a myriad of biomedical applications, such as tissue engineering, disease models, cancer research, biotechnology, high-throughput testing, biosensing, and diagnostics. Paper enables the generation of highly flexible, biocompatible, inexpensive, porous, and three-dimensional (3D) constructs and devices. These systems have been used to culture mammalian cells, bacteria, algae, and fungi. Studies have shown that paper is an exceptional material for applications in life sciences, materials sciences, engineering, and medicine. Paper has been employed for creating biomimetic cell culture environments by folding or stacking it into the desired 3D shapes and structures. This review discusses the use of paper-based platforms for cellular applications and provides a diverse range of examples.