Skip to main content Accessibility help

Metal organic framework-modified nitrogen-doped graphene oxygen reduction reaction catalyst synthesized by nanoscale high-energy wet ball-milling structural and electrochemical characterization

  • Shiqiang Zhuang (a1), Bharath Babu Nunna (a1) and Eon Soo Lee (a1)


Nitrogen-doped graphene (N-G) is a promising non-platinum group metal catalyst for oxygen reduction reaction. A new N-G/metal organic framework (MOF) catalyst is derived by the modification of MOF on N-G catalysts to enhance the electrochemical performance of N-G by increasing the surface area and porosity in this paper. The characterization confirmed that the Brunauer–Emmett–Teller surface areas of N-G/MOF catalysts are 13–66 times larger than the original N-G catalyst. The highest current density (5.02 mA/cm2) and electron transfer number (3.93) of N-G/MOFs are higher than the N-G catalyst. The current density of N-G/MOF catalyst is even higher than 10 wt% Pt/C catalyst.


Corresponding author

Address all correspondence to Eon Soo Lee at


Hide All
1. Wang, H., Maiyalagan, T., and Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781 (2012).
2. Sun, X., Song, P., Zhang, Y., Liu, C., Xu, W., and Xing, W.: A class of high performance metal-free oxygen reduction electrocatalysts based on cheap carbon blacks. Sci. Rep. 3, 2505 (2013).
3. Wei, Q., Tong, X., Zhang, G., Qiao, J., Gong, Q., and Sun, S.: Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5, 1574 (2015).
4. Amiri, A., Ahmadi, G., Shanbedi, M., Savari, M., Kazi, S.N., and Chew, B.T.: Microwave-assisted synthesis of highly-crumpled, few-layered graphene and nitrogen-doped graphene for use as high-performance electrodes in capacitive deionization. Sci. Rep. 5, 17503 (2015).
5. Kramm, U.I., Herrmann-Geppert, I., Behrends, J., Lips, K., Fiechter, S., and Bogdanoff, P.: On an easy way to prepare metal–nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 138, 635 (2016).
6. Zhuang, S., Nunna, B. B., Mandal, D., and Lee, E.S.: A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. Nano-Struct. Nano-Objects NANOSO 109 (2017). doi: 10.1016/j.nanoso.2017.09.003.
7. Zhuang, S., Lee, E.S., Lei, L., Nunna, B.B., Kuang, L., and Zhang, W.: Synthesis of nitrogen-doped graphene catalyst by high-energy wet ball milling for electrochemical systems. Int. J. Energy Res. 40, 2136 (2016).
8. Zhuang, S., Nunna, B.B., Boscoboinik, J. A., and Lee, E.S.: Nitrogen-doped graphene catalysts: high energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed. Int. J. Energy Res. 41, 119 (2017). DOI: 10.1002/er.3821.
9. Batten, S.R., Champness, N.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M., and Reedijk, J.: Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715 (2013).
10. Tranchemontagne, D.J., Mendoza-Cortés, J.L., O'Keeffe, M., and Yaghi, O.M.: Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257 (2009).
11. Gualino, M., Roques, N., Brandès, S., Arurault, L., and Sutter, J.-P.: From ZIF-8@Al2O3 composites to self-supported ZIF-8 one-dimensional superstructures. Cryst. Growth Des. 15, 3552 (2015).
12. Tanaka, S., Fujita, K., Miyake, Y., Miyamoto, M., Hasegawa, Y., Makino, T., Van der Perre, S., Cousin Saint Remi, J., Van Assche, T., and Baron, G.V.: Adsorption and diffusion phenomena in crystal size engineered ZIF-8 MOF. J. Phys. Chem. C 119, 28430 (2015).
13. Simmons, J.M., Wu, H., Zhou, W., and Yildirim, T.: Carbon capture in metal–organic frameworks—a comparative study. Energy Environ. Sci. 4, 2177 (2011).
14. Liang, H.-W., Wei, W., Wu, Z.-S., Feng, X., and Müllen, K.: Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135, 16002 (2013).
15. Hwang, Y.K., Hong, D.Y., Chang, J.S., Jhung, S.H., Seo, Y.K., Kim, J., Vimont, A., Daturi, M., Serre, C., and Férey, G.: Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144 (2008).
16. Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., and Biswas, P.: Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 6, 27 (2011).
17. Beaumont, M., Kondor, A., Plappert, S., Mitterer, C., Opietnik, M., Potthast, A., and Rosenau, T.: Surface properties and porosity of highly porous, nanostructured cellulose II particles. Cellulose 24, 435 (2017).
18. Wei, Y., Hao, Z., Zhang, F., and Li, H.: A functionalized graphene oxide and nano-zeolitic imidazolate framework composite as a highly active and reusable catalyst for [3 + 3] formal cycloaddition reactions. J. Mater. Chem. A 3, 14779 (2015).
19. Pan, Y., Liu, W., Zhao, Y., Wang, C., and Lai, Z.: Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons. J. Membr. Sci. 493, 88 (2015).
Type Description Title
Supplementary materials

Zhuang et al supplementary material 1
Zhuang et al supplementary material

 Word (362 KB)
362 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed