Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T07:16:06.379Z Has data issue: false hasContentIssue false

High throughput fabrication of curcumin embedded gelatin-polylactic acid forcespun fiber-aligned scaffolds for the controlled release of curcumin

Published online by Cambridge University Press:  17 September 2018

Narsimha Mamidi*
Affiliation:
Tecnológico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P. 64849, Monterrey, Nuevo León, México
Irasema Lopez Romo
Affiliation:
Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, N.L., C.P. 64849, México
Enrique V. Barrera
Affiliation:
Tecnológico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P. 64849, Monterrey, Nuevo León, México Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA
Alex Elías-Zúñiga
Affiliation:
Tecnológico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P. 64849, Monterrey, Nuevo León, México
*
Address all correspondence to N. Mamidi at nmamidi@itesm.mx
Get access

Abstract

The aim of current study is to fabricate implantable curcumin embedded gelatin/polylactic acid/curcumin (GL/PLA/Cur) aligned fiber scaffolds by forcespinning®, which might have a potential application in drug delivery and cancer therapy. Fourier Transform Infrared Spectroscopy reveals the hydrogen bonding interactions between GL, PLA, and curcumin. In vitro curcumin drug release from GL/PLA/Cur fiber scaffolds is investigated and sustained release is observed over 15 days. Further, cell viability assay reveals that GL/PLA/Cur aligned fibers show excellent growth of human fibroblast cells. These results strongly suggest that the curcumin bearing GL/PLA/Cur composite fibers may show the potential application in cancer therapy, drug delivery, and wound dressing.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aggarwal, B.B., Kumar, A., and Bharti, A.C.: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363 (2003).Google Scholar
2.Goel, A., Kunnumakkara, A.B., and Aggarwal, B.B.: Curcumin as ‘Curecumin’: from kitchen to clinic. Biochem. Pharmacol. 75, 787 (2008).10.1016/j.bcp.2007.08.016Google Scholar
3.Merrell, J., McLaughlin, S., Tie, L., Laurencin, C., Chen, A., and Nair, L.: Curcumin loaded poly (ε-Caprolactone) nanofibres: diabetic wound dressing with antioxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol. 36, 1149 (2009).10.1111/j.1440-1681.2009.05216.xGoogle Scholar
4.Abidi, A.: Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. J. Clin. Diagnostic Res. 8, 19 (2014).Google Scholar
5.Zhang, D.-W., Fu, M., Gao, S.-H., and Liu, J.-L.: Curcumin and diabetes: a systematic review. Evid. Based. Complement. Alternat. Med. 2013, 636053 (2013).10.1155/2013/636053Google Scholar
6.Kurup, V.P. and Barrios, C.S.: Immunomodulatory effects of curcumin in allergy. Mol. Nutr. Food Res. 52, 1031 (2008).10.1002/mnfr.200700293Google Scholar
7.Henrotin, Y., Priem, F., and Mobasheri, A.: Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus. 2, 1 (2013).10.1186/2193-1801-2-56Google Scholar
8.Mitchell, M.J. and King, M.R.: Curcumin and neurodegenerative diseases. 39, 1 (2014).Google Scholar
9.Ramírez-Tortosa, M.C., Mesa, M.D., Aguilera, M.C., Quiles, J.L., Baró, L., Ramirez-Tortosa, C.L., Martinez-Victoria, E., and Gil, A.: Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis. 147, 371 (1999).10.1016/S0021-9150(99)00207-5Google Scholar
10.Shanbhag, V.K.L.: Curcumin in chronic lymphocytic leukemia – A review. Asian Pac. J. Trop. Biomed. 7, 505 (2017).10.1016/j.apjtb.2017.05.003Google Scholar
11.Greiner, A. and Wendorff, J.H.: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chemie - Int. Ed. 46, 5670 (2007).10.1002/anie.200604646Google Scholar
12.Boateng, J., Mani, J., and Kianfar, F.: Improving drug loading of mucosal solvent cast films using a combination of hydrophilic polymers with amoxicillin and paracetamol as model drugs. Biomed Res. Int. 2013, 18 (2013).10.1155/2013/198137Google Scholar
13.Parveen, S., Misra, R., and Sahoo, S.K.: Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 8, 147 (2012).10.1016/j.nano.2011.05.016Google Scholar
14.Thangaraju, E., Srinivasan, N.T., Kumar, R., Sehgal, P.K., and Rajiv, S.: Fabrication of electrospun Poly L-lactide and Curcumin loaded Poly L-lactide nanofibers for drug delivery. Fibers Polym. 13, 823 (2012).10.1007/s12221-012-0823-3Google Scholar
15.Kenawy, E.R., Bowlin, G.L., Mansfield, K., Layman, J., Simpson, D.G., Sanders, E.H., and Wnek, G.E.: Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release 81, 57 (2002).10.1016/S0168-3659(02)00041-XGoogle Scholar
16.Jiang, H., Fang, D., Hsiao, B.S., Chu, B., and Chen, W.: Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5, 326 (2004).10.1021/bm034345wGoogle Scholar
17.Son, Y.J., Kim, W.J., and Yoo, H.S.: Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch. Pharm. Res. 37, 69 (2014).10.1007/s12272-013-0284-2Google Scholar
18.Guo, G., Fu, S., Zhou, L., Liang, H., Fan, M., Luo, F., Qian, Z., and Wei, Y.: Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells. Nanoscale 3, 3825 (2011).10.1039/c1nr10484eGoogle Scholar
19.Ranjbar-Mohammadi, M., and Bahrami, S.H.: Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int. J. Biol. Macromol. 84, 448 (2016).10.1016/j.ijbiomac.2015.12.024Google Scholar
20.Fallah, M., Bahrami, S.H., and Ranjbar-Mohammadi, M.: Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. J. Ind. Text. 46, 562 (2016).10.1177/1528083715594978Google Scholar
21.Sun, X.Z., Williams, G.R., Hou, X.X., and Zhu, L.M.: Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr. Polym. 94, 147 (2013).10.1016/j.carbpol.2012.12.064Google Scholar
22.Perumal, G., Pappuru, S., Chakraborty, D., Maya Nandkumar, A., Chand, D.K., and Doble, M.: Synthesis and characterization of curcumin loaded PLA—Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng. C 76, 1196 (2017).10.1016/j.msec.2017.03.200Google Scholar
23.Langer, R. and Tirrell, D.A.: Designing materials for biology and medicine. Nature 428, 487 (2004).10.1038/nature02388Google Scholar
24.Luten, J., van Nostrum, C.F., De Smedt, S.C., and Hennink, W.E.: Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J. Control. Release 126, 97 (2008).10.1016/j.jconrel.2007.10.028Google Scholar
25.Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., and Ko, F.K.: Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60, 613 (2002).10.1002/jbm.10167Google Scholar
26.Chen, Y., Lin, J., Wan, Y., Fei, Y., Wang, H., and Gao, W.: Preparation and blood compatibility of electrospun PLA/curcumin composite membranes. Fibers Polym. 13, 1254 (2012).10.1007/s12221-012-1254-xGoogle Scholar
27.Nguyen, T.T.T., Ghosh, C., Hwang, S.G., Tran, L.D., and Park, J.S.: Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J. Mater. Sci. 48, 7125 (2013).10.1007/s10853-013-7527-yGoogle Scholar
28.Mamidi, N., Leija Gutiérrez, H.M., Villela-Castrejón, J., Isenhart, L., Barrera, E.V., and Elías-Zúñiga, A.: Fabrication of gelatin-poly(epichlorohydrin-co-ethylene oxide) fiber scaffolds by Forcespinning® for tissue engineering and drug release. MRS Commun. 7, 913921 (2017).10.1557/mrc.2017.117Google Scholar
29.Mamidi, N., Romo, I.L., Leija Gutiérrez, H.M., Barrera, E.V., and Elías-Zúñiga, A.: Development of forcespun fiber-aligned scaffolds from gelatin–zein composites for potential use in tissue engineering and drug release. MRS Commun. 18 (2018). DOI: https://doi.org/10.1557/mrc.2018.89.Google Scholar
30.Chen, J., He, H., Yu, P., Jia, Y., and Meng, S.: Preparation and properties of poly(lactic acid)/cellulose nanocrystals nanocomposites compatibilized with maleated poly(lactic acid). Polym. Compos. 16 (2017). DOI: 10.1002/pc.24314.Google Scholar