Skip to main content Accessibility help

Biomimetic protein-harpooning surfaces

  • G. M. L. Messina (a1), C. Bonaccorso (a2), A. Rapisarda (a2), B. Castroflorio (a1), D. Sciotto (a2) and G. Marletta (a1)...
  • Please note a correction has been issued for this article.


Properly driving protein interactions with solid surfaces play a very important role in many natural processes, stimulating a great interest for the design of new biomaterials and medical devices. Despite the progress in this field, many further upgrades have to be achieved to better exploit the protein driving, in terms of control of amounts and conformation of the adsorbing proteins. In this paper, new biocompatible amino acid–calix[4]crown-5 bilayers were built as nano-templating surfaces, hosting a controlled number of anchoring sites, able to immobilize proteins in well-defined quantity, and the evaluated footprint data support the idea of oriented protein on analyzed substrates. The efficiency of the setup was tested for the particular case of antibacterial lysozyme adsorption on biocompatible surfaces.


Corresponding author

Address all correspondence to G. M. L. Messina at and C. Bonaccorso at


Hide All
1.Castner, D.G. and Ratner, B. D.: Biomedical surface science: foundations to frontiers. Surf. Sci. 500, 28 (2002).
2.Gray, J. J.: The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 14, 110 (2004).
3.Tuccitto, N., Giamblanco, N., Licciardello, A., and Marletta, G.: Patterning of lactoferrin using functional SAMs of iron complexes. Chem. Commun. 25, 2621 (2007).
4.Kasemo, B.: Biological surface science. Surf. Sci. 500, 656 (2002).
5.Satriano, C., Messina, G.M.L., Carnazza, S., Guglielmino, S., and Marletta, G.: Bacterial adhesion onto nanopatterned polymer surfaces. Mat. Sci. Eng. C 26, 942 (2006).
6.Manso Silvàn, M., Messina, G.M.L., Montero, I., Satriano, C., Garcìa Ruiz, J.P., and Marletta, G.: Aminofunctionalization and sub-micrometer patterning on silicon through silane doped agarose hydrogels. J. Mater. Chem. 19, 5226 (2009).
7.Fotia, C., Messina, G.M.L., Marletta, G., Baldini, N., and Ciapetti, G.: Hyaluronan-based pericellular matrix: substrate electrostatic charges and early cell adhesion events. Eur. Cell Mater. 26, 133 (2013).
8.Denis, F. A., Hanarp, P., Sutherland, D. S., Gold, J., Mustin, C., Rouxhet, P. G., and Dufrene, Y. F.: Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir 18, 819 (2002).
9.Dettin, M., Zamuner, A., Roso, M., Gloria, A., Iucci, G., Messina, G.M.L., D'Amore, U., Marletta, G., Modesti, M., Castagniulo, I., and Brun, P.: Electrospun scaffolds for osteoblast cells: peptide-induced concentration-dependent improvements of polycaprolactone. PLoS ONE 10(9), e0137505 (2005).
10.Donovan, M. A., Yimer, Y. Y., Pfaendtner, J., Backus, E.H.G., Bonn, M., and Weidner, T.: Ultrafast reorientational dynamics of leucine at the air–water interface. J. Am. Chem. Soc. 138, 5226 (2016).
11.Roach, P., Farrar, D., and Perry, C. C.: Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168 (2005).
12.Wertz, C. F. and Santore, M. M.: Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir 18, 1190 (2002).
13.Brun, P., Scorzeto, M., Vassanelli, S., Castagliuolo, I., Palù, G., Ghezzo, F., Messina, G.M.L., Iucci, G., Battaglia, V., Sivolella, S., Bagno, A., Polzonetti, G., Marletta, G., and Dettin, M.: Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta. Biomater. 9, 6105 (2013).
14.Neri, P., Sessler, J. L., and Wang, M.-X., eds. Calixarenes and Beyond (Springer International Publishing, Cham, 2016).
15.Vicens, J., Harrowfield, J., and Baklouti, L., eds. Calixarenes in the Nanoworld (Springer, The Netherlands, 2007).
16.Bonaccorso, C., Brancatelli, G., Forte, G., Arena, G., Geremia, S., Sciotto, D., and Sgarlata, C.: Factors driving the self-assembly of water-soluble calix[4]arene and gemini guests: a combined solution, computational and solid-state study. RSC Adv. 4, 53575 (2014).
17.Escudero, C., D'Urso, A., Lauceri, R., Bonaccorso, C., Sciotto, D., Di Bella, S., El-Hachemi, Z., Crusats, J., Ribò, J.M., and Purrello, R.: Hierarchical dependence of porphyrin self-aggregation: controlling and exploiting the complexity. J. Porphyr. Phthalocyanines 14, 708 (2010).
18.Mecca, T., Messina, G. M. L., Marletta, G., and Cunsolo, F.: Novel pH responsive calix[8]arene hydrogelators: self-organization processes at a nanometric scale. Chem. Commun. 49, 2530 (2002).
19.Bonaccorso, C., Brancatelli, G., Ballistreri, F. P., Geremia, S., Pappalardo, A., Tomaselli, G. A., Toscano, R. M., and Sciotto, D.: Novel chiral (salen)Mn(III) complexes containing a calix[4]arene unit in 1,3-alternate conformation as catalysts for enantioselective epoxidation reactions of (Z)-aryl alkenes. Dalton Trans. 43, 2183 (2014).
20.Almeida, A.T., Salvadori, M.C., and Petri, D.F.S.: Enolase adsorption onto hydrophobic and hydrophilic solid substrates. Langmuir 18, 6914 (2002).
21.Park, C. S., Lee, H. J., Jamison, A. C., and Lee, T. R.: Robust maleimide-functionalized gold surfaces and nanoparticles generated using custom-designed bidentate adsorbates. Langmuir 32, 7306 (2016).
22.Béthencourt, M. I., Srisombat, L., Chinwangso, P., and Lee:, T. R. SAMs on gold derived from the direct adsorption of alkanethioacetates are inferior to those derived from the direct adsorption of alkanethiols. Langmuir 25, 1265 (2009).
23.Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533 (1996).
24.Feiler, A., Sahlholm, A., Sandberg, T., and Caldwell, K. D.: Adsorption and viscoelastic properties of fractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D). J. Colloid Interface Sci. 315, 475 (2007).
25.Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 55, 206 (1959).
26.Park, J.-Y., Kim, B.-C., and Park, S.-M.: Molecular recognition of protonated polyamines at calix[4]crown-5 self-assembled monolayer modified electrodes by impedance measurements. Anal. Chem. 79, 1890 (2007).
27.Rabe, M., Verdes, D., and Seeger, S.: Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface 87, 162 (2011).
28.Peng, Z.G., Hidajat, K., and Uddin, M.S.: Selective and sequential adsorption of bovine serum albumin and lysozyme from a binary mixture on nanosized magnetic particles. J. Colloid Interface Sci. 11, 281 (2005).
29.Dismer, F. and Hubbuch, J.: A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. J. Chromatogr. A 312, 1149 (2007).
30.Kubiak, K., Adamczyk, Z., and Ocweieja, M.: Kinetics of silver nanoparticle deposition at PAH monolayers: reference QCM results. Langmuir 31, 2988 (2015).
Type Description Title
Supplementary materials

Messina et al. supplementary material
Messina et al. supplementary material 1

 PDF (1.3 MB)
1.3 MB

Biomimetic protein-harpooning surfaces

  • G. M. L. Messina (a1), C. Bonaccorso (a2), A. Rapisarda (a2), B. Castroflorio (a1), D. Sciotto (a2) and G. Marletta (a1)...
  • Please note a correction has been issued for this article.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: