We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/pla.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose that pressure anisotropy causes weakly collisional turbulent plasmas to self-organize so as to resist changes in magnetic-field strength. We term this effect ‘magneto-immutability’ by analogy with incompressibility (resistance to changes in pressure). The effect is important when the pressure anisotropy becomes comparable to the magnetic pressure, suggesting that in collisionless, weakly magnetized (high-$\unicode[STIX]{x1D6FD}$) plasmas its dynamical relevance is similar to that of incompressibility. Simulations of magnetized turbulence using the weakly collisional Braginskii model show that magneto-immutable turbulence is surprisingly similar, in most statistical measures, to critically balanced magnetohydrodynamic turbulence. However, in order to minimize magnetic-field variation, the flow direction becomes more constrained than in magnetohydrodynamics, and the turbulence is more strongly dominated by magnetic energy (a non-zero ‘residual energy’). These effects represent key differences between pressure-anisotropic and fluid turbulence, and should be observable in the $\unicode[STIX]{x1D6FD}\gtrsim 1$ turbulent solar wind.
We study the resistive evolution of a localized self-organizing magnetohydrodynamic equilibrium. In this configuration the magnetic forces are balanced by a pressure force caused by a toroidal depression in the pressure. Equilibrium is attained when this low-pressure region prevents further expansion into the higher-pressure external plasma. We find that, for the parameters investigated, the resistive evolution of the structures follows a universal pattern when rescaled to resistive time. The finite resistivity causes both a decrease in the magnetic field strength and a finite slip of the plasma fluid against the static equilibrium. This slip is caused by a Pfirsch–Schlüter-type diffusion, similar to what is seen in tokamak equilibria. The net effect is that the configuration remains in magnetostatic equilibrium whilst it slowly grows in size. The rotational transform of the structure becomes nearly constant throughout the entire structure, and decreases according to a power law. In simulations this equilibrium is observed when highly tangled field lines relax in a high-pressure (relative to the magnetic field strength) environment, a situation that occurs when the twisted field of a coronal loop is ejected into the interplanetary solar wind. In this paper we relate this localized magnetohydrodynamic equilibrium to magnetic clouds in the solar wind.
Stochastic heating refers to an increase in the average magnetic moment of charged particles interacting with electromagnetic fluctuations whose frequencies are smaller than the particles’ cyclotron frequencies. This type of heating arises when the amplitude of the gyroscale fluctuations exceeds a certain threshold, causing particle orbits in the plane perpendicular to the magnetic field to become stochastic rather than nearly periodic. We consider the stochastic heating of protons by Alfvén-wave (AW) and kinetic-Alfvén-wave (KAW) turbulence, which may make an important contribution to the heating of the solar wind. Using phenomenological arguments, we derive the stochastic-proton-heating rate in plasmas in which $\unicode[STIX]{x1D6FD}_{\text{p}}\sim 1$–30, where $\unicode[STIX]{x1D6FD}_{\text{p}}$ is the ratio of the proton pressure to the magnetic pressure. (We do not consider the $\unicode[STIX]{x1D6FD}_{\text{p}}\gtrsim 30$ regime, in which KAWs at the proton gyroscale become non-propagating.) We test our formula for the stochastic-heating rate by numerically tracking test-particle protons interacting with a spectrum of randomly phased AWs and KAWs. Previous studies have demonstrated that at $\unicode[STIX]{x1D6FD}_{\text{p}}\lesssim 1$, particles are energized primarily by time variations in the electrostatic potential and thermal-proton gyro-orbits are stochasticized primarily by gyroscale fluctuations in the electrostatic potential. In contrast, at $\unicode[STIX]{x1D6FD}_{\text{p}}\gtrsim 1$, particles are energized primarily by the solenoidal component of the electric field and thermal-proton gyro-orbits are stochasticized primarily by gyroscale fluctuations in the magnetic field.
Spacecraft measurements of propagating interplanetary shocks are often interpreted using the ideal magnetohydrodynamic (MHD) model of a planar shock wave travelling with constant velocity $\boldsymbol{V}_{\text{sh}}$ through a spatially uniform plasma. In particular, measurements of the plasma variables upstream and downstream have long been used in conjunction with the Rankine–Hugoniot conditions, also known as the MHD jump conditions, to determine shock velocities and other physical parameters of interplanetary shocks. This procedure is justified only if the shock velocity determined by the MHD jump conditions is unique. In this study the important property of uniqueness is demonstrated for non-perpendicular shocks in MHD media characterized by an isotropic pressure tensor. The primary conclusion is that the shock velocity is uniquely determined by the jump conditions regardless of the type of shock (slow, intermediate or fast). Several new formulas for the shock speed are also derived including one that is independent of the shock normal $\hat{\boldsymbol{n}}$. In principle, the solution technique developed here can be applied to estimate $\boldsymbol{V}_{\text{sh}}$ using solar wind data provided the measurements obey the MHD shock model with sufficient accuracy. That is not its intended purpose, however, and such applications are beyond the scope of this work.
We investigate analytically and numerically the semi-collisional regime of the plasmoid instability, defined by the inequality $\unicode[STIX]{x1D6FF}_{\text{SP}}\gg \unicode[STIX]{x1D70C}_{s}\gg \unicode[STIX]{x1D6FF}_{\text{in}}$, where $\unicode[STIX]{x1D6FF}_{\text{SP}}$ is the width of a Sweet–Parker current sheet, $\unicode[STIX]{x1D70C}_{s}$ is the ion sound Larmor radius and $\unicode[STIX]{x1D6FF}_{\text{in}}$ is the width of the boundary layer that arises in the plasmoid instability analysis. Theoretically, this regime is predicted to exist if the Lundquist number $S$ and the length of the current sheet $L$ are such that $(L/\unicode[STIX]{x1D70C}_{s})^{14/9}<S<(L/\unicode[STIX]{x1D70C}_{s})^{2}$ (for a sinusoidal-like magnetic configuration; for a Harris-type sheet the lower bound is replaced with $(L/\unicode[STIX]{x1D70C}_{s})^{8/5}$). These bounds are validated numerically by means of simulations using a reduced gyrokinetic model (Zocco & Schekochihin, Phys. Plasmas, vol. 18 (10), 2011, 102309) conducted with the code Viriato. Importantly, this regime is conjectured to allow for plasmoid formation at relatively low, experimentally accessible, values of the Lundquist number. Our simulations obtain plasmoid instability at values of $S$ as low as ${\sim}250$. The simulations do not prescribe a Sweet–Parker sheet; rather, one is formed self-consistently during the nonlinear evolution of the initial tearing mode configuration. This proves that this regime of the plasmoid instability is realizable, at least at the relatively low values of the Lundquist number that are accessible to current dedicated experiments.
Collisionless shocks follow the Rankine–Hugoniot jump conditions to a good approximation. However, for a shock propagating parallel to a magnetic field, magnetohydrodynamics states that the shock properties are independent of the field strength, whereas recent particle-in-cell simulations reveal a significant departure from magnetohydrodynamics behaviour for such shocks in the collisionless regime. This departure is found to be caused by a field-driven anisotropy in the downstream pressure, but the functional dependence of this anisotropy on the field strength is yet to be determined. Here, we present a non-relativistic model of the plasma evolution through the shock front, allowing for a derivation of the downstream anisotropy in terms of the field strength. Our scenario assumes double adiabatic evolution of a pair plasma through the shock front. As a result, the perpendicular temperature is conserved. If the resulting downstream is firehose stable, then the plasma remains in this state. If unstable, it migrates towards the firehose stability threshold. In both cases, the conservation equations, together with the relevant hypothesis made on the temperature, allows a full determination of the downstream anisotropy in terms of the field strength.
Particle transport, acceleration and energization are phenomena of major importance for both space and laboratory plasmas. Despite years of study, an accurate theoretical description of these effects is still lacking. Validating models with self-consistent, kinetic simulations represents today a new challenge for the description of weakly collisional, turbulent plasmas. We perform simulations of steady state turbulence in the 2.5-dimensional approximation (three-dimensional fields that depend only on two-dimensional spatial directions). The chosen plasma parameters allow to span different systems, going from the solar corona to the solar wind, from the Earth’s magnetosheath to confinement devices. To describe the ion diffusion we adapted the nonlinear guiding centre (NLGC) theory to the two-dimensional case. Finally, we investigated the local influence of coherent structures on particle energization and acceleration: current sheets play an important role if the ions’ Larmor radii are of the order of the current sheet’s size. This resonance-like process leads to the violation of the magnetic moment conservation, eventually enhancing the velocity-space diffusion.
This paper summarizes the results of an experimental program at Caltech wherein magnetohydrodynamically driven plasma jets are created and diagnosed. The theory modelling these jets, the main experimental results and their relevance to astrophysical jets are presented. The model explains how the jets are driven and why they self-collimate. Characteristic kink and Rayleigh–Taylor instabilities are shown to occur and the ramifications of these instabilities are discussed. Extending the experimental results to the astrophysical situation reveals a shortcoming in ideal magnetohydrodynamics (MHD) that must be remedied by replacing the ideal MHD Ohm’s law by the generalized Ohm’s law. It is shown that when the generalized Ohm’s law is used and the consequences of weak ionization are taken into account, an accretion disk behaves much like the electrodes, mass source and power supply used in the experiment.
Recent advances in mean-field theory are reviewed and applications to the Sun, late-type stars, accretion disks, galaxies and the early Universe are discussed. We focus particularly on aspects of spatio-temporal non-locality, which provided some of the main new qualitative and quantitative insights that emerged from applying the test-field method to magnetic fields of different length and time scales. We also review the status of nonlinear quenching and the relation to magnetic helicity, which is an important observational diagnostic of modern solar dynamo theory. Both solar and some stellar dynamos seem to operate in an intermediate regime that has not yet been possible to model successfully. This regime is bracketed by antisolar-like differential rotation on one end and stellar activity cycles belonging to the superactive stars on the other. The difficulty in modelling this regime may be related to shortcomings in simulating solar/stellar convection. On galactic and extragalactic length scales, the observational constraints on dynamo theory are still less stringent and more uncertain, but recent advances both in theory and observations suggest that more conclusive comparisons may soon be possible also here. The possibility of inversely cascading magnetic helicity in the early Universe is particularly exciting in explaining the recently observed lower limits of magnetic fields on cosmological length scales. Such magnetic fields may be helical with the same sign of magnetic helicity throughout the entire Universe. This would be a manifestation of parity breaking.
The predictions of mean-field electrodynamics can now be probed using direct numerical simulations of random flows and magnetic fields. When modelling astrophysical magnetohydrodynamics, it is important to verify that such simulations are in agreement with observations. One of the main challenges in this area is to identify robust quantitative measures to compare structures found in simulations with those inferred from astrophysical observations. A similar challenge is to compare quantitatively results from different simulations. Topological data analysis offers a range of techniques, including the Betti numbers and persistence diagrams, that can be used to facilitate such a comparison. After describing these tools, we first apply them to synthetic random fields and demonstrate that, when the data are standardized in a straightforward manner, some topological measures are insensitive to either large-scale trends or the resolution of the data. Focusing upon one particular astrophysical example, we apply topological data analysis to H i observations of the turbulent interstellar medium (ISM) in the Milky Way and to recent magnetohydrodynamic simulations of the random, strongly compressible ISM. We stress that these topological techniques are generic and could be applied to any complex, multi-dimensional random field.
Three-dimensional direct numerical simulations are used to study the energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. Our analysis is guided by a two-point exact law derived recently for this problem in which flux, source, hybrid and mixed terms are present. The relative importance of each term is studied for different initial subsonic Mach numbers $M_{S}$ and different magnetic guide fields $\boldsymbol{B}_{0}$. The dominant contribution to the energy cascade rate comes from the compressible flux, which depends weakly on the magnetic guide field $\boldsymbol{B}_{0}$, unlike the other terms whose moduli increase significantly with $M_{S}$ and $\boldsymbol{B}_{0}$. In particular, for strong $\boldsymbol{B}_{0}$ the source and hybrid terms are dominant at small scales with almost the same amplitude but with a different sign. A statistical analysis undertaken with an isotropic decomposition based on the SO(3) rotation group is shown to generate spurious results in the presence of $\boldsymbol{B}_{0}$, when compared with an axisymmetric decomposition better suited to the geometry of the problem. Our numerical results are compared with previous analyses made with in situ measurements in the solar wind and the terrestrial magnetosheath.
First results are presented from kinetic numerical simulations of relativistic collisionless magnetic reconnection in a pair plasma that include radiation reaction from both synchrotron and inverse Compton (IC) processes, motivated by non-thermal high-energy astrophysical sources, including in particular blazars. These simulations are initiated from a configuration known as ‘ABC fields’ that evolves due to coalescence instability and generates thin current layers in its linear phase. Global radiative efficiencies, instability growth rates, time-dependent radiation spectra, lightcurves, variability statistics and the structure of current layers are investigated for a broad range of initial parameters. We find that the IC radiative signatures are generally similar to the synchrotron signatures. The luminosity ratio of IC to synchrotron spectral components, the Compton dominance, can be modified by more than one order of magnitude with respect to its nominal value. For very short cooling lengths, we find evidence for modification of the temperature profile across the current layers, no systematic compression of plasma density and very consistent profiles of the scalar product $\boldsymbol{E}\boldsymbol{\cdot }\boldsymbol{B}$ of electric field $\boldsymbol{E}$ and magnetic field $\boldsymbol{B}$. We decompose the profiles of $\boldsymbol{E}\boldsymbol{\cdot }\boldsymbol{B}$ with the use of the Vlasov momentum equation, demonstrating a contribution from radiation reaction at the thickness scale consistent with the temperature profile.
When two plasmas collide, their interaction can be mediated by collisionless plasma instabilities or binary collisions between particles of each shell. By comparing the maximum growth rate of the collisionless instabilities with the collision frequency between particles of the shells, we determine the critical density separating the collisionless formation from the collisional formation of the resulting shock waves. This critical density is also the density beyond which the shock downstream is field free, as plasma instabilities do not have time to develop electromagnetic patterns. We further determine the conditions on the shells initial density and velocity for the downstream to be collisional. If these quantities fulfil the determined conditions, the collisionality of the downstream also prevents the shock from accelerating particles or generating strong magnetic fields. We compare the speed of sound with the relative speed of collision between the two shells, thus determining the portion of the parameter space where strong shock formation is possible for both classical and degenerate plasmas. Finally, we discuss the observational consequences in several astrophysical settings.
Turbulence in an accretion disk launches Alfvén waves (AWs) that propagate away from the disk along magnetic-field lines. Because the Alfvén speed varies with distance from the disk, the AWs undergo partial non-WKB reflection, and counter-propagating AWs subsequently interact, causing AW energy to cascade to small scales and dissipate. To investigate this process, we introduce an Elsasser-like formulation of general relativistic magnetohydrodynamics (GRMHD) and develop the theory of general relativistic reduced MHD in an inhomogeneous medium. We then derive a set of equations for the mean-square AW amplitude $M_{+}$ and turbulent heating rate $Q$ under the assumption that, in the plasma rest frame, AWs propagating away from the disk are much more energetic than AWs propagating toward the disk. For the case in which the background flow is axisymmetric and time independent, we solve these equations analytically to determine $M_{+}$ and $Q$ as functions of position. We find that, for an idealized thin disk threaded by a large-scale poloidal magnetic field, the AW energy flux is ${\sim}(\unicode[STIX]{x1D70C}_{\text{b}}/\unicode[STIX]{x1D70C}_{\text{d}})^{1/2}\unicode[STIX]{x1D6FD}_{\text{net,d}}^{-1/2}$ times the disk’s radiative flux, where $\unicode[STIX]{x1D70C}_{\text{b}}$ and $\unicode[STIX]{x1D70C}_{\text{d}}$ are the mass densities at the coronal base and disk midplane, respectively, and $\unicode[STIX]{x1D6FD}_{\text{net,d}}$ is the ratio (evaluated at the disk midplane) of plasma-plus-radiation pressure to the pressure of the average vertical magnetic field. This energy flux could have a significant impact on disk coronae and outflows. To lay the groundwork for future global simulations of turbulent disk coronae and jets, we derive a set of averaged GRMHD equations that account for reflection-driven AW turbulence using a sub-grid model.
A heat flux in a high-$\unicode[STIX]{x1D6FD}$ plasma with low collisionality triggers the whistler instability. Quasilinear theory predicts saturation of the instability in a marginal state characterized by a heat flux that is fully controlled by electron scattering off magnetic perturbations. This marginal heat flux does not depend on the temperature gradient and scales as $1/\unicode[STIX]{x1D6FD}$. We confirm this theoretical prediction by performing numerical particle-in-cell simulations of the instability. We further calculate the saturation level of magnetic perturbations and the electron scattering rate as functions of $\unicode[STIX]{x1D6FD}$ and the temperature gradient to identify the saturation mechanism as quasilinear. Suppression of the heat flux is caused by oblique whistlers with magnetic-energy density distributed over a wide range of propagation angles. This result can be applied to high-$\unicode[STIX]{x1D6FD}$ astrophysical plasmas, such as the intracluster medium, where thermal conduction at sharp temperature gradients along magnetic-field lines can be significantly suppressed. We provide a convenient expression for the amount of suppression of the heat flux relative to the classical Spitzer value as a function of the temperature gradient and $\unicode[STIX]{x1D6FD}$. For a turbulent plasma, the additional independent suppression by the mirror instability is capable of producing large total suppression factors (several tens in galaxy clusters) in regions with strong temperature gradients.
We have performed two-dimensional hybrid simulations of non-relativistic collisionless shocks in the presence of pre-existing energetic particles (‘seeds’); such a study applies, for instance, to the re-acceleration of galactic cosmic rays (CRs) in supernova remnant (SNR) shocks and solar wind energetic particles in heliospheric shocks. Energetic particles can be effectively reflected and accelerated regardless of shock inclination via a process that we call diffusive shock re-acceleration. We find that re-accelerated seeds can drive the streaming instability in the shock upstream and produce effective magnetic field amplification. This can eventually trigger the injection of thermal protons even at oblique shocks that ordinarily cannot inject thermal particles. We characterize the current in reflected seeds, finding that it tends to a universal value $J\simeq en_{\text{CR}}v_{\text{sh}}$, where $en_{\text{CR}}$ is the seed charge density and $v_{\text{sh}}$ is the shock velocity. When applying our results to SNRs, we find that the re-acceleration of galactic CRs can excite the Bell instability to nonlinear levels in less than ${\sim}10~\text{yr}$, thereby providing a minimum level of magnetic field amplification for any SNR shock. Finally, we discuss the relevance of diffusive shock re-acceleration also for other environments, such as heliospheric shocks, galactic superbubbles and clusters of galaxies.
We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab’s polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.
We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.
Accurately modelling and forecasting of the dynamics of the Earth’s radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave–particle resonant interaction. Energetic electron acceleration or scattering into the Earth’s atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave–particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.
Evolving magnetic fields are shown to generically reach a state of fast magnetic reconnection in which magnetic field line connections change and magnetic energy is released at an Alfvénic rate. This occurs even in plasmas with zero resistivity; only the finiteness of the mass of the lightest charged particle, an electron, is required. The speed and prevalence of Alfvénic or fast magnetic reconnection imply that its cause must be contained within the ideal evolution equation for magnetic fields, $\unicode[STIX]{x2202}\boldsymbol{B}/\unicode[STIX]{x2202}t=\unicode[STIX]{x1D735}\times (\boldsymbol{u}\times \boldsymbol{B})$, where $\boldsymbol{u}(\boldsymbol{x},t)$ is the velocity of the magnetic field lines. For a generic $\boldsymbol{u}(\boldsymbol{x},t)$, neighbouring magnetic field lines develop a separation that increases exponentially, as $e^{\unicode[STIX]{x1D70E}(\ell ,t)}$ with $\ell$ the distance along a line. This exponentially enhances the sensitivity of the evolution to non-ideal effects. An analogous effect, the importance of stirring to produce a large-scale flow and enhance mixing, has been recognized by cooks through many millennia, but the importance of the large-scale flow $\boldsymbol{u}$ to reconnection is customarily ignored. In part this is due to the sixty-year focus of recognition theory on two-coordinate models, which eliminate the exponential enhancement that is generic with three coordinates. A simple three-coordinate model is developed, which could be used to address many unanswered questions.