Skip to main content Accessibility help
×
Home

Topological data analysis and diagnostics of compressible magnetohydrodynamic turbulence

  • I. Makarenko (a1), P. Bushby (a1), A. Fletcher (a1), R. Henderson (a1), N. Makarenko (a2) and A. Shukurov (a1)...

Abstract

The predictions of mean-field electrodynamics can now be probed using direct numerical simulations of random flows and magnetic fields. When modelling astrophysical magnetohydrodynamics, it is important to verify that such simulations are in agreement with observations. One of the main challenges in this area is to identify robust quantitative measures to compare structures found in simulations with those inferred from astrophysical observations. A similar challenge is to compare quantitatively results from different simulations. Topological data analysis offers a range of techniques, including the Betti numbers and persistence diagrams, that can be used to facilitate such a comparison. After describing these tools, we first apply them to synthetic random fields and demonstrate that, when the data are standardized in a straightforward manner, some topological measures are insensitive to either large-scale trends or the resolution of the data. Focusing upon one particular astrophysical example, we apply topological data analysis to H i observations of the turbulent interstellar medium (ISM) in the Milky Way and to recent magnetohydrodynamic simulations of the random, strongly compressible ISM. We stress that these topological techniques are generic and could be applied to any complex, multi-dimensional random field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Topological data analysis and diagnostics of compressible magnetohydrodynamic turbulence
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Topological data analysis and diagnostics of compressible magnetohydrodynamic turbulence
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Topological data analysis and diagnostics of compressible magnetohydrodynamic turbulence
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: irina.makarenko@ncl.ac.uk

References

Hide All
Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F. & Ziegelmeier, L. 2017 Persistence images: a stable vector representation of persistent homology. J. Machine Learning Res. 18 (1), 218252.
Adler, R. & Taylor, J. E. 2011 Topological Complexity of Smooth Random Functions: École D’Été Probabilités de Saint-Flour XXXIX-2009, Lecture Notes in Mathematics. Springer.
Adler, R. J., Bobrowski, O., Borman, M. S., Subag, E. & Weinberger, S. 2010 Persistent homology for random fields and complexes. In Borrowing Strength: Theory Powering Applications – A Festschrift for Lawrence D. Brown (ed. Berger, J. O., Cai, T. T. & Johnstone, I. M.), Collections, vol. 6, pp. 124143. Inst. Math. Stat.
Bendre, A., Gressel, O. & Elstner, D. 2015 Dynamo saturation in direct simulations of the multi-phase turbulent interstellar medium. Astron. Nachr. 336, 991.
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1209.
Bubenik, P. 2015 Statistical topological data analysis using persistence landscapes. J. Machine Learning Res. 16 (1), 77102.
Bubenik, P. & Dłotko, P. 2017 A persistence landscapes toolbox for topological statistics. J. Symb. Comput. 78, 91114.
Burton, W. B. 1988 The structure of our Galaxy derived from observations of neutral hydrogen. In Galactic and Extragalactic Radio Astronomy (ed. Kellermann, K. I. & Verschuur, G. L.), pp. 295358. Springer.
Carlsson, G. 2009 Topology and data. Bull. Am. Math. Soc. 46 (2), 255308.
Cohen-Steiner, D., Edelsbrunner, H. & Harer, J. 2007 Stability of persistence diagrams. Discrete Comput. Geom. 37 (1), 103120.
Dittrich, P., Molchanov, S. A., Sokoloff, D. D. & Ruzmaikin, A. A. 1984 Mean magnetic field in renovating random flow. Astron. Nachr. 305, 119125.
Edelsbrunner, H. 2014 A Short Course in Computational Geometry and Topology. Springer.
Edelsbrunner, H. & Harer, J. 2008 Persistent homology – a survey. In Surveys on Discrete and Computational Geometry: Twenty Years Later (ed. Goodman, J. E., Pach, J. & Pollack, R.), Contemp. Math., vol. 453, pp. 257282. American Mathematical Society.
Edelsbrunner, H. & Harer, J. 2010 Computational Topology: An Introduction. American Mathematical Society.
Favier, B. & Bushby, P. J. 2013 On the problem of large-scale magnetic field generation in rotating compressible convection. J. Fluid Mech. 723, 529555.
Gay, C., Pichon, C., Le Borgne, D., Teyssier, R., Sousbie, T. & Devriendt, J. 2010 On the filamentary environment of galaxies. Mon. Not. R. Astron. Soc. 404, 18011816.
Gent, F. A., Shukurov, A., Fletcher, A., Sarson, G. R. & Mantere, M. J. 2013a The supernova-regulated ISM – I. The multiphase structure. Mon. Not. R. Astron. Soc. 432, 13961423.
Gent, F. A., Shukurov, A., Sarson, G. R., Fletcher, A. & Mantere, M. J. 2013b The supernova-regulated ISM – II. The mean magnetic field. Mon. Not. R. Astron. Soc. 430, L40L44.
Ghrist, R. 2008 Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45 (1), 6175.
Gressel, O., Elstner, D., Ziegler, U. & Rüdiger, G. 2008 Direct simulations of a supernova-driven galactic dynamo. Astron. Astrophys. 486, L35L38.
Henderson, R., Makarenko, I., Bushby, P., Fletcher, A. & Shukurov, A. 2017 Statistical topology and the random interstellar medium. J. Appl. Stat.; arXiv:1703.07256 (submitted).
Hollins, J. F., Sarson, G. R., Shukurov, A., Fletcher, A. & Gent, F. A. 2017 Supernova-regulated ISM. V. Space and time correlations. Astrophys. J. 850, 4.
Kalberla, P. M. W. et al. 2010 GASS: the Parkes Galactic all-sky survey. II. Stray-radiation correction and second data release. Astron. Astrophys. 521, A17.
Kniazeva, I. S., Makarenko, N. G. & Urtiev, F. A. 2015 The dynamical regime of active regions via the concept of persistent homology. Phys. Procedia 74, 363367.
Knyazeva, I. S., Makarenko, N. G., Kuperin, Y. A. & Dmitrieva, L. A. 2016 The new approach for dynamical regimes detection in geomagnetic time series. J. Phys. Conf. Ser. 675, 032028.
Knyazeva, I. S., Makarenko, N. G. & Urtiev, F. A. 2015 Comparison of the dynamics of active regions by methods of computational topology. Geomagn. Aeron. 55, 11341140.
Knyazeva, I. S., Urtiev, F. A. & Makarenko, N. G. 2017 On the prognostic efficiency of topological descriptors for magnetograms of active regions. Geomagn. Aeron. 57, 10861091.
Kramár, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., Schatz, M. F. & Mischaikow, K. 2016 Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology. Physica D 334, 8298.
Krause, F. & Rädler, K. H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon Press (also Akademie-Verlag).
Li, G.-X., Urquhart, J. S., Leurini, S., Csengeri, T., Wyrowski, F., Menten, K. M. & Schuller, F. 2016 ATLASGAL: a Galaxy-wide sample of dense filamentary structures. Astron. Astrophys. 591, A5.
Makarenko, I., Fletcher, A. & Shukurov, A. 2015 3D morphology of a random field from its 2D cross-section. Mon. Not. R. Astron. Soc. 447, L55L59.
Makarenko, I., Shukurov, A., Henderson, R., Rodrigues, L. F. S., Bushby, P. & Fletcher, A. 2018 Topological signatures of interstellar magnetic fields – I. Betti numbers and persistence diagrams. Mon. Not. R. Astron. Soc. 475, 18431858.
Makarenko, N. G., Karimova, L. M. & Novak, M. M. 2007 Investigation of global solar magnetic field by computational topology methods. Physica A 380, 98108.
Makarenko, N. G., Malkova, D. B., Machin, M. L., Knyazeva, I. S. & Makarenko, I. N. 2014 Methods of computational topology for the analysis of dynamics of active regions of the Sun. J. Math. Sci. 203, 806815; (Fundam. Prikl. Mat. in Russian).
Mecke, K. R., Buchert, T. & Wagner, H. 1994 Robust morphological measures for large-scale structure in the Universe. Astron. Astrophys. 288, 697704.
Molchanov, S. A. 1991 Ideas in the theory of random media. Acta Appl. Math. 22, 139282.
Morozov, D.2008 Homological illusions of persistence and stability. PhD thesis, Department of Computer Science, Durham, NC, USA, AAI3315357.
Motta, F. C. 2018 Topological data analysis: developments and applications. In Advances in Nonlinear Geosciences (ed. Tsonis, A.), pp. 369391. Springer.
Park, C., Pranav, P., Chingangbam, P., van de Weygaert, R., Jones, B., Vegter, G., Kim, I., Hidding, J. & Hellwing, W. A. 2013 Betti numbers of Gaussian fields. J. Korean Astron. Soc. 46, 125131.
Pranav, P.2015 Persistent holes in the Universe: a hierarchical topology of the cosmic mass distribution. PhD thesis, University of Groningen.
Pranav, P., Edelsbrunner, H., van de Weygaert, R., Vegter, G., Kerber, M., Jones, B. J. T. & Wintraecken, M. 2017 The topology of the cosmic web in terms of persistent Betti numbers. Mon. Not. R. Astron. Soc. 465, 42814310.
Roberts, P. H. & Stix, M.1971 The turbulent dynamo: a translation of a series of papers by F. Krause, K.-H. Rädler and M. Steenbeck. Tech. Note 60, NCAR, Colorado.
Robins, V. & Turner, K. 2016 Principal component analysis of persistent homology rank functions with case studies of spatial point patterns, sphere packing and colloids. Physica D 334, 99117.
Shukurov, A. 2007 Galactic dynamos. In Mathematical Aspects of Natural Dynamos (ed. Dormy, E. & Soward, A. M.), pp. 313359. Chapman & Hall/CRC.
Sousbie, T. 2011 The persistent cosmic web and its filamentary structure – I. Theory and implementation. Mon. Not. R. Astron. Soc. 414, 350383.
Sousbie, T., Pichon, C. & Kawahara, H. 2011 The persistent cosmic web and its filamentary structure – II. Illustrations. Mon. Not. R. Astron. Soc. 414, 384403.
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 Berechnung der mittleren Lorentz–Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis–Kräfte beeinflußter Bewegung. Z. Naturforsch. A 21, 369376; (English translation: in Roberts & Stix (1971)).
Toth, C. D., O’Rourke, J. & Goodman, J. E.(Eds) 2017 Handbook of Discrete and Computational Geometry. Chapman and Hall/CRC.
Wilkin, S. L., Barenghi, C. F. & Shukurov, A. 2007 Magnetic structures produced by the small-scale dynamo. Phys. Rev. Lett. 99 (13), 134501.
Yogeshwaran, D. & Adler, R. J. 2015 On the topology of random complexes built over stationary point processes. Ann. Appl. Prob. 25 (6), 33383380.
Zeldovich, Y. B., Molchanov, S. A., Ruzmaikin, A. A. & Sokoloff, D. D. 1988 Intermittency, diffusion and generation in a nonstationary random medium. Sov. Sci. Rev. Math. Phys. 7, 1110.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed