Skip to main content Accessibility help
×
Home

Diffusive shock re-acceleration

  • Damiano Caprioli (a1) (a2), Horace Zhang (a2) and Anatoly Spitkovsky (a2)

Abstract

We have performed two-dimensional hybrid simulations of non-relativistic collisionless shocks in the presence of pre-existing energetic particles (‘seeds’); such a study applies, for instance, to the re-acceleration of galactic cosmic rays (CRs) in supernova remnant (SNR) shocks and solar wind energetic particles in heliospheric shocks. Energetic particles can be effectively reflected and accelerated regardless of shock inclination via a process that we call diffusive shock re-acceleration. We find that re-accelerated seeds can drive the streaming instability in the shock upstream and produce effective magnetic field amplification. This can eventually trigger the injection of thermal protons even at oblique shocks that ordinarily cannot inject thermal particles. We characterize the current in reflected seeds, finding that it tends to a universal value $J\simeq en_{\text{CR}}v_{\text{sh}}$ , where $en_{\text{CR}}$ is the seed charge density and $v_{\text{sh}}$ is the shock velocity. When applying our results to SNRs, we find that the re-acceleration of galactic CRs can excite the Bell instability to nonlinear levels in less than ${\sim}10~\text{yr}$ , thereby providing a minimum level of magnetic field amplification for any SNR shock. Finally, we discuss the relevance of diffusive shock re-acceleration also for other environments, such as heliospheric shocks, galactic superbubbles and clusters of galaxies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diffusive shock re-acceleration
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Diffusive shock re-acceleration
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Diffusive shock re-acceleration
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: caprioli@uchicago.edu

References

Hide All
Acero, F., Ackermann, M., Ajello, M., Albert, A., Atwood, W. B., Axelsson, M., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D. et al. 2015 Fermi large area telescope third source catalog. Astrophys. J. Suppl. 218, 23.
Ackermann, M. et al. 2013 Detection of the characteristic pion-decay signature in supernova remnants. Science 339, 807811.
Alexandrova, O., Chen, C. H. K., Sorriso-Valvo, L., Horbury, T. S. & Bale, S. D. 2014 Solar Wind Turbulence and the Role of Ion Instabilities, pp. 2563. Springer.
Aloisio, R., Blasi, P. & Serpico, P. D. 2015 Nonlinear cosmic ray galactic transport in the light of AMS-02 and Voyager data. Astron. Astrophys. 583, A95.
Amato, E. & Blasi, P. 2009 A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon. Not. R. Astron. Soc. 392, 15911600.
Bai, X.-N., Caprioli, D., Sironi, L. & Spitkovsky, A. 2015 Magnetohydrodynamic-particle-in-cell method for coupling cosmic rays with a thermal plasma: application to non-relativistic shocks. Astrophys. J. 809, 55.
Beck, M. C., Beck, A. M., Beck, R., Dolag, K., Strong, A. W. & Nielaba, P. 2016 New constraints on modelling the random magnetic field of the mw. J. Cosmol. Astropart. Phys. 5, 056.
Bell, A. R. 1978a The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147156.
Bell, A. R. 1978b The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443455.
Bell, A. R. 2004 Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550558.
Bell, A. R., Schure, K. M. & Reville, B. 2011 Cosmic ray acceleration at oblique shocks. Mon. Not. R. Astron. Soc. 418, 12081216.
Blandford, R. D. & Ostriker, J. P. 1978 Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 221, L29L32.
Blasi, P. 2004 Nonlinear shock acceleration in the presence of seed particles. Astropart. Phys. 21, 4557.
Blasi, P. 2017 On the spectrum of stable secondary nuclei in cosmic rays. Mon. Not. R. Astron. Soc. 471, 16621670.
Brunetti, G. & Jones, T. W. 2014 Cosmic rays in galaxy clusters and their nonthermal emission. Intl J. Mod. Phys. D 23, 1430007–98.
Bykov, A. M. 2014 Nonthermal particles and photons in starburst regions and superbubbles. Astron. Astrophys. Rev. 22, 77.
Caprioli, D. 2015 Cosmic-ray acceleration and propagation. In 34th International Cosmic Ray Conference (ICRC2015) (ed. Borisov, A. S., Denisova, V. G., Guseva, Z. M., Kanevskaya, E. A., Kogan, M. G., Morozov, A. E., Puchkov, V. S., Pyatovsky, S. E., Shoziyoev, G. P., Smirnova, M. D., Vargasov, A. V., Galkin, V. I., Nazarov, S. I. & Mukhamedshin, R. A.), International Cosmic Ray Conference, vol. 34, p. 8. Proceedings of Sciences (PoS).
Caprioli, D., Amato, E. & Blasi, P. 2010 The contribution of supernova remnants to the galactic cosmic ray spectrum. Astropart. Phys. 33, 160168.
Caprioli, D., Pop, A. & Spitkovsky, A. 2015 Simulations and theory of ion injection at non-relativistic collisionless shocks. Astrophys. J. Lett. 798, 28.
Caprioli, D. & Spitkovsky, A. 2013 Cosmic-ray-induced filamentation instability in collisionless shocks. Astrophys. J. Lett. 765, L20.
Caprioli, D. & Spitkovsky, A. 2014a Simulations of ion acceleration at non-relativistic shocks: I. Acceleration efficiency. Astrophys. J. 783, 91.
Caprioli, D. & Spitkovsky, A. 2014b Simulations of ion acceleration at non-relativistic shocks: II. Magnetic field amplification. Astrophys. J. 794, 46.
Caprioli, D. & Spitkovsky, A. 2014c Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion. Astrophys. J. 794, 47.
Caprioli, D., Yi, D. T. & Spitkovsky, A. 2017 Chemical enhancements in shock-accelerated particles: ab-initio simulations. Phys. Rev. Lett. 119 (17), 171101.
Cardillo, M., Amato, E. & Blasi, P. 2016 Supernova remnant w44: a case of cosmic-ray reacceleration. Astron. Astrophys. 595, A58.
Cummings, A. & Stone, E. 1999 Anomalous cosmic rays: observations. Adv. Space Res. 23 (3), 509520; the transport of galactic and anomalous cosmic rays in the heliosphere: observations, simulations and theory.
Farber, R., Ruszkowski, M., Yang, H.-Y. K. & Zweibel, E. G. 2018 Impact of cosmic-ray transport on galactic winds. Astrophys. J. 856 (2), 112.
Gargaté, L., Bingham, R., Fonseca, R. A. & Silva, L. O. 2007 dHybrid: a massively parallel code for hybrid simulations of space plasmas. Comput. Phys. Commun. 176 (6), 419425.
Gargaté, L. & Spitkovsky, A. 2012 Ion acceleration in non-relativistic astrophysical shocks. Astrophys. J. 744, 67, arXiv:1107.0762.
Giacalone, J. 2005 The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. Lett. 628, L37L40.
Heerikhuisen, J., Pogorelov, N. V., Zank, G. P., Crew, G. B., Frisch, P. C., Funsten, H. O., Janzen, P. H., McComas, D. J., Reisenfeld, D. B. & Schwadron, N. A. 2010 Pick-up ions in the outer heliosheath: a possible mechanism for the interstellar boundary explorer ribbon. Astrophys. J. Lett. 708, L126L130.
Jansson, R. & Farrar, G. R. 2012 A new model of the galactic magnetic field. Astrophys. J. 757, 14.
Jokipii, J. R. 1987 Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 313, 842846.
Kallenbach, R., Geiss, J., Gloeckler, G. & von Steiger, R. 2000 Pick-up ion measurements in the heliosphere – a review. Astrophys. Space Sci. 274, 97114.
Karimabadi, H., Krauss-Varban, D., Huba, J. D. & Vu, H. X. 2004 On magnetic reconnection regimes and associated three-dimensional asymmetries: hybrid, hall-less hybrid, and hall-MHD simulations. J. Geophys. Res. 109, A09205.
Kulsrud, R. & Pearce, W. P. 1969 The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445.
Kunz, M. W., Stone, J. M. & Bai, X.-N. 2014 Pegasus: a new hybrid-kinetic particle-in-cell code for astrophysical plasma dynamics. J. Comput. Phys. 259, 154174.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon Press.
Le, A., Egedal, J., Daughton, W., Fox, W. & Katz, N. 2009 Equations of state for collisionless guide-field reconnection. Phys. Rev. Lett. 102 (8), 085001.
Lipatov, A. S. 2002 The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas. Springer.
van Marle, A. J., Casse, F. & Marcowith, A. 2018 On magnetic field amplification and particle acceleration near non-relativistic astrophysical shocks: particles in MHD cells simulations. Mon. Not. R. Astron. Soc. 473, 33943409.
Mason, G. M., Mazur, J. E., Dwyer, J. R., Jokipii, J. R., Gold, R. E. & Krimigis, S. M. 2004 Abundances of heavy and ultraheavy ions in $^{3}$ He-rich solar flares. Astrophys. J. 606, 555564.
Matthews, J. H., Bell, A. R., Blundell, K. M. & Araudo, A. T. 2017 Amplification of perpendicular and parallel magnetic fields by cosmic ray currents. Mon. Not. R. Astron. Soc. 469, 18491860.
Morlino, G. & Caprioli, D. 2012 Strong evidence for hadron acceleration in Tycho’s supernova remnant. Astron. Astrophys. 538, A81.
Naab, T. & Ostriker, J. P. 2017 Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59109.
Park, J., Caprioli, D. & Spitkovsky, A. 2015 Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks. Phys. Rev. Lett. 114 (8), 085003.
Pfrommer, C., Pakmor, R., Schaal, K., Simpson, C. M. & Springel, V. 2017 Simulating cosmic ray physics on a moving mesh. Mon. Not. R. Astron. Soc. 465, 45004529.
Reville, B. & Bell, A. R. 2013 Universal behaviour of shock precursors in the presence of efficient cosmic ray acceleration. Mon. Not. R. Astron. Soc. 430, 28732884.
Riquelme, M. A. & Spitkovsky, A. 2010 Magnetic amplification by magnetized cosmic rays in supernova remnant shocks. Astrophys. J. 717, 10541066.
Salem, M. & Bryan, G. L. 2014 Cosmic ray driven outflows in global galaxy disc models. Mon. Not. R. Astron. Soc. 437, 33123330.
Schwartz, S. J., Thomsen, M. F. & Gosling, J. T. 1983 Ions upstream of the earth’s bow shock – a theoretical comparison of alternative source populations. J. Geophys. Res. 88, 20392047.
Sironi, L. & Spitkovsky, A. 2009 Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity. Astrophys. J. 698, 15231549.
Sironi, L. & Spitkovsky, A. 2011 Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Astrophys. J. 726, 75.
Skilling, J. 1975 Cosmic ray streaming. I – effect of Alfven waves on particles. Mon. Not. R. Astron. Soc. 172, 557566.
Stone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N. & Webber, W. R. 2013 Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150153.
Tylka, A. J., Cohen, C. M. S., Dietrich, W. F., Lee, M. A., Maclennan, C. G., Mewaldt, R. A., Ng, C. K. & Reames, D. V. 2005 Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474495.
Uchiyama, Y., Blandford, R. D., Funk, S., Tajima, H. & Tanaka, T. 2010 Gamma-ray emission from crushed clouds in supernova remnants. Astrophys. J. Lett. 723, L122L126.
Winske, D. 1985 Hybrid simulation codes with application to shocks and upstream waves. Space Sci. Rev. 42, 5366.
Winske, D., Yin, L. & Omidi, N. 2003 Hybrid simulation codes: past, present and future – a tutorial. In Space Plasma Simulation (ed. Büchner, J., Dum, C. & Scholer, M.), Lecture Notes in Physics, vol. 615, pp. 136165. Springer.
Zank, G. P., Pauls, H. L., Cairns, I. H. & Webb, G. M. 1996 Interstellar pickup ions and quasi-perpendicular shocks: implications for the termination shock and interplanetary shocks. J. Geophys. Res. 101, 457478.
Zweibel, E. G. 2017 The basis for cosmic ray feedback: written on the wind. Phys. Plasmas 24 (5), 055402.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Diffusive shock re-acceleration

  • Damiano Caprioli (a1) (a2), Horace Zhang (a2) and Anatoly Spitkovsky (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed