Skip to main content Accessibility help

Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond

  • M. W. Kunz (a1) (a2), I. G. Abel (a3) (a4), K. G. Klein (a5) (a6) and A. A. Schekochihin (a7) (a8)


We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.


Corresponding author

Email address for correspondence:


Hide All
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J. & Robert, P. 2009 Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103 (16), 165003.
Antonsen, T. M. Jr & Lane, B. 1980 Kinetic equations for low frequency instabilities in inhomogeneous plasmas. Phys. Fluids 23, 12051214.
Armstrong, J. W., Coles, W. A., Rickett, B. J. & Kojima, M. 1990 Observations of field-aligned density fluctuations in the inner solar wind. Astrophys. J. 358, 685692.
Arzamasskiy, L., Kunz, M. W., Chandran, B. D. G. & Quataert, E.2018 In preparation.
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S. & Reme, H. 2005 Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94 (21), 215002.
Barnes, A. 1966 Collisionless damping of hydromagnetic waves. Phys. Fluids 9, 14831495.
Bavassano, B., Pietropaolo, E. & Bruno, R. 2004 Compressive fluctuations in high-latitude solar wind. Ann. Geophys. 22, 689696.
Belcher, J. W. & Davis, L. Jr 1971 Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 35343563.
Bieber, J. W., Wanner, W. & Matthaeus, W. H. 1996 Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101, 25112522.
Boldyrev, S. 2006 Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96 (11), 115002.
Boldyrev, S. & Perez, J. C. 2012 Spectrum of kinetic-Alfvén turbulence. Astrophys. J. Lett. 758, L44.
Brizard, A. J. 1994 Quadratic free energy for the linearized gyrokinetic Vlasov–Maxwell equations. Phys. Plasmas 1, 24732479.
Brizard, A. J. & Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421468.
Bruno, R. & Carbone, V. 2005 The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 2, 4.
Burlaga, L. F., Scudder, J. D., Klein, L. W. & Isenberg, P. A. 1990 Pressure-balanced structures between 1 AU and 24 AU and their implications for solar wind electrons and interstellar pickup ions. J. Geophys. Res. 95, 22292239.
Catto, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20, 719722.
Catto, P. J., Tang, W. M. & Baldwin, D. E. 1981 Generalized gyrokinetics. Plasma Phys. 23, 639650.
Cerri, S. S., Califano, F., Jenko, F., Told, D. & Rincon, F. 2016 Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations. Astrophys. J. Lett. 822, L12.
Cerri, S. S., Franci, L., Califano, F., Landi, S. & Hellinger, P. 2017a Plasma turbulence at ion scales: a comparison between particle in cell and Eulerian hybrid-kinetic approaches. J. Plasma Phys. 83 (2), 705830202.
Cerri, S. S., Servidio, S. & Califano, F. 2017b Kinetic cascade in solar-wind turbulence: 3D3V hybrid-kinetic simulations with electron inertia. Astrophys. J. Lett. 846, L18.
Chandra, M., Gammie, C. F., Foucart, F. & Quataert, E. 2015 An extended magnetohydrodynamics model for relativistic weakly collisional plasmas. Astrophys. J. 810, 162.
Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E. & Germaschewski, K. 2010 Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. Lett. 720, 503515.
Chandran, B. D. G., Schekochihin, A. A. & Mallet, A. 2015 Intermittency and alignment in strong RMHD turbulence. Astrophys. J. 807, 39.
Chandran, B. D. G., Verscharen, D., Quataert, E., Kasper, J. C., Isenberg, P. A. & Bourouaine, S. 2013 Stochastic heating, differential flow, and the alpha-to-proton temperature ratio in the solar wind. Astrophys. J. 776, 45.
Chen, C. H. K. 2016 Recent progress in astrophysical plasma turbulence from solar wind observations. J. Plasma Phys. 82 (6), 535820602.
Chen, C. H. K., Leung, L., Boldyrev, S., Maruca, B. A. & Bale, S. D. 2014 Ion-scale spectral break of solar wind turbulence at high and low beta. Geophys. Res. Lett. 41, 80818088.
Chen, C. H. K., Mallet, A., Yousef, T. A., Schekochihin, A. A. & Horbury, T. S. 2011 Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations. Mon. Not. R. Astron. Soc. 415, 32193226.
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. Lond. A 236, 112118.
Cho, J. & Lazarian, A. 2004 The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. 615, L41.
Cho, J. & Vishniac, E. T. 2000 The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273282.
Cranmer, S. R. 2014 Ensemble simulations of proton heating in the solar wind via turbulence and ion cyclotron resonance. Astrophys. J. Suppl. 213, 16.
Davidson, R. C. & Völk, H. J. 1968 Macroscopic quasilinear theory of the garden-hose instability. Phys. Fluids 11, 22592264.
Dmitruk, P., Matthaeus, W. H. & Seenu, N. 2004 Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys. J. 617, 667679.
Dubin, D. H. E., Krommes, J. A., Oberman, C. & Lee, W. W. 1983 Nonlinear gyrokinetic equations. Phys. Fluids 26, 3524.
Feldman, W. C., Asbridge, J. R., Bame, S. J. & Montgomery, M. D. 1973 Double ion streams in the solar wind. J. Geophys. Res. 78, 2017.
Foucart, F., Chandra, M., Gammie, C. F. & Quataert, E. 2016 Evolution of accretion discs around a kerr black hole using extended magnetohydrodynamics. Mon. Not. R. Astron. Soc. 456, 13321345.
Fowler, T. K. 1968 Thermodynamics of Unstable Plasmas. Adv. Plasma Phys. 1, 201.
Franci, L., Landi, S., Matteini, L., Verdini, A. & Hellinger, P. 2015a High-resolution hybrid simulations of kinetic plasma turbulence at proton scales. Astrophys. J. 812, 21.
Franci, L., Landi, S., Matteini, L., Verdini, A. & Hellinger, P. 2016 Plasma beta dependence of the ion-scale spectral break of solar wind turbulence: high-resolution 2D hybrid simulations. Astrophys. J. 833, 91.
Franci, L., Landi, S., Verdini, A., Mattini, L. & Hellinger, P. 2018 Solar wind turbulent cascade from MHD to sub-ion scales: large-size 3D hybrid particle-in-cell simulations. Astrophys. J. 853, 26.
Franci, L., Verdini, A., Matteini, L., Landi, S. & Hellinger, P. 2015b Solar wind turbulence from MHD to sub-ion scales: high-resolution hybrid simulations. Astrophys. J. 804, L39.
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic Press.
Frieman, E. A. & Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502508.
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: strong alfvenic turbulence. Astrophys. J. 438, 763775.
Groselj, D., Mallet, A., Loureiro, N. F. & Jenko, F. 2018 Fully kinetic simulation of 3D kinetic Alfven turbulence. Phys. Rev. Lett. 120, 105101.
Hallatschek, K. 2004 Thermodynamic potential in local turbulence simulations. Phys. Rev. Lett. 93 (12), 125001.
Hastie, R. J., Taylor, J. B. & Haas, F. A. 1967 Adiabatic invariants and the equilibrium of magnetically trapped particles. Ann. Phys. 41, 302338.
Hellinger, P. 2007 Comment on the linear mirror instability near the threshold. Phys. Plasmas 14 (8), 082105.
Hellinger, P. & Matsumoto, H. 2000 New kinetic instability: oblique Alfvén fire hose. J. Geophys. Res. 105, 1051910526.
Hellinger, P. & Trávníček, P. M. 2014 Solar wind protons at 1 AU: trends and bounds, constraints and correlations. Astrophys. J. 784, L15.
Hollweg, J. V. & Isenberg, P. A. 2002 Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147.
Horbury, T. S., Forman, M. & Oughton, S. 2008 Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101 (17), 175005.
Hoshino, M. 2015 Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk. Phys. Rev. Lett. 114 (6), 061101.
Howes, G. G. 2010 A prescription for the turbulent heating of astrophysical plasmas. Mon. Not. R. Astron. Soc. 409, L104L108.
Howes, G. G., Bale, S. D., Klein, K. G., Chen, C. H. K., Salem, C. S. & TenBarge, J. M. 2012 The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. 753, L19.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590614.
Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A. & Tatsuno, T. 2008 Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100 (6), 065004.
Howes, G. G., TenBarge, J. M. & Dorland, W. 2011 A weakened cascade model for turbulence in astrophysical plasmas. Phys. Plasmas 18 (10), 102305.
Hundhausen, A. J., Bame, S. J. & Ness, N. F. 1967 Solar wind thermal anisotropies: Vela 3 and IMP 3. J. Geophys. Res. 72, 5265.
Isenberg, P. A. 2001 Heating of coronal holes and generation of the solar wind by ion-cyclotron resonance. Space Sci. Rev. 95, 119131.
Kadomtsev, B. B. & Pogutse, O. P. 1974 Nonlinear helical perturbations of a plasma in the tokamak. Sov. J. Exp. Theoret. Phys. 38, 283290.
Kanekar, A., Schekochihin, A. A., Dorland, W. & Loureiro, N. F. 2015 Fluctuation-dissipation relations for a plasma-kinetic Langevin equation. J. Plasma Phys. 81 (1), 305810104.
Kasper, J. C., Maruca, B. A., Stevens, M. L. & Zaslavsky, A. 2013 Sensitive test for ion-cyclotron resonant heating in the solar wind. Phys. Rev. Lett. 110 (9), 091102.
Kennel, C. F. & Sagdeev, R. Z. 1967 Collisionless shock waves in high $\unicode[STIX]{x1D6FD}$ plasmas: 1. J. Geophys. Res. 72, 33033326.
Kingsep, A. S., Chukbar, K. V. & Yan’kov, V. V. 1990 Reviews of Plasma Physics, vol. 16, p. 243. Consultants Bureau.
Kiyani, K. H., Osman, K. T. & Chapman, S. C. 2015 Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Phil. Trans. R. Soc. A 373, 20140155.
Klein, K. G. & Howes, G. G. 2015 Predicted impacts of proton temperature anisotropy on solar wind turbulence. Phys. Plasmas 22 (3), 032903.
Klein, K. G., Howes, G. G. & TenBarge, J. M. 2017 Diagnosing collisionless energy transfer using field-particle correlations: gyrokinetic turbulence. J. Plasma Phys. 83 (4), 535830401.
Kolmogorov, A. N. 1941 Local structure of turbulence in incompressible viscous fluid at very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299.
Kraichnan, R. H. 1965 Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 13851387.
Krommes, J. A. 2012 The gyrokinetic description of microturbulence in magnetized plasmas. Ann. Rev. Fluid Mech. 44, 175201.
Kruskal, M. D. 1958 The gyration of a charged particle. Project Matterhorn Publications and Reports.
Kulsrud, R. M. 1964 Teoria dei plasmi (ed. Rosenbluth, M. N.), p. 54. Academic Press.
Kulsrud, R. M. 1983 MHD description of plasma. In Basic Plasma Physics: Selected Chapters, Handbook of Plasma Physics (ed. Galeev, A. A. & Sudan, R. N.), vol. 1, p. 1. Elsevier.
Kunz, M. W., Schekochihin, A. A., Chen, C. H. K., Abel, I. G. & Cowley, S. C. 2015 Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas. J. Plasma Phys. 81, 325810501.
Kunz, M. W., Schekochihin, A. A. & Stone, J. M. 2014 Firehose and mirror instabilities in a collisionless shearing plasma. Phys. Rev. Lett. 112 (20), 205003.
Kunz, M. W., Stone, J. M. & Quataert, E. 2016 Magnetorotational turbulence and dynamo in a collisionless plasma. Phys. Rev. Lett. 117 (23), 235101.
Landau, L. 1946 On the vibrations of the electronic plasma. Zh. Exp. Teor. Fiz. 16, 574 (English translation: 1946, J. Phys. USSR, 10, 25).
Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H. & Wong, H. K. 1998 Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 47754787.
Leamon, R. J., Smith, C. W., Ness, N. F. & Wong, H. K. 1999 Dissipation range dynamics: kinetic Alfvén waves and the importance of $\unicode[STIX]{x1D6FD}_{e}$ . J. Geophys. Res. 104, 2233122344.
Lee, W. W. 1983 Gyrokinetic approach in particle simulation. Phys. Fluids 26, 556.
Li, X. & Habbal, S. R. 2000 Electron kinetic firehose instability. J. Geophys. Res. 105, 2737727386.
Lithwick, Y. & Goldreich, P. 2001 Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279296.
Maksimovic, M., Pierrard, V. & Lemaire, J. F. 1997a A kinetic model of the solar wind with Kappa distribution functions in the corona. Astron. Astrophys. 324, 725734.
Maksimovic, M., Pierrard, V. & Riley, P. 1997b Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett. 24, 11511154.
Maksimovic, M., Zouganelis, I., Chaufray, J.-Y., Issautier, K., Scime, E. E., Littleton, J. E., Marsch, E., McComas, D. J., Salem, C., Lin, R. P. et al. 2005 Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, 9104.
Mallet, A. & Schekochihin, A. A. 2017 A statistical model of three-dimensional anisotropy and intermittency in strong Alfvénic turbulence. Mon. Not. R. Astron. Soc. 466, 39183927.
Markovskii, S. A., Vasquez, B. J. & Smith, C. W. 2008 Statistical analysis of the high-frequency spectral break of the solar wind turbulence at 1 AU. Astrophys. J. 675, 15761583.
Maron, J. & Goldreich, P. 2001 Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 11751196.
Marsch, E. 2006 Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1.
Marsch, E., Rosenbauer, H., Schwenn, R., Muehlhaeuser, K.-H. & Neubauer, F. M. 1982a Solar wind helium ions – observations of the HELIOS solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 3551.
Marsch, E., Schwenn, R., Rosenbauer, H., Muehlhaeuser, K.-H., Pilipp, W. & Neubauer, F. M. 1982b Solar wind protons – three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, 5272.
Marsch, E. & Tu, C. Y. 1993 Correlations between the fluctuations of pressure, density, temperature and magnetic field in the solar wind. Ann. Geophys. 11, 659677.
Matteini, L., Hellinger, P., Landi, S., Trávníček, P. M. & Velli, M. 2012 Ion kinetics in the solar wind: coupling global expansion to local microphysics. Space Sci. Rev. 172, 373396.
McComas, D. J., Barraclough, B. L., Gosling, J. T., Hammond, C. M., Phillips, J. L., Neugebauer, M., Balogh, A. & Forsyth, R. J. 1995 Structures in the polar solar wind: plasma and field observations from Ulysses. J. Geophys. Res. 100, 1989319902.
Navarro, A. B., Teaca, B., Told, D., Groselj, D., Crandall, P. & Jenko, F. 2016 Structure of plasma heating in gyrokinetic Alfvénic turbulence. Phys. Rev. Lett. 117 (24), 245101.
Obukhov, A. M. 1941 On the distribution of energy in the spectrum of turbulent flow. Izv. Akad. Nauk SSSR Ser. Geogr. 1. Geofiz. 5, 453.
Oughton, S., Priest, E. R. & Matthaeus, W. H. 1994 The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 280, 95117.
Parra, F. I.2013 Extension of gyrokinetics to transport time scales. arXiv:1309:7385.
Plunk, G. G. 2013 Landau damping in a turbulent setting. Phys. Plasmas 20 (3), 032304.
Podesta, J. J. 2009 Dependence of solar–wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986999.
Porazik, P. & Johnson, J. R. 2013 Linear dispersion relation for the mirror instability in context of the gyrokinetic theory. Phys. Plasmas 20, 104501.
Porazik, P. & Johnson, J. R. 2017 Conductivity tensor for anisotropic plasma in gyrokinetic theory. Phys. Plasmas 24, 052121.
Quataert, E. 1998 Particle heating by Alfvénic turbulence in hot accretion flows. Astrophys. J. 500, 978991.
Quataert, E., Dorland, W. & Hammett, G. W. 2002 The magnetorotational instability in a collisionless plasma. Astrophys. J. 577, 524533.
Quataert, E. & Gruzinov, A. 1999 Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248255.
Rickett, B. J., Kedziora-Chudczer, L. & Jauncey, D. L. 2002 Interstellar scintillation of the polarized flux density in quasar PKS 0405-385. Astrophys. J. 581, 103126.
Riquelme, M. A., Quataert, E., Sharma, P. & Spitkovsky, A. 2012 Local two-dimensional particle-in-cell simulations of the collisionless magnetorotational instability. Astrophys. J. 755, 50.
Riquelme, M. A., Quataert, E. & Verscharen, D. 2015 Particle-in-cell simulations of continuously driven mirror and ion cyclotron instabilities in high beta astrophysical and heliospheric plasmas. Astrophys. J. 800, 27.
Rincon, F., Schekochihin, A. A. & Cowley, S. C. 2015 Non-linear mirror instability. Mon. Not. R. Astron. Soc. 447, L45.
Roberts, D. A. 1990 Heliocentric distance and temporal dependence of the interplanetary density-magnetic field magnitude correlation. J. Geophys. Res. 95, 10871090.
Rosin, M. S., Schekochihin, A. A., Rincon, F. & Cowley, S. C. 2011 A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma. Mon. Not. R. Astron. Soc. 413, 738.
Rutherford, P. H. & Frieman, E. A. 1968 Drift instabilities in general magnetic field configurations. Phys. Fluids 11, 569585.
Sahraoui, F., Huang, S. Y., Belmont, G., Goldstein, M. L., Rétino, A., Robert, P. & De Patoul, J. 2013 Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. 777, 15.
Schekochihin, A. A.2017 MHD turbulence in 2017: a biased review.
Schekochihin, A. A. & Cowley, S. C. 2006 Turbulence, magnetic fields, and plasma physics in clusters of galaxies. Phys. Plasmas 13 (5), 056501.
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. 182, 310377.
Schekochihin, A. A., Cowley, S. C., Kulsrud, R. M., Hammett, G. W. & Sharma, P. 2005 Plasma instabilities and magnetic field growth in clusters of galaxies. Astrophys. J. 629, 139142.
Schekochihin, A. A., Parker, J. T., Highcock, E. G., Dellar, P. J., Dorland, W. & Hammett, G. W. 2016 Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82 (2), 905820212.
Scott, B. 2010 Derivation via free energy conservation constraints of gyrofluid equations with finite-gyroradius electromagnetic nonlinearities. Phys. Plasmas 17 (10), 102306.
Sharma, P., Hammett, G. W., Quataert, E. & Stone, J. M. 2006 Shearing box simulations of the MRI in a collisionless plasma. Astrophys. J. 637, 952967.
Sharma, P., Quataert, E., Hammett, G. W. & Stone, J. M. 2007 Electron heating in hot accretion flows. Astrophys. J. 667, 714723.
Shebalin, J. V., Matthaeus, W. H. & Montgomery, D. 1983 Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525547.
Sironi, L. 2015 Electron heating by the ion cyclotron instability in collisionless accretion flows. II. Electron heating efficiency as a function of flow conditions. Astrophys. J. 800, 89.
Sironi, L. & Narayan, R. 2015 Electron Heating by the ion cyclotron instability in collisionless accretion flows. I. Compression-driven instabilities and the electron heating mechanism. Astrophys. J. 800, 88.
Southwood, D. J. & Kivelson, M. G. 1993 Mirror instability. I. Physical mechanism of linear instability. J. Geophys. Res. 98, 91819187.
Squire, J., Kunz, M. W., Quataert, E. & Schekochihin, A. A. 2017 Kinetic simulations of the interruption of large-amplitude shear-Alfvén Waves in a high- $\unicode[STIX]{x1D6FD}$ plasma. Phys. Rev. Lett. 119 (15), 155101.
Squire, J., Quataert, E. & Schekochihin, A. A. 2016 A stringent limit on the amplitude of Alfvénic perturbations in high-beta low-collisionality plasmas. Astrophys. J. 830, L25.
Stix, T. H. 1992 Waves in Plasmas. American Institute of Physics.
Strauss, H. R. 1976 Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134140.
Strauss, H. R. 1977 Dynamics of high beta tokamaks. Phys. Fluids 20, 13541360.
Taylor, J. B. 1967 Magnetic moment under short-wave electrostatic perturbations. Phys. Fluids 10, 13571359.
Taylor, J. B. & Hastie, R. J. 1968 Stability of general plasma equilibria – I formal theory. Plasma Phys. 10, 479494.
Told, D., Jenko, F., TenBarge, J. M., Howes, G. G. & Hammett, G. W. 2015 Multiscale nature of the dissipation range in gyrokinetic simulations of Alfvénic turbulence. Phys. Rev. Lett. 115 (2), 025003.
Vasyliunas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 28392884.
Verscharen, D., Chen, C. H. K. & Wicks, R. T. 2017 On kinetic slow modes, fluid slow modes, and pressure-balanced structures in the solar wind. Astrophys. J. 840, 106.
Wicks, R. T., Horbury, T. S., Chen, C. H. K. & Schekochihin, A. A. 2010 Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Mon. Not. R. Astron. Soc. 407, L31L35.
Wilson, L. B. III, Stevens, M. L., Kasper, J. C., Klein, K. G., Maruca, B. A., Bale, S. D., Bowen, T. A., Pulupa, M. P. & Salem, C. S. 2018 The statical properties of solar wind temperature parameters near 1 AU. ArXiv e-prints.
Yuan, F. & Narayan, R. 2014 Hot accretion flows around black holes. Ann. Rev. Astron. Astrophys. 52, 529588.
Yoon, P. H., Wu, C. S. & de Assis, A. S. 1993 Effect of finite ion gyroradius on the fire-hose instability in a high beta plasma. Phys. Fluids 5, 19711979.
Zank, G. P. & Matthaeus, W. H. 1992 The equations of reduced magnetohydrodynamics. J. Plasma Phys. 48, 85.
MathJax is a JavaScript display engine for mathematics. For more information see


Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond

  • M. W. Kunz (a1) (a2), I. G. Abel (a3) (a4), K. G. Klein (a5) (a6) and A. A. Schekochihin (a7) (a8)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed