Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T02:39:03.180Z Has data issue: false hasContentIssue false

Preface to the First Edition

Published online by Cambridge University Press:  24 November 2016

David Attwood
Affiliation:
University of California, Berkeley
Anne Sakdinawat
Affiliation:
SLAC National Accelerator Laboratory
Get access

Summary

This book is intended to provide an introduction to the physics and applications of soft x-rays and extreme ultraviolet (EUV) radiation. These short wavelengths are located within the electromagnetic spectrum between the ultraviolet, which we commonly associate with sunburn, and harder x-rays, which we often associate with medical and dental imaging. The soft x-ray/EUV region of the spectrum has been slow to develop because of the myriad atomic resonances and concomitant short absorption lengths in all materials, typically of order one micrometer or less. This spectral region, however, offers great opportunities for both science and technology. Here the wavelengths are considerably shorter than visible or ultraviolet radiation, thus permitting one to see smaller features in microscopy, and to write finer patterns in lithography. Furthermore, optical techniques such as high spatial resolution lenses and high reflectivity mirrors have been developed that enable these applications to a degree not possible at still shorter wavelengths. Photon energies in the soft x-ray/EUV spectral region are well matched to primary resonances of essentially all elements. While this leads to very short absorption lengths, typically one micrometer or less, it provides a very accurate means for elemental and chemical speciation, which is essential, for instance, in the surface and environmental sciences. Interestingly, water is relatively transparent in the spectral region below the oxygen absorption edge, providing a natural contrast mechanism for imaging carbon-containing material in the spectral window extending from 284 to 543 eV. This provides interesting new opportunities for both the life and the environmental sciences.

Exploitation of this region of the spectrum is relatively recent. Indeed the names and spectral limits of soft x-rays and extreme ultraviolet radiation are not yet uniformly accepted. We have chosen here to follow the lead of astronomers, the lithography community, and much of the synchrotron and plasma physics communities in taking extreme ultraviolet as extending from photon energies of about 30 eV to 250 eV (wavelengths from about 40 nm to 5 nm) and soft x-rays as extending from about 250 eV (just below the carbon K edge) to several thousand eV (wavelengths from 5 nm to about 0.3 nm). The overlaps with ultraviolet radiation on the low photon energy side and with x-rays on the high photon energy side of the spectrum are not well defined.

Type
Chapter
Information
X-Rays and Extreme Ultraviolet Radiation
Principles and Applications
, pp. xv - xvii
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×