Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T02:03:38.711Z Has data issue: false hasContentIssue false

10 - X-Ray and Extreme Ultraviolet Optics

Published online by Cambridge University Press:  24 November 2016

David Attwood
Affiliation:
University of California, Berkeley
Anne Sakdinawat
Affiliation:
SLAC National Accelerator Laboratory
Get access
Type
Chapter
Information
X-Rays and Extreme Ultraviolet Radiation
Principles and Applications
, pp. 446 - 513
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kirkpatrick, P. and Baez, A.V., “Formation of Optical Images by X-rays,J. Opt. Soc. Amer. 38, 766 (1948).Google Scholar
2. Underwood, J.H., “Imaging Properties and Aberrations of Spherical Optics and Nonspherical Optics”, p. 145 in Vacuum Ultraviolet Spectroscopy I (Academic Press, 1998), Samson, J.A. and Ederer, D.L., Editors.
3. Snigerev, A., Kohn, V., Snigereva, I. and Lengeler, B., “A Compound Refractive Lens for Focusing High-Energy X-rays,Nature 384, 49 (November 7, 1996).Google Scholar
4. Underwood, J.H. and Turner, D., “Bent Glass Optics,SPIE 106, 125 (1977).Google Scholar
5. Yamauchi, K., Mimura, H., Inagaki, K. and Mori, Y., “Figuring with Subnanometer-Level Accuracy by Numerically Controlled Elastic Emission Machining,Rev. Sci. Instrum. 73(11), 4028 (November 2002); Y. Mori, K. Yamauchi, K. Yamamura and Y. Sano, “Development of Plasma Chemical Vaporization Machining,” Rev. Sci. Instrum. 71(12), 4627 (December 2000); K. Yamauchi et al., “Nearly Diffaction-limited Line Focusing of a Hard-X-ray Beam with an Elliptically Figured Mirror,” J. Synchr. Rad. 9, 313 (2002).Google Scholar
6. Henke, B.L., Gullikson, E.M. and Davis, J.C., “X-Ray Interactions: Photoabsorption, Scattering, Transmission and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nucl. Data Tables 54, 181 (1993).Google Scholar
7. Gullikson, E.M., https://www.cxro.LBL.gov/optical_constants
8. Underwood, J.H., “X-Ray Optics,Amer. Scientist 66(4), 476 (1978); J.H. Underwood, “X-ray Optics,” Encyclopedia of Applied Physics 23, 525 (Wiley, 1998); J.H. Underwood and T.W. Barbee, “Soft X-Ray Imaging with a Normal Incidence Mirror,” Nature 294, 429 (1981).Google Scholar
9. Aschenbach, B., “X-ray Telescopes,Rep. Prog. Phys. 48, 579 (1985).Google Scholar
10. Weisskopf, M., Brinkman, B., Canizares, C. et al., “An Overview of the Performance and Scientific results from the Chandra X-Ray Observatory,Pubs. Astronom. Soc. Pacific 114, 1 (January 2002); M. Santos-Lleo, N. Schartel, H. Tananbaum, W. Tucker and M.C. Weisskopf, “The First Decade of Science with Chandra and XMM-Newton,” Nature 462, 997 (December 24, 2009).Google Scholar
11. NASA, Chandra orbiting x-ray observatory; https://www.nasa.gov/mission_pages/chandra/main/index.html
12. Schwarz, D., “The Chandra X-Ray Observatory,Rev. Sci. Instrum. 85, 061101 (2014).Google Scholar
13. Graessle, D.E., Soufli, R., Nelson, A.J. et al., “Iridium Optical Constants from Synchrotron Reflectance Measurements over 0.05–to–12 keV X-ray Energies,SPIE 5538, 72 (2004).Google Scholar
14. NASA and the Harvard-Smithsonian Center for Astrophysics, Messier M-51, the “Spiral Galaxy”: http://chandra.harvard.edu/photo/2014/m51; http://www.nasa.gov/mission_pages/chandra/multimedia/spiral-galaxy-m51.html; Q.D. Wang et al., “Dissecting X-Ray-Emitting Gas Around the Center of Our Galaxy,” Science 342, 981 (August 30, 2013); J.D. Schnittman, “The Curious Behavior of the Milky Way's Central Black Hole,” Science 341, 964 (August 30, 2013); “NASA's Chandra Finds Supermassive Black Hole Burping Nearby” (January 5, 2016), https://www.nasa.gov/mission_pages/chandra/nasa-s-chandra-finds-supermassive-black-hole-burping-nearby.html (E. Schlegel, C. Jones, M. Maracheck and L. Vega, American Astronomical Society, Kissimmee, Fl, submitted for publication).
15. Mimura, H., Hanada, S., Kimura, T. et al., “Breaking the 10 nm Barrier in Hard-X-ray Focusing,Nature Phys. 6, 122 (February 2010).Google Scholar
16. Yamauchi, K., Mimura, H., Kimura, T. et al., “Single-Nanometer Focusing of Hard X-rays by Kirkpatrick–Baez Mirrors,J. Phys.: Cond. Matter 23, 394206 (September 15, 2011).Google Scholar
17. Matsuyama, S., Mimura, H., Yumoto, H. et al., “Development of Scanning X-ray Fluorescence Microscope with Spatial Resolution of 30 nm Using Kirkpatrick-Baez Mirror Optics,Rev. Sci. Instrumen. 77, 103102 (2006); S. Matsuyama et al., “Development of Mirror Manipulator for Hard-X-ray Nanofocusing at the Sub-50 nm Level,” Rev. Sci. Instrum. 77, 093107 (2006).Google Scholar
18. Matsuyama, S., Shimura, M., Mimura, H. et al., “Trace Element mapping of a Single Cell Using a Hard X-ray Nanobeam Focused by a Kirkpatrick–Baez Mirror System,X-Ray Spectrom. 38, 89 (November 26, 2009).Google Scholar
19. Goto, T., Nakamori, H., Kimura, T. et al., “Hard X-ray Nanofocusing Using Adaptive Focusing Optics Based on Piezoelectric Deformable Mirrors,Rev. Sci. Instrum. 86, 043102 (2015).Google Scholar
20. Yumoto, H., Mimura, H., Koyama, T. et al., “Focusing of X-ray Free-Electron Laser Pulses with Reflective Optics,Nature Photonics 7, 43 (January 2013); T. Pardini, D. Cocco and S.P. Hau-Riege, “Effect of Slope Errors on the Performance of Mirrors for X-ray Free Electron Laser Applications,” Optics Express, 23(25), 31889 (December 14, 2015).Google Scholar
21. Mimura, H., Yumoto, H., Matsuyama, S. et al., “Generation of 1021 W/cm2 Hard X-ray Laser Pulses with Two-Stage Reflective Focusing System,Nature Commun. 5, 3539 (April 30, 2014).Google Scholar
22. Yamauchi, K. et al., Microstitching Interferometry for X-ray Reflective Optics,Rev. Sci. Instrum. 74(5), 2894 (May 2003).Google Scholar
23. Bajt, S., Stearns, D.G. and Kearney, P.A., “Investigation of the Amorphous-to-Crystalline Transition in Mo/Si Multilayers,J. Appl. Phys. 90(2), 1018 (July 15, 2001); S. Bajt, J.B. Alameda, T.W. Barbee et al., “Improved Reflectance and Stability of Mo-Si Multilayers,” Opt. Eng. 41(8), 1797 (August 2002).Google Scholar
24. Soufli, R., Fernández-Perea, M., Baker, S.L. et al., “Spontaneously Intermixed Al-Mg Barriers Enable Corrosion Resistant Mg/SiC Multilayer Coatings,Appl. Phys. Lett. 101(4), 043111 (July 23, 2012); Q. Zhong, Z. Zhang, R. Qi et al., “Enhancement of the Reflectivity of Al/Zr Multilayers by a Novel Structure,” Optics Express 21(12), 14399 (June 17, 2013).Google Scholar
25. Lemen, J.R. et al., “The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO),Solar Phys. 275, 17 (2012).Google Scholar
26. Underwood, J.H., Thompson, A.C., Wu, Y. and Giaque, R.D., “X-Ray Microprobe Using Multilayer Mirrors,” Nucl. Instrum. Meth. A 266, (1988); Y. Wu, “Phase Transition and Equation of State of CsI Under High Pressure and the Development of a Focusing System for X-Rays,” PhD Thesis, Physics Department, University of California, Berkeley 1990; D. Clery, “New Synchrotrons Light Up Microstructure of Earth,” Science 277, 1220 (August 29, 1997).Google Scholar
27. Vinogradov, A.V. and Zeldovich, B. Ya., “X-Ray and Far UV Multilayer Mirrors: Principles and Possibilities,” Appl. Opt. 16, 89 (1977).Google Scholar
28. Spiller, E., “Reflective Multilayer Coatings for the Far UV Region,” Appl. Opt. 15, 2333 (1976).Google Scholar
29. Spiller, E., Soft X-Ray Optics (SPIE, Bellingham, WA, 1994); “Reflecting Optics: Multilayers”, p.271 in Vacuum Ultraviolet Spectroscopy I (Academic Press, 1998), J.A. Samson and D.L. Ederer, Editors.
30. Underwood, J.H., “Multilayer Mirrors for X-Rays and Extreme UV,” Optics News 12, 20 (OSA, Washington, DC, March 1986); J.H. Underwood and E.M. Gullikson, “Beamline for Measurement and Characterization of Multilayer Optics for EUV Lithography,” SPIE 3331, 52 (1998).Google Scholar
31. Underwood, J.H. and Barbee, T.W., “Layered Synthetic Microstructures as Bragg Diffractors for X-Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027 (1981).Google Scholar
32. Gullikson, E.M., Salmassi, F., Aquila, A.L. and Dollar, F., “Progress in Short Period Multilayer Coatings for Water Window Applications” (unpublished, June 20,2008), http://escholarship.org/uc/item/8hv7q0hj; Q. Huang et al., “High Reflectance Cr/V Multilayer with B4C Barrier Layer for Water Window Wavelength Region,” Optics Lett. 41, 701 (February 15, 2016).
33. Soufli, R. and Gullikson, E.M., “Reflectance Measurements on Clean Surfaces for the Determination of Optical Constants of Silicon in the Extreme Ultraviolet-Soft X-Ray Region,” Appl. Optics. 36, 5499 (1997); R. Soufli and E.M. Gullikson, “Absolute Photoabsorption Measurements of Molybdenum in the Range 60 to 930 eV for Optical Constant Determination,” Appl. Opt. 37, 1713 (1998).Google Scholar
34. Soufli, R., “Optical Constants of Materials in the EUV/Soft X-Ray Region for Multilayer Mirror Applications,” PhD thesis, Electrical Engineering and Computer Science, University of California, Berkeley (1997).
35. Barbee, T.W. and Keith, D.L., “Synthesis of Metastable Materials by Sputter Deposition Techniques,” p. 93 in Synthesis and Properties of Metastable Phases, Machlin, E.S. and Rowland, T.J., Editors (Metallurgical Society, Amer. Inst. Mech. Eng., Warrendale, PA, 1980); J.H. Underwood, T.W. Barbee and D.C. Keith, “Layered Synthethic Microstructures: Properties and Applications in X-Ray Astronomy,” SPIE 184, 123 (1979).
36. Folta, J.A., Bajt, S., Barbee, T.W Jr. et al., “Advances in Multilayer Reflective Coatings for Extreme Ultraviolet Lithography,” SPIE 3676 (1999); D.G. Stearns, R.S. Rosen and S.P. Vernon, “Multilayer Mirror Technology for Soft X-Ray Projection Lithography,” Appl. Optics 32, 6952 (1993); P.A. Kearney, C.E. Moore, S.I. Tan, S.P. Vernon and R.A. Levesque, “Mask Blanks for Extreme Ultraviolet Lithography: Ion Beam Sputter Deposition of Low Defect Density Mo/Si Multilayers,” J. Vac. Sci. Technol. B 15, 2452 (1997).Google Scholar
37. Windt, D.L. and Waskiewicz, W.K., “Multilayer Facilities Required for Extreme-Ultraviolet Lithography,” J. Vac. Sci. Technol. B 12, 3826 (1994).Google Scholar
38. Kortright, J.B., Gullikson, E.M. and Denham, P.E., “Masked Deposition Techniques for Achieving Multilayer Period Variations Required for Short-Wavelength (68 Å) Soft X-Ray Imaging Optics,” Appl. Opt. 32, 6961 (1993).Google Scholar
39. Falco, C.M. and Slaughter, J.M., “Characterization of Metallic Multilayers for X-Ray Optics,” J. Magn. and Magn. Materials 126, 3 (1993); J.A.R. Ruffner, J.M. Slaughter, J. Eickmann and C.M. Falco, “Epitaxial-Growth and Surface-Structure of (0001)Be on (111)Si,” Appl. Phys. Lett. 64, 31 (1994).Google Scholar
40. Gaponov, S.V., Gusev, S.A., Luskin, B.M., Salashchenko, N.N. and Gluskin, E.S., “Long-Wave X-Ray Radiation Mirrors,” Opt. Commun. 38, 7 (1981).Google Scholar
41. Underwood, J.H., Gullikson, E.M., and Nguyen, K.Tarnishing of Mo/Si Multilayer X-Ray Mirrors,” Appl. Opt. 32, 6985 (1993).Google Scholar
42. Bajt, S., Chapman, H.N., Nguyen, N. et al., “Design and Performance of Capping Layers for Extreme Ultraviolet Multilayer Mirrors,” Appl. Optics 42, 5750 (2003); S. Bajt, N.V. Edwards and T.E. Madey, “Properties of Ultrathin Films Appropriate for Optics Coating Layers in Extreme Ultraviolet Lithography (EUVL),” Surface Sci. Rept. 63, 73 (2007).Google Scholar
43. Dhez, P., “Polarizers and Polarimeters in the X-UV Range,” Nucl. Instrum. Meth. A 261, 66 (1987).Google Scholar
44. Kortright, J.B. and Underwood, J.H., “Multilayer Optical Elements for Generation and Ana-lysis of Circularly Polarized X-Rays,” Nucl. Instrum. Meth. A 291, 272 (1990).Google Scholar
45. Yamamoto, M., Mayama, K., Kimura, H., Gato, Y. and Yanagihara, M., “Thin Film Ellipsometry at a Photon Energy of 97 eV,” J. Electr. Spectrosc. Rel. Phenom. 80, 465 (1996).Google Scholar
46. Aquila, A.L., “Development of Extreme Ultraviolet and Soft X-ray Multilayer Optics for Scientific Studies with Femtosecond and Attosecond Sources”, PhD Thesis, Applied Science and Technology Program, University of California, Berkeley, 2009.
47. Kortright, J.B., Rice, M., and Carr, R., “Soft X-Ray Faraday Rotation at Fe L2, 3 Edges,” Phys. Rev. B 51, 10240 (1995); M.J. Freiser, “A Survey of Magnetooptic Effects,” IEEE Trans. Magn. MAG-4, 152 (1967); J.C. Suits, “Magnetooptical Properties,” Chapter 9 in Handbook of Magnetic Materials (Reinhold, New York, 1968), P.A. Albertos and F.E. Luborsky, Editors.Google Scholar
48. Windt, D.L., Donguy, S., Hailey, C.J. et al., “W/SiC X-ray Multilayers Optimized for use Above 100 keV,Appl. Optics 42(3), 2415 (May 1, 2003).Google Scholar
49. Harrison, F.A. et al., “The Nuclear Spectroscopic Telescope Array (NuStar) High-Energy X-ray Mission,Astrophys. J. 770, 103 (June 20, 2013).Google Scholar
50. Fernández-Perea, M., Descalle, M.-A., Soufli, R. et al., “Physics of Reflective Optics for the Soft Gamma-Ray Photon Energy Range,Phys. Rev. Lett. 111, 027404 (July 12, 2013).Google Scholar
51. Brejnholt, N. F., Soufli, R., Descalle, M.-A. et al., “Demonstration of Multilayer Reflective Optics at Photon Energies Above 0.6 MeV,Optics Expr. 22(13), 15364 (June 30, 2014).Google Scholar
52. Ziegler, E., “Multilayers for High Heat Load Synchrotron Applications,” Opt. Engr. 34, 445 (1995).Google Scholar
53. Takenaka, H., Kawamura, T. and Ishii, Y., “Heat Resistance of Mo/Si, MoSi2/Si, and Mo5Si3/Si Multilayer Soft X-Ray Mirrors,” J. Appl. Phys. 78, 5227 (1995); H. Takenaka, H. Ito, T. Haga and T. Kawamura, “Design and Fabrication of High Heat-Resistant Mo/Si Multilayer Soft X-Ray Mirrors with Interleaved Barrier Layers,” J. Synchr. Rad. 5, 708 (1998).Google Scholar
54. Soufli, R., “Breakthroughs in Photonics 2013: X-ray Optics”, IEEE 6(2), 0700606 (April 2014); D.S. Kuznetsov, A.E. Yakshin, J.M. Sturm et al., “High-Reflectance La/B-Based Multilayer Mirror for 6.X nm Wavelength,” Optics Lett. 40 (16), 3778 (August 15, 2015).Google Scholar
55. Bilderback, D.H., “Review of Capillary X-ray Optics from the 2nd International Capillary Optics Meeting,X-Ray Spectrom. 32, 195 (2003).Google Scholar
56. Erko, A. and Zizak, I., “Hard X-ray Microspectroscopy at Berliner Electronenspeicherring für Synchrotronstrahlung II,Spectrochimica Acta B 64, 833 (2009); A.I. Erko, M. Idir, T. Christ and A.G. Michette, Modern Developments in X-Ray and Neutron Optics (Springer, Berlin, 2008).Google Scholar
57. Dabagov, S.B., “Channeling of Neutral Particles in Micro- and Nanocapillaries,Uspekhi 46, 1053–1075 (October 2003); S.B. Dabagov, M.A. Kumakov and S.V. Nikitina, “On the Interference of X-rays in Multiple Reflection Optics,” Phys. Lett. A203, 279 (1995).Google Scholar
58. MacDonald, C.A., Introduction to X-ray Physics, Optics and Applications (Princeton University Press, 2016); C.A. MacDonald and W.M. Gibson, “Applications and Advances in Polycapillary Optics,” X-Ray Spectrom. 32, 258 (2003).
59. Snigerev, A., Bjeoumikhov, A., Erko, A. et al., “Two-Step Hard X-ray Focusing Combined Fresnel Zone Plate and Single-Bounce Ellipsoidal Capillary,J. Synchr. Rad. 14, 326 (2007).Google Scholar
60. Schneider, G., Guttmann, P., Rehbein, S., Werner, S. and Follath, R., “Cryo X-ray Microscope with Flat Sample Geometry for Correlative Fluorescence and Nanoscale Tomographic Imaging,J. Struct. Bio. 177, 212 (2012).Google Scholar
61. Born, M. and Wolf, E., Principles of Optics (Cambridge University Press, New York, 1999), Seventh Edition. Diffraction is discussed in Chapter 8, Section 8.6.
62. Hecht, E., Optics (Addison-Wesley, Reading, MA, 2002), Fourth Edition. Zone plates are discussed in Section 10.3.5, p. 495; Section 6.3, p. 253, considers geometrical aberrations.
63. Morrison, G.R., “Diffractive X-Ray Optics,” Chapter 8 in X-Ray Science and Technology (Inst. Phys., Bristol, 1993). Grating efficiencies are discussed in Section 8.2.2, p. 313.
64. Michette, A.G., Optical Systems for Soft X-Rays (Plenum, London, 1986).
65. Rayleigh, Lord, “Wave Theory,” p. 429 in Encylopaedia Brittanica, Ninth Edition, Vol. 24, (1988); Rayleigh's first entry in his notebook, describing the first successful demonstration, is dated 11 April 1871.
66. Soret, J.L., “Concerning Diffraction by Circular Gratings,” Ann. Phys. Chem. 156, 99 (1875).Google Scholar
67. Woods, R.W., Physical Optics (Macmillian, New York, 1911; Opt. Soc. Amer., Washington, DC, 1988). See comments regarding phase zone plates on pp. 37–39.
68. Baez, A.V., “A Study in Diffraction Microscopy with Special Reference to X-Rays,” J. Opt. Soc. Amer. 42, 756 (1952).Google Scholar
69. Ojeda-Castañeda, S. J. and Gómez-Reino, C., Editors, Selected Papers on Zone Plates (SPIE, Bellingham, WA, 1996).
70. Schmahl, G. and Rudolph, D., “High Power Zone Plates as Image Forming Systems for Soft X-Rays” (in German), Optik 29, 577 (1969); B. Nieman, D. Rudolph and G. Schmahl, “Soft X-Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications,” Opt. Commun. 12, 160 (1974); G. Schmahl, D. Rudolph, P. Guttmann and O. Christ, “Zone Plates for X-ray Microscopy”, p. 63 in X-Ray Microscopy (Springer-Verlag, Berlin, 1984), G. Schmahl and D. Rudolph, Editors; G. Schmahl, D. Rudolph, P. Guttmann and O. Christ, “Status of the Zone Plate Microscope,” SPIE 316, 100 (1982).Google Scholar
71. Kirz, J., “Phase Zone Plates for X-Rays and the Extreme UV,” J. Opt. Soc. Amer. 64, 301 (1974).Google Scholar
72. Goodman, J.W., Introduction to Fourier Optics (McGraw-Hill, New York, 1996), Second Edition, p. 124.
73. Anderson, E. and Kern, D., “Nanofabrication of Zone Plates for X-Ray Microscopy,” p. 75 in X-Ray Microscopy III (Springer-Verlag, Berlin, 1992).
74. Yun, W., Lai, B., Cai, Z. et al., “Nanometer Focusing of Hard X-rays by Phase Zone Plates,Rev. Sci. Instrum. 70(5), 2238 (May 1999); R.P. Winarski et al., “A Hard X-ray Beamline for Nanoscale Microscopy,” J. Synchr. Rad. 19, 1056 (2012).Google Scholar
75. David, C., Gorelick, S., Rutishauser, S. et al., “Nanofocusing of Hard X-ray Free Electron Laser Pulses Using Diamond Based Fresnel Zone Plates,Scientific Reports 1, 57 (August 8, 2011).Google Scholar
76. Gorelick, S., Vila-Comamala, J., Guzenko, V.A. et al., “High-Efficiency Fresnel Zone Plates for Hard X-rays by 100 keV e-Beam Lithography and Electroplating,J. Synchr. Rad. 18, 442 (May 2011).Google Scholar
77. Tatchyn, R., “Optimum Zone Plate Theory and Design,” p. 40 in X-Ray Microscopy (Springer-Verlag, Berlin, 1984).
78. Vladimirsky, Y., “Zone Plates”, p. 289 in Vacuum Ultraviolet Spectroscopy I (Academic Press, 1998), Samson, J.A. and Ederer, D.L., Editors.
79. Schliebe, T. and Schneider, G., “Zone Plates in Nickel and Germanium for High Resolution X-ray Microscopy”, p. IV-3 in X-Ray Microscopy and Spectromicroscopy (Springer-Verlag, Berlin, 1998), Thieme, J., Schmahl, G., Rudolph, D. and Umbach, E., Editors.
80. DiFabrizio, E., Romanato, F., Gentill, M. et al., “High-Efficiency Multilevel Zone Plates for keV X-rays,Nature 401, 895 (October 28, 1999).Google Scholar
81. Fang, Y., Feser, M., Lyon, A. et al., “Nanofabrication of High Aspect Ratio 24 nm X-ray Zone Plates for X-ray Imaging Applications,J. Vac. Sci. Technol. B 25(6), 2004 (November/December 2007).Google Scholar
82. Werner, S., Rebein, S., Guttmann, P. and Schneider, G., “Three-Dimensional Structured On-Chip Stacked Zone Plates for Nanoscale X-ray Imaging with High Efficiency,Nano Research 7(4), 528 (Tsinghua University Press, April 2014).Google Scholar
83. Hofsten, O. v., Bertilson, M., Reinspach, J. et al., “Sub-25-nm Laboratory X-ray Microscopy Using a Compound Fresnel Zone Plate,Optics Lett. 34(17) (September 1, 2009); F. Uhlén, D. Nilsson, A. Holmberg et al., “Damage Investigation on Tungsten and Diamond Diffractive Optics at a Hard X-ray Free-Electron Laser,” Optics Expr. 21 (7), 8051 (April 8, 2013).Google Scholar
84. Sakdinawat, A.E., “Contrast and Resolution Enhancement Techniques for Soft X-ray Microscopy,” PhD Thesis, Joint Bioengineering Program, University of California, Berkeley, and University of California, San Francisco, 2008.
85. Chang, C., Sakdinawat, A., Fischer, P., Anderson, E. and Attwood, D., “Single-Element Objective Lens for Soft X-ray Differential Interference Contrast Microscopy,” Optics Lett. 31, 1564 (2006).Google Scholar
86. Sakdinawat, A. and Liu, Y., “Soft-X-ray Microscopy Using Spiral Zone Plates,” Optics Letters 32, 2635–2637 (2007).Google Scholar
87. Sakdinawat, A. and Liu, Y., “Phase Contrast Soft X-ray Microscopy Using Zernike Zone Plates,” Optics Express 16, 1559–1564 (2008).Google Scholar
88. Born, M. and Wolf, E., Optics, see Reference 61.
89. Goodman, J.W., Fourier Optics, see Reference 72.
90. Jackson, J.D., Classical Electrodynamics (Wiley, 1999), Third Edition, Chapter 10, Sections 10.5 to 10.9.
91. Hecht, E., Optics (Addison-Wesley, 2002), Fourth Edition, Chapter 10, p. 443, and Section 10.3.5, p. 495.
92. Fowles, G., Introduction to Modern Optics (Dover, New York, 1975), Second Edition. Available in paperback. A compact book with good diagrams and good explanation. See Chapter 5 regarding diffraction.
93. Sommerfield, A., Optics (Academic Press, New York, 1964), of Lectures on Theoretical Physics, Vol. IV. See Chapter V on the theory of diffraction, particularly Sections 37 and 38 regarding the rigorous solutions to the problem of diffraction by a straightedge.
94. Michette, A.G., Optical Systems for Soft X-Rays (Plenum, London, 1986), p. 175.
95. Maser, J. and Schmahl, G., “Coupled Wave Description of the Diffraction by Zone Plates with High Aspect Ratios,” Opt. Commun. 89, 355 (1992).Google Scholar
96. Schneider, G., “Zone Plates with High Efficiency in High Orders of Diffraction Described by Dynamical Theory,” Appl. Phys. Lett. 71, 2242 (1997).Google Scholar
97. Schneider, G. and Maser, J., “Zone Plates as Imaging Optics in High Diffraction Orders Described by Coupled Wave Theory,” p. IV-71 in X-Ray Microscopy and Spectromicroscopy (Springer-Verlag, Berlin, 1998), Thieme, J., Schmahl, G., Rudolph, D. and Umbach, E., Editors.
98. Yan, H., Maser, J., Macrander, A. et al., “Takagi-Taupin Description of Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture,Phys. Rev. B 76, 115438 (2007).Google Scholar
99. Kopylov, Y.V., Popov, A.V. and Vinogradov, A.V., “Application of the Parabolic Wave Equation to X-Ray Diffraction Optics,” Opt. Commun. 118, 619 (1995).Google Scholar
100. Rehbein, S., Guttmann, P., Werner, S. and Schneider, G., “Characterization of the Resolving power and Contrast Transfer Function of a Transmission X-ray Microscope with Partially Coherent Illumination”, Opt. Express 20(6), 5830 (March 12, 2012); G. Schneider, P. Guttmann, S. Rehbein, S. Werner and R. Follath, “Cryo X-ray Microscope with Flat Sample Geometry for Correlative Fluorescence and Nanoscale Tomographic Imaging,” J. Struct. Biol. 177, 212 (2012).Google Scholar
101. Iskander, N. (unpublished), using the computer code ZCALC written by E. Anderson.
102. Jochum, L. and Meyer-Ilse, W., “Partially Coherent Image Formation with X-Ray Microscopes,” Appl. Optics 34, 4944 (1995).Google Scholar
103. Shaver, D., Flanders, D., Ceglio, N. and Smith, H., “X-Ray Zone Plates Fabricated Using Electron-Beam and X-Ray Lithography,” J. Vac. Sci. Techn. 16, 1626 (1979).Google Scholar
104. Ceglio, N., “The Impact of Microfabrication Technology on X-Ray Optics,” p. 210 in Low Energy X-Ray Diagnostics (Amer. Inst. Phys, New York, 1981), Attwood, D. and Henke, B., Editors.
105. McCord, M.A. and Rooks, M.J., “Electron Beam Lithography,” Chapter 2, pp. 139–249, in Handbook of Microlithography, Micromachining, and Microfabrication, Vol. 1: Microlithography (SPIE, Bellingham, WA, 1997), P. Rai-Choudhury, Editor; G. Owen and J.R. Sheats, “Electron Beam Lithography Systems,” pp. 367–401 in Micro-Lithography: Science and Technology (Marcel Dekker, New York, 1998), J.R. Sheats and B.W. Smith, Editors.
106. Kern, D., Coane, P., Acosta, R. et al., “Electron Beam Fabrication and Characterization of Fresnel Zone Plates for Soft X-Ray Microscopy,” SPIE 447, 204 (1984).Google Scholar
107. Anderson, E.H., “Specialized Electron Beam Nanolithography for EUV and X-ray Diffractive Optics,IEEE J. Quant. Electr. 42(1) (January 2006).Google Scholar
108. Reinspach, J., Lindbloom, M., Bertilson, M., Hofsten, O. Von and Hertz, H.M., “13 nm High Efficiency Nickel-Germanium Soft X-ray Zone Plates,J. Vac. Sci. Techn. B 29(1), 011012 (January/February 2011).Google Scholar
109. Chang, C. and Sakdinawat, A., “Ultra-High Aspect Ratio High-Resolution Nanofabrication for Hard X-ray Diffractive Optics,Nature Commun. 5, 4243 (June 27, 2014).Google Scholar
110. Gorelick, S., Vila-Comamala, J., Guzenko, V.A. et al., “High-Efficiency Fresnel Zone Plates for Hard X-rays by 100 keV E-beam Lithograppy and Electroplating,J. Synchrotron Rad. 18, 442 (2011); J. Vila-Comamala, S. Gorelick, E. Färm et al., “Ultra-High Resolution Zone-Doubled Diffractive X-ray Optics for the Multi-keV Regime,” Optics Expr. 19(1), 175 (January 3, 2011); J. Vila-Comamala, K. Jefimovs, J. Raabe et al., “Advanced Thin Film Technology for Ultrahigh Resolution X-ray Microscopy,” Ultramicroscopy 109, 1360 (2009); K. Jefimovs, J. Vila-Comamala, T. Pilvi et al., “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-ray optics,” Phys. Rev. Lett. 99, 264801 (December 31, 2007).Google Scholar
111. Yan, H., Conley, R., Bouet, N. and Chu, Y.S., “Hard X-ray Nanofocusing by Multilayer Laue Lenses,” J. Phys. D.: Appl. Phys. 47, 263001 (2014).Google Scholar
112. Kang, H.C., Yan, H., Winarski, R.P. et al., “Focusing of Hard X-rays to 16 Nanometers with a Multilayer Laue Lens,Appl. Phys. Lett. 92, 221114 (2008)Google Scholar
113. Huang, X., Yan, H., Nazaretski, E. et al., “11 nm Hard X-ray Focus from a Large-Aperture Multilayer Laue Lens,Sci. Repts. 3, 3562 (December 20, 2013).Google Scholar
114. Morgan, A.J., Prasciolu, M., Andrejczuk, A. et al., “High Numerical Aperture Multilayer Laue Lenses,” Sci. Repts. 5, 09892 (June 1, 2015).Google Scholar
115. Kamijo, N., Tamura, S., Suzuki, Y. et al., “Fabrication of Hard X-ray Sputtered-Sliced Fresnel Zone Plate”, p. IV-65 in X-Ray Microscopy and Spectromicroscopy (Springer-Verlag, Berlin, 1998), Thieme, J., Schmahl, G., Rudolph, D. and Umbach, E., Editors.
116. Erko, A.I., Idir, M., Krist, T. and Michette, A.G., Modern Developments in X-Ray and Neutron Optics (Springer, Berlin, 2008).
117. Born, M. and Wolf, E., Principles of Optics, Section 8.6, p. 449 (Cambridge University Press, 1999), Seventh Edition.
118. Stroke, G.W., “Diffraction Gratings,” pp. 473 in Handbuch der Physik, XXIX, Optical Instruments, S. Flügge, Editor.
119. Hecht, E., Optics (Addison-Wesley, 2002), Fourth Edition, p. 479.
120. Underwood, J.H., “X-Ray Optics,” pp. 525–540 in Encyclopedia of Applied Physics, Volume 23 (Wiley, 1998).
121. Hettrick, M.C. and Bowyer, S., “Variable Line-Space Gratings: New Designs for Use in Grazing Incidence Spectrometers,Appl. Optics 22(24), 3921 (December 15, 1983).Google Scholar
122. Hettrick, M., Underwood, J., Batson, P. and Eckart, M., “Resolving Power of 35,000 in the Extreme Ultraviolet Employing a Grazing Incidence Spectrometer,” Appl. Opt. 27, 200 (January 15, 1988).Google Scholar
123. Hettrick, M.C., “In-Focus Monochromator: Theory and Experiment of a New Grazing Incidence Mounting,Appl. Optics 29(31), 4531 (November 1, 1990).Google Scholar
124. Hettrick, M.C. and Underwood, J.H., “Varied-Space Grazing Incidence Gratings in High Resolution Scanning Spectrometers”, p. 237 in Short Wavelength Coherent Radiation: Generation and Applications (Amer. Instit. Phys. Conf. Proc. 147, 1986), Attwood, D.T. and Bokor, J., Editors.
125. Underwood, J.H. and Koch, J.A., “High-Resolution Tunable Spectrograph for X-ray Laser Linewidth Measurements with a Plane Varied-Line Spacing Grating,Appl. Optics 36(21), 4913 (July 20, 1997).Google Scholar
126. Underwood, J.H., “Spectographs and Monochromators Using Varied Line Spacing Gratings” pp. 55–72, in Vacuum UV Spectroscopy II (Academic Press, 1998), Samson, J.A. and Ederer, D.L., Editors.
127. Harada, T. and Kita, T., “Mechanically Ruled Aberration Corrected Concave Gratings,Appl. Optics 19, 3987 (1980).Google Scholar
128. Amemiya, K., Kitajima, Y., Ohta, T. and Ito, K., “Design of a Holographically Recorded Plane Grating with a Varied Line Spacing for a Soft X-ray Grazing Incidence Monochromator,” J. Synchr. Rad. 3, 287 (1996).Google Scholar
129. Underwood, J.H., Gullikson, E.M., Koike, M. and Mrowka, S., “Experimental Comparison of Mechanically Ruled and Holographically Recorded Varied-Line Spacing Gratings,SPIE 3150, 40 (1997).Google Scholar
130. Als-Neilson, J. and McMorrow, D., Elements of Modern X-Ray Physics (Wiley, 2011), Second Edition, Chapter 6.
131. Shvyd'ko, Y., X-Ray Optics (Springer, Berlin, 2004).
132. James, R. W., The Optical Properties of the Diffraction of X-Rays (Bell, 1950).
133. Batterman, B.W. and Bilderback, D.H., pp. 105–151, “X-Ray Monochromators and Mirrors,” in Handbook on Synchrotron Radiation, Volume 3 (Elsevier Science, 1991), Brown, G. and Moncton, D. E., Editors.
134. Matsushita, T. and Hashizume, H., “X-Ray Monochromators,” pp. 261–314 in Handbook of Synchrotron Radiation, Volume 1b (North Holland, Amsterdam, 1983), Koch, E.E., Editor.
135. Cullity, B.D. and Stock, S.R., Elements of X-Ray Diffraction (Pearson, 2001), Third Edition; R. Gronsky, MSE/UC Berkeley, private communication.
136. Warren, B.E., X-Ray Diffraction (Dover, 1990); D.E. Sands, Introduction to Crystallography (Dover, 2014).
137. Mills, D.M., “X-Ray Optics for Third-Generation Synchrotron Radiation Sources,” in Third-Generation Hard X-Ray Synchrotron Radiation Sources: Source Properties, Optics, and Experimental Techniques (Wiley, 2002), Mills, D.M., Editor.
138. Richtmyer, F.K., Kennard, E.H. and Lauritsen, T., Introduction to Modern Physics (McGraw-Hill, NY, 1955), Fifth Edition, Chapter 8.
139. Hecht, E., Optics, Reference 62, p. 158.
140. Snigerev, A, Kohn, V., Snigireva, I. and Lengeler, B., “A Compound Refractive Lens for Focusing High-Energy X-Rays,” Nature 384, 49 (November 7, 1996).Google Scholar
141. Snigerev, A, Kohn, V., Snigireva, I., Souvorov, A and Lengeler, B., “Focusing High-Energy X-Rays by Compound Refractive Lenses,” Appl. Optics 37(4), 653 (February 1, 1998).Google Scholar
142. Lengeler, B., Tümmler, J., Snigireva, I., Souvorov, A and Raven, C., “Transmission and Gain of Singly and Doubly Focusing Refractive X-Ray Lenses,J. Appl. Phys. 84(11), 5855 (December 1, 1998).Google Scholar
143. Lengeler, B., Schroer, C.G., Benner, B. et al., “Parabolic Refractive X-Ray Lenses: A Breakthrough in X-Ray Optics,Nucl. Instrum. Meth. A, 467 –468, 944 (2001).Google Scholar
144. Lengeler, B., Schroer, C.G., Kuhlmann, M. et al., “Refractive X-Ray Lenses,” J. Phys. D: Appl. Phys. 38, A218 (2005).Google Scholar
145. Snigerev, A., Snigereva, I., Grigoriev, M. et al., “High Energy X-ray Nanofocusing by Silicon Planar Lenses,J. Phys.: Conf. Series 186, 012072 (2009).Google Scholar
146. Chollet, M., Alonso-Mori, R., Cammarata, M. et al., “The X-ray Pump-Probe Instrument at the Linac Coherent Light Source,J. Synchrotron Rad. 22, 503 (2015).Google Scholar
147. Simons, H., King, A., Ludwig, W. et al., “Dark-Field X-ray Microscopy for Multiscale Structural Characterization,Nature Commun. 6, 6098 (January 14, 2015).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×