Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T01:59:21.552Z Has data issue: false hasContentIssue false

9 - Extreme Ultraviolet and Soft X-Ray Lasers

Published online by Cambridge University Press:  24 November 2016

David Attwood
Affiliation:
University of California, Berkeley
Anne Sakdinawat
Affiliation:
SLAC National Accelerator Laboratory
Get access
Type
Chapter
Information
X-Rays and Extreme Ultraviolet Radiation
Principles and Applications
, pp. 403 - 445
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gordon, J.P., Zeiger, H.J. and Townes, C.H,“The Maser – New Type of Microwave Amplifier, Frequency Standard and Spectrometer,” Phys. Rev. 99, 1264 (1955).Google Scholar
2. Basov, N.G. and Prokhorov, A.M., “3-Level Gas Oscillator,” Zh. Eksp. Teor. Fiz. (Moscow) 27, 431, (1954); also 28, 249 (1955).Google Scholar
3. Schawlow, A.L. and Townes, C.H., “Infrared and Optical Masers,” Phys. Rev. 112, 1940 (1958); also see C.H. Townes, How the Laser Happened (Oxford University Press, 1999).Google Scholar
4. Prokhorov, A.M., “Molecular Amplifier and Generator for Submillimeter Waves,” Zh. Eksp. Teor. Fiz. (Moscow) 34, 1658 (1958); also “Quantum Electronics,” Science 149, 828 (August 20, 1965).Google Scholar
5. Maiman, T., “Stimulated Optical Radiation in Ruby,” Nature 187, 493 (August 6, 1960).Google Scholar
6. Javan, A., Bennett, W.R., and Herriott, D.R., “Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He–Ne Mixture,” Phys. Rev. Lett. 6, 106 (1961).Google Scholar
7. Siegman, A.D., Lasers (Univ. Sci. Books, Mill Valley, CA, 1986). In particular see pp. 28–35 regarding the relationship between the field description of stimulated transitions and the resultant coherence and directionality properties of the radiation.
8. Sargent, M., Scully, M.O. and Lamb, W.E., Laser Physics (Addison-Wesley, Reading, MA, 1974). In particular, see pp. 38–41 regarding an ensemble of stimulated oscillators and the resultant directionality of the emitted photons.
9. Silfvast, W.T., Laser Fundamentals (Cambridge University Press, Cambridge, 2004), Second Edition.
10. Matthews, D.L., Hagelstein, P.L., Resen, M.D. et al., “Demonstration of a Soft X-Ray Amplifier,” Phys. Rev. Lett. 54, 110 (1985).Google Scholar
11. Rosen, M.D., Hagelstein, P.L., Matthews, D.L et al., “Exploding-Foil Technique for Achieving a Soft X-Ray Laser,” Phys. Rev. Lett. 54, 106 (1985).Google Scholar
12. Suckewer, S., Skinner, C.H., Milchberg, H., Keane, C. and Voorhees, D.,“Amplification of Stimulated Soft X-Ray Emission in a Confined Plasma Column,” Phys. Rev. Lett. 55, 1753 (1985).Google Scholar
13. Suckewer, S., Skinner, D.H., Kim, D. et al., “Divergence Measurements of Soft X-Ray Laser Beam,” Phys. Rev. Lett. 57, 1004 (1986).Google Scholar
14. Daido, H.,“Review of Soft X-Ray Laser Researches and Developments,” Rep. Prog. Phys. 65, 1513–1576 (September 18, 2002).Google Scholar
15. Tallents, G.J., “The Physics of Soft X-Ray Lasers Pumped by Electron Collisions in Laser Plasmas”, J. Phys. D: Appl. Phys. 36, R259–R276 (July 16, 2003).Google Scholar
16. Elton, R.C., X-Ray Lasers (Academic Press, San Diego, 1990).
17. Suckewer, S. and Jaeglé, P., “X-Ray Laser: Past, Present, and Future”, Laser Phys. Lett. 6, 411 (June 2009); P. Jaeglé, Coherent Sources of XUV Radiation (Springer, Heidelberg, 2006).Google Scholar
18. Rocca, J., Menomi, C. and Marconi, M., Editors, X-Ray Lasers 2014 (Springer, Heidelberg, 2016).
19. Sebban, S., Gauthier, S., Ros, J. and Zeitoun, Ph., Editors, X-Ray Lasers 2012 (Springer, Heidelberg, 2014).
20. Lee, J., Nam, C.-H. and Janulewicz, K.A., Editors, X-Ray Lasers 2010 (Springer, Heidelberg, 2011).
21. Lewis, C. and Riley, D., Editors, X-Ray Lasers 2008 (Springer, Heidelberg, 2009).
22. Irons, F.E. and Peacock, N.J., “Experimental Evidence for Population Inversion in C+5 in an Expanding Laser-Produced Plasma,” J. Phys. B.: Atom. Molec. Phys. (London) 7, 1109 (1974).Google Scholar
23. Dewhurst, R.J., Jacoby, D., Pert, G.J. and Ramsden, S.A., “Observation of a Population Inversion in a Possible Extreme Ultraviolet Lasing System,” Phys. Rev. Lett. 37, 1265 (1976).Google Scholar
24. Key, M.H., Lewis, C.L.S. and Lamb, M.J., “Transient Population Inversion at 18.2 nm in a Laser Produced C vi Plasma,” Optics Comm. 28, 331 (1979).Google Scholar
25. Jacoby, D., Pert, G.J., Ramsden, S.A., Shorrock, L.D. and Talents, G.J., “Observation of Gain in a Possible Extreme Ultraviolet Lasing System,” Optics Comm. 37, 193 (1981).Google Scholar
26. Pert, G.J., “Model Calculations of XUV Gain in Rapidly Expanding Cylindrical Plasmas,” J. Phys. B.: Atom. Molec. Phys. (London) 9, 3301 (1976); part II, 12, 2076 (1979).Google Scholar
27. Corney, A., Atomic and Laser Spectroscopy (Oxford University Press, Oxford, 1977), pp. 106–115.
28. Ceglio, N.M., Stearns, D.G., Gaines, D.P., Hawryluk, A.M. and Trebes, J.E., “Multipass Amplification of Soft X-Rays in a Laser Cavity,” Optics Lett. 13, 108 (1988).Google Scholar
29. Kato, Y., Wang, S., Daido, H. et al., “Generation of Intense X-Ray Laser Radiation at 8 nm in Ni-like Nd Ions,” SPIE 3156, 2 (1997).Google Scholar
30. Rosen, M.D. and Hagelstein, P.L., “X-Ray Lasing: Theory,” p. 2 in Energy and Technology Review (Lawrence Livermore National Laboratory, November 1985), UCRL-52000–85–11.
31. Pert, G.J., Healy, S.B., Plowes, J.A. and Simms, P.A., “Effects of Density Structures and Pulse Temporal Shaping,” p. 260 in X-Ray Lasers 1996 (Inst. Phys., Bristol, 1996), S. Svanberg and C.-G. Wahlström, Editors; S.B. Healy, G.F. Cairns, C.L.S. Lewis, G.J. Pert and J.A. Plowes, “A Computational Investigation of the Ne-like Germanium Collisionally Pumped Laser Considering the Effect of Prepulses,” IEEE J. Select. Top. Quant. Electr. 1, 949 (1995); J.A. Plowes, G.J. Pert, S.B. Healy and A. Toft, “Beam Modelling for X-Ray Lasers,” Opt. and Quant. Elect. (London) 28, 219 (1996).
32. Zhang, J., MacPhee, A.G., Lin, J. et al., “Recent Progress in Nickel-Like X-Ray Lasers at RAL,” p. 53 in Ref. 20.
33. Li, Y., Lu, P., Maruhn, J. et al., “Study of Prepulse-Induced Ne- and Ni-Like X-Ray Lasers,” p. 21 in Ref. 20.
34. Lee, T.-N., Kim, S.-H. and Shin, H.-J.,“Comparison of X-Ray Lasers and Third Generation Synchrotron Radiation Sources,” p. 250 in Ref. 20.
35. Linford, G.J., Peressini, E.R., Sooy, W.R. and Spaeth, M.L., “Very Long Lasers,” Appl. Opt. 13, 379 (1974).Google Scholar
36. Einstein, A., “Zur Quantentheorie der Strahlung,” Phys. Z. 18, 121 (1917); English translation, “On the Quantum Theory of Radiation,” The Old Quantum Theory (Pergamon, Oxford, 1967), D. Ter Haar, Editor, p. 167.Google Scholar
37. Loudon, R., The Quantum Theory of Light (Oxford University Press, Oxford, 1983), Sections 1.5, 2.4, and 2.12.
38. Liboff, R. L., Introductory Quantum Mechanics (Addison-Wesley, Reading, MA, 2002), Fourth Edition, Chapter 13, Sections 7 and 9.
39. Vinogradov, A.V. and Silverman, I.I.,“On the Possibility of Lasers in the UV and X-Ray Ranges”, Sov. Phys. JETP 36, 1115 (1973).Google Scholar
40. Key, M.H., “Laboratory Production of X-Ray Lasers,” Nature 316, 314 (July 25, 1985).Google Scholar
41. Jaeglé, P., Carillon, A., Dhez, P. et al., “Experimental Evidence for the Possible Existence of a Stimulated Emission in the Extreme UV Range,” Phys. Lett. (Netherlands) 36A, 167 (1971); B. Rus, A. Carillon, P. Dhez et al., “Efficient, High Brightness Soft X-ray Laser at 21.2 nm,” Phys. Rev. A 55, 3858 (1997).Google Scholar
42. Gudzenko, L.I. and Shelepin, L.A.,“Radiation Enhancement in a Recombining Plasma,” Dokl. Akad. Nauk. SSSR 160, 1296 (1965). [Sov. Phys. Dokl. 10, 147 (1965).]Google Scholar
43. Suckewer, S. and Fishman, H.,“Conditions for Soft X-Ray Lasing Action in a Confined Plasma Column,” J. Appl. Phys. 51, 1922 (1980).Google Scholar
44. Kim, D., Skinner, C.H., Umesh, G. and Suckewer, S., “Gain Measurements at 18.22 nm in C vi Generated by a Nd: Glass Laser,” Optics Lett. 14, 665 (1989).Google Scholar
45. Bhagavatula, V.A. and Yaakobi, B., “Direct Observation of Population Inversion Between Al+11 Levels in a Laser-Produced Plasma,” Optics Comm.24, 331 (1978).Google Scholar
46. Zhang, J., Key, M.H., Norreys, P.A. et al., “Experiments of High Gain C vi X-Ray Lasing in Rapidly Recombining Plasmas,” X-Ray Lasers 1994 (Amer. Inst. Phys., New York, 1994), D.C. Eder and D.L. Matthews, Editors, p. 80.
47. Matthews, D.L., Eckart, M., Eder, D. et al., “Review of Livermore's Soft X-Ray Laser Program,” p. C6–1 in X-Ray Lasers (J. de Physique, Tome 47, Editions de Physique, Les Udis, France, 1986), P. Jaelge and A. Sureau, Editors.
48. Rosen, M.D. Trebes, J.E., MacGowan, B.J. et al., “Dynamics of Collisional-Excitation X-Ray Lasers,” Phys. Rev. Lett. 59, 2283(1987).Google Scholar
49. MacGowan, B.J., Rosen, M.D., Eckart, M.J. et al., “Observation of Soft X-Ray Amplification in Neon-like Molybdenum,” J. Appl. Phys. 61, 5243 (1987).Google Scholar
50. MacGowan, B.J., Maxon, S., Hagelstein, P.L. et al., “Demonstration of Soft X-Ray Amplification in Nickel-like Ions,” Phys. Rev. Lett. 59, 2157 (1987).Google Scholar
51. MacGowan, B.J., Maxon, S., DaSilva, L.B. et al., “Demonstration of X-Ray Amplifiers Near the Carbon K Edge,” Phys. Rev. Lett. 65, 420 (1990).Google Scholar
52. MacGowan, B.J., DaSilva, L.B., Fields, D.J. et al., “Short Wavelength X-Ray Laser Research at the Lawrence Livermore National Laboratory,” Phys. Fluids B 4, 2326 (1992).Google Scholar
53. Nilsen, J. and Scofield, J., “Wavelengths of Neon-like 3p → 3s X-Ray Laser Transitions,” Phys. Scripta 49, 558 (1994).Google Scholar
54. Scofield, J.H. and MacGowan, B.J., “Energies of Nickel-like 4d to 4p Laser Lines,” Phys. Scripta, 46, 361 (1992); and Y. Li, J. Nilsen, J. Dunn et al., “Wavelengths of the Ni-Like 4d 1S0–4p 1P1 X-Ray Laser Line,” Phys. Rev. A 58, R2668 (October 1998).Google Scholar
55. London, R.A., Rosen, M.D. and Trebes, J.E., “Wavelength Choice for Soft X-Ray Laser Holography of Biological Samples,Appl. Opt. 28, 3397 (1989).Google Scholar
56. Koch, J.A., MacGowan, B.J., DaSilva, L.B. et al., “Observation of Gain-Narrowing and Saturation Behavior in Se X-Ray Laser Line Profiles,” Phys. Rev. Lett. 68, 3291 (1992).Google Scholar
57. Koch, J.A., MacGowan, B.J., DaSilva, L.B. et al., “Experimental and Theoretical Investigation of Neon-like Selenium X-Ray Laser Spectral Linewidths and Their Variation with Amplification,” Phys. Rev. A 50, 1877 (1994).Google Scholar
58. Vinogradov, A.V. and Shlyaptsev, V.N., “Amplification of Ultraviolet Radiation in a Laser Plasma,” Kvant. Elektr. (Moscow) 10, 2325 (1983); Sov. J. Quant. Electr. 13, 1511 (1983).Google Scholar
59. Kelly, R.L., Atomic and Ionic Spectrum Lines Below 2000 Angstroms: Hydrogen through Krypton, Part II (Mn–Kr) (Amer. Inst. Phys., New York, 1987), published as J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987). See p. 1332.
60. Lee, T.N., McLean, E.A., and Elton, R.C., “Soft X-Ray Lasing in Neon-Like Germanium and Copper Plasmas,” Phys. Rev. Lett. 59, 1185 (1987).Google Scholar
61. Nickels, P.V., Shlyaptsev, V.N., Kalachnikov, M. et al., “Short Pulse X-Ray Laser at 32.6 nm Based on Transient Gain in Ne-Like Titanium,” Phys. Rev. Lett. 78, 2748 (1997).Google Scholar
62. MacGowan, B.J., DaSilva, L.B., Fields, D.J. et al., “Short Wavelength Nickel-Like X-Ray Laser Development,” p. 221 in Ref. 16.
63. Wang, S., Lin, Z., Gu, Y. et al., “Intense Nickel-Like Neodymium X-Ray Laser at 7.9 nm with a Double-Curved Slab Target,” Jpn. J. Appl. Phys. Lett. 37, L1 234 (1998).Google Scholar
64. Sebban, S., Sakaya, N., Daido, H. et al., “Optimization of a Ni-Like Silver Collisional Soft X-Ray Laser Using Prepulse Technique and Double Target Geometry,” in X-Ray Lasers 1998 (Inst. Phys., Bristol, England, 1999), K. Kato, H. Takuma, and H. Daido, Editors.
65. Zhang, J., MacPhee, A.G., Nilsen, J. et al., “Demonstration of Saturation in a Ni-Like Ag X-Ray Laser at 14 nm,” Phys. Rev. Lett. 78, 3856 (1997).Google Scholar
66. Lin, J.Y., Tallents, G.J., Zhang, J. et al., “Gain Saturation of Ni-Like X-Ray Lasers,” Optics Comm. 158, 55 (1998); R. Smith et al., Phys. Rev. A 59, R47 (1999).Google Scholar
67. King, R.E., Pert, G.J., McCabe, S.P. et al., “Saturated X-Ray Lasers at 196 and 73 Å Pumped by a Picosecond Traveling-Wave Excitation,Phys. Rev. A 64, 053810 (October 2001).Google Scholar
68. Rocca, J.J., Cortázar, O.D., Szapiro, B., Floyd, K. and Tomasel, F.G., “Fast-Discharge Excitation of Hot Capillary Plasmas for Soft X-Ray Amplifers,” Phys. Rev. E 47, 1299 (1993); J.J. Rocca, V. Shlyaptsev, F.G. Tomasel et al., “Demonstration of a Discharge Pumped Table-Top Soft X-Ray Laser,” Phys. Rev. Lett. 73, 2192 (October 17, 1994).Google Scholar
69. Rocca, J.J., Tomasel, F.G., Marconi, M.C. et al., “Discharge-Pumped Soft-X-Ray Laser in Neon-Like Argon”, Phys. Plasmas 2, 2547 (June 1995); J.J. Rocca, M.C. Marconi, J.L.A. Chilla et al., “Discharge-Driven 46.9 nm Amplifier with Gain–Length Approaching Saturation,” IEEE J. Sel. Top. Quant. Electr. 1, 945 (1995).Google Scholar
70. Rocca, J.J., Clark, D.P., Chilla, J.L.A. and Shlyaptsev, V.N.,“Energy Extraction and Achievement of the Saturation Limit in a Discharge-Pumped Table-Top Soft X-Ray Amplifier,” Phys. Rev. Lett. 77, 1476 (1996).Google Scholar
71. Moreno, C.H., Marconi, M.C., Shlyaptsev, V.N. et al., “Two-Dimensional Near-Field and Far-Field Imaging of a Ne-like Ar Capillary Discharge Table-Top Soft X-Ray Laser,” Phys. Rev. A 58, 1509 (1998).Google Scholar
72. Liu, Y., Seminario, M., Tomasel, F.G. et al., “Achievement of Essentially Full Spatial Coherence in a High-Average-Power Soft-X-Ray Laser”, Phys. Rev. A 63, 033802 (March 2001); Yanwei Liu, “Coherence Properties of EUV/Soft X-Ray Sources”, PhD Thesis, Applied Science and Technology Graduate Group, December 2003.Google Scholar
73. Benware, B.R., Macchieto, C.D., Moreno, C.H. and Rocca, J.J.,“Demonstration of a High Average Power Table-Top Soft X-Ray Laser,” Phys. Rev. Lett. 81, 5804 (1998).Google Scholar
74. Macchietto, C.D. and Benware, B.R., “Generation of MilliJoule-Level Soft-X-Ray Laser Pulses at a 4-Hz Repetition rate in a Highly Saturated Tabletop capillary Discharge Amplifier,Optics Lett. 24, 1115 (August 15, 1999).Google Scholar
75. Rocca, J.J., Wang, Y., Larotonda, M.A. et al., “Saturated 13.2 nm High-Repetition-Rate Laser in Nickel-like Cadmium,Optics Lett. 30, 2581 (October 1, 2005).Google Scholar
76. Wang, Y., Larotonda, M.A., Luther, B.M. et al., “Demonstration of High-repetition-Rate Tabletop Soft-X-Ray Lasers with Saturated Output at Wavelengths down to 13.9 nm and gain down to 10.9 nm,Phys. Rev. A 72, 053807 (November 8, 2005); A. Aquila, D. Bleiner, J. Balmer and S. Bajt, “Polarization Measurements of Plasma Excited X-ray lasers,” SPIE 8140, 81400Z (2011).Google Scholar
77. Alessi, D., Wang, Y., Luther, B.M. et al., “Efficient Excitation of Gain-Saturated Sub-9-nm-Wavelength Tabletop Soft-X-Ray Lasers and Lasing Down to 7.36 nm,Phys. Rev. X, 1, 021023 (December 27, 2011).Google Scholar
78. London, R., “Beam Optics of Exploding Foil Plasma X-Ray lasers,Phys. Fluids 31, 184 (January 1988).Google Scholar
79. Reagan, B.A., Wernsing, K.A., Curtis, A.H. et al., “Demonstration of a 100 Hz Repetition Rate Gain-Saturated Diode-Pumped Table-Top Soft X-Ray Laser,Optics Lett. 37, 3624 (September 1, 2012).Google Scholar
80. Reagan, B.A., Berrill, M., Wernsing, K.A., Baumgarten, C., Woolston, M. and Rocca, J.J.,“High-Average-Power, 100-Hz-repetition-rate, Tabletop Soft X-Ray Lasers at Sub-15-nm Wavelengths”, Phys. Rev. A 89, 053820 (15May 2014).Google Scholar
81. Ceglio, N. M., Stearns, D.G., Gaines, D.P., Hawryluk, A.M. and Trebes, J.E., “Multipass Amplification of Soft X-Rays in a Laser Cavity,” Optics Lett. 13, 108 (1988); N.M. Ceglio, D.P. Gaines, J.E. Trebes, R.A. London and D.G. Stearns, “Time Resolved Measurement of Double Pass Amplification of Soft X-Rays,” Appl. Opt. 7, 5022 (1988); N.M. Ceglio, D.P. Gaines, D.G. Stearns and A.M. Hawryluk, “Double Pass Amplification of Laser Radiation at 131 Å,” Optics Comm. 69, 285 (1989); T. Haga, M. Tinone, M. Shimada, T. Ohkubo and A. Ozawa, “Soft X-ray Multilayer Beam Splitters,” J. Synchrotron Rad. 5, 690 (1998).Google Scholar
82. MacGowan, B.J., Mrowka, S., Barbee, T.W. et al., “Investigation of Damage to Multilayer Optics in X-Ray Laser Cavities: W/C, WRe/C, WC/C, Stainless Steel/C, and Cr3 C2/C Mirrors,” J. X-Ray Sci. Techn. 3, 231 (1992).Google Scholar
83. Attwood, D., “Comparative Features of Partially Coherent X-Ray Sources,” in Proceedings of the First Symposium on the Applications of Laboratory X-Ray Lasers, Asilomar, February 1985, Ceglio, N.M., Editor; published by Lawrence Livermore National Laboratory as CONF-850293-Abstracts.
84. Rosen, M.D., Trebes, J.E. and Matthews, D.L., “A Strategy for Achieving Spatially Coherent Output from Laboratory X-Ray Lasers,” Comments Plasma Phys. Fusion 10, 245 (1987).Google Scholar
85. London, R.A., Strauss, M. and Rosen, M.D.,“Model Analysis of X-Ray Laser Coherence,” Phys. Rev. Lett. 65, 563 (July 30, 1990); see also R.A. London, P. Amendt, M. Strauss et al., “Coherent X-Ray Lasers for Applications,” p. 363 in X-Ray Lasers 1990 (Inst. Phys., Bristol, England, 1990), G.J. Tallents, Editor.Google Scholar
86. Koch, J.A., MacGowan, B.J., DaSilva, L.B. et al., “Selenium X-Ray Laser Line Profile Measurements,” in X-Ray Lasers 1992 (Inst. Phys., Bristol, England, 1992), E.E. Fill, Editor; also J.A. Koch et al., Phys. Rev. Lett. 68, 3291 (1992).
87. Nishikino, M., Tanaka, M., Nagashima, K. et al., “Demonstration of a Soft-X-Ray Laser at 13.9 nm with Full Spatial Coherence,Phys. Rev. A 68, 061802(R) (December 30, 2003).Google Scholar
88. Pert, G.J., Healy, S.B., Plowes, J.A. and Simms, P.S., “Effects of Density Structures and Temporal Shaping of the Pump Pulse in X-Ray Lasing,” in X-Ray Lasers 1996, S. Svanberg and C.-G. Wahlström, Editors, p. 260.; and F. Albert, A. Carillon, P. Jaeglé et al., “New Approach for Measurement of the X-Ray Laser Transverse Coherence,” ibid, p. 427.
89. Dittmire, T., Hutchinson, M.H.R, Key, M.H. et al., “Amplification of XUV Harmonic Radiation in a Gallium Amplifier,Phys. Rev. A 51, R4337 (June 1995).Google Scholar
90. Zeitun, Ph., Faivre, G., Sebban, S. et al., “A High-Intensity Highly Coherent Soft X-Ray Femtosecond Laser Seeded by a High Harmonic Beam,Nature 431, 426 (September 23, 2004).Google Scholar
91. Wong, Y., Granados, E., Larotonda, M.A. et al., “High-Brightness Injection-seeded Soft-X-Ray-Laser Amplifier Using a Solid Target,Phys. Rev. Lett. 97, 123901 (September 22, 2006).Google Scholar
92. Al'miev, I.R., Larroche, O., Benredjem, D. et al., “Dynamical Description of Transient X-Ray Lasers Seeded with High-Order Harmonic Radiation through Maxwell-Bloch Numerical Simulations,Phys. Rev. Lett. 99, 123902 (September 21, 2007).Google Scholar
93. Wang, Y., Granados, E., Pedaci, F. et al., “Phase-Coherent, Injection-Seeded, Table-Top Soft-X-Ray Lasers at 18.9 nm and 13.9 nm,Nature Photon. 2, 94 (February 2008).Google Scholar
94. Pedaci, E., Wang, Y., Berrill, M. et al., “Highly Coherent Injection-Seeded 13.2 nm Tabletop Soft X-Ray Laser,Optics Lett. 33, 491 (March 1, 2008).Google Scholar
95. Berrill, M., Alessi, D., Wang, Y. et al., “Improved Beam Characteristics of Solid-State Soft X-Ray Laser Amplifiers by Injection Seeding with High Harmonics,Optics Lett. 35, 2317 (July 15, 2010).Google Scholar
96. Wang, Y., Wang, S., Oliva, E. et al., “Gain Dynamics in a Soft X-Ray Laser Amplifier Perturbed by a Strong Injected X-ray Field,Nature Photon. 8, 381 (May 2014).Google Scholar
97. Depresseux, A., Oliva, E., Gautier, J. et al., “Table-top Femtosecond Soft X-ray Laser by Collisional Ionization Gating,Nature Photonics 9, 817 (December 2015).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×