Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-28T22:09:06.899Z Has data issue: false hasContentIssue false

8 - Physics of Hot Dense Plasmas

Published online by Cambridge University Press:  24 November 2016

David Attwood
Affiliation:
University of California, Berkeley
Anne Sakdinawat
Affiliation:
SLAC National Accelerator Laboratory
Get access
Type
Chapter
Information
X-Rays and Extreme Ultraviolet Radiation
Principles and Applications
, pp. 315 - 402
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kruer, W.L., The Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA, 1988).
2. Rubenchik, A. and Witkowski, S., Editors, Physics of Laser-Plasma, Handbook of Plasma Physics, Vol. 3 (North-Holland, Amsterdam, 1991).
3. Marcuvitz, N., “Notes on Plasma Dynamics,” New York University, unpublished (1970).
4. Nicholson, D., Introduction to Plasma Theory (Wiley, New York, 1983).
5. Klimontovich, Yu.L., The Statistical Theory of Non-equilibrium Processes in a Plasma (MIT Press, Cambridge, MA, 1967).
6. Clemmow, P.C. and Dougherty, J.P., Electrodynamics of Particles and Plasmas (Addison-Wesley, Reading, MA, 1979).
7. Motz, H., The Physics of Laser Fusion (Academic Press, New York, 1979).
8. Bekefi, G., Radiation Processes in Plasmas (Wiley, New York, 1966).
9. Griem, H., Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, UK, 1997).
10. Birdsall, C.K. and Langdon, A.B., Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).
11. Stix, T., The Theory of Plasma Waves (McGraw-Hill, New York, 1962).
12. Ichimaru, S., Statistical Plasma Physics (Addison-Wesley, Reading, MA, 1992).
13. Basov, N.G., Zakharenkov, Yu. A., Zorev, N.N. et al., Heating and Compression of Thermonuclear Targets by Laser Beam (Cambridge University Press, Cambridge, UK, 1986).
14. Dolan, T., Fusion Research (Pergamon, New York, 1982).
15. Charles, P.A. and Seward, F., Exploring the X-Ray Universe (Cambridge University Press, Cambridge, UK, 1995).
16. Chapman, S. and Cowling, T.G., The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, UK, 1964).
17. Bird, R.B., Transport Phenomena (Wiley, New York, 1960).
18. Landau, L.D.,“On the Vibrations of the Electron Plasma,” J. Physics (USSR) 10, 25 (1946).Google Scholar
19. Jordon, E.C., Electromagnetic Waves and Radiating Systems (Prentice-Hall, Englewood Cliffs, NJ, 1950).
20. Stratton, J.A., Electromagnetic Theory (McGraw-Hill, New York, 1941).
21. Jackson, J.D., Classical Electrodynamics (Wiley, 1999), Third Edition, p. 325.
22. Shkarofsky, I.P., Johnston, T.W., and Bachynski, M.P, Particle Kinetics of Plasmas (Addison-Wesley, Reading, MA, 1966).
23. Dawson, J. and Oberman, C.,“High-Frequency Conductivity and the Emission and Absorption Coefficients of a Fully Ionized Plasma,” Phys. Fluids 5, 517 (1962); J.M. Dawson, “On the Production of Plasma by Giant Pulse Lasers,” Phys. Fluids 7, 981 (1964).Google Scholar
24. Johnston, T.W. and Dawson, J.M,“Correct Values for High Frequency Power Absorption by Inverse Bremsstrahlung in Plasmas,” Phys. Fluids 16, 722 (1973).Google Scholar
25. Ginzburg, V.L., Propagation of Electromagnetic Waves in Plasmas (Pergamon Press, New York, 1970); P. Mulser,“Resonance Absorption and Ponderomotive Action,” Ref. 2.
26. Forslund, D.W., Kindel, J.M., Lee, K., Lindman, E.L. and Morse, R.L.,“Theory and Simulation of Resonant Absorption in a Hot Plasma,” Phys. Fluids 11, 679 (1975).Google Scholar
27. Allen, C.W., Astrophysical Quantities (Athlone Press, London, 1997), Third Edition.
28. Parker, E.N., Spontaneous Current Sheets in Magnetic Fields with Applications to Stellar X-Rays (Oxford University Press, Oxford, 1994).
29. Peratt, A.L., Physics of the Plasma Universe (Springer-Verlag, Berlin, 1992).
30. Bowers, R.L. and Deeming, T., Astrophysics (Jones and Bartlett, Portola Valley, CA, 1984).
31. Marcuvitz, N., “Notes on Plasma Turbulence,” New York University, unpublished (1969).
32. Liu, C.S., Rosenbluth, M.N., and White, R.B.,“Raman and Brillouin Scattering of Electromagnetic Waves in Inhomogeneous Plasmas,” Phys. Fluids 17, 1211 (1974).Google Scholar
33. Baldis, H.A., Campbell, E.M., and Kruer, W.L., “Laser-Plasma Interactions,” Chapter 9 in Physics of Laser-Plasma (North Holland, Amsterdam, 1991), A. Rubenchik and S. Witkowski, Editors.
34. Turner, R.E., Estabrook, K., Williams, R.P. et al., “Observation of Forward Raman Scattering in Laser-Produced Plasmas,” Phys. Rev. Lett. 67, 1725 (1986).Google Scholar
35. Drake, R.P., Turner, R.E., Lasinski, B.F. et al., “Efficient Raman Sidescatter and Hot-Electron Production in Laser-Plasma Interaction Experiments,” Phys. Rev. Lett. 53, 1739 (1984); R.P. Drake, R.E. Turner, B.F. Lasinski et al., “X-Ray Emission Caused by Raman Scattering in Long-Scale-Length Plasmas,” Phys. Rev. A 40, 3219 (1989).Google Scholar
36. Mead, W.F., Stover, E.K., Kauffman, R.L., Kornblum, H.N. and Lasinski, B.F., “Modeling, Measurements, and Analysis of X-Ray Emission from 0.26 µm Laser-Irradiated Gold Disks,” Phys. Rev. A 38, 5275 (1988); R.E. Turner et al., “Evidence for Collisional Damping in High Energy Raman Scattering Experiments at 0.26 Microns,” Phys. Rev. Lett. 54, 189 (1985).Google Scholar
37. Craxton, R.S., McCrory, R.L. and Soures, J.M., “Progress in Laser Fusion,” Sci. Amer. 255, 68 (1986); B.M. Van Wonterghem, J.R. Murray, J.H. Cambell et al., “Performance of a Prototype for a Large-Aperture Multipass Nd: Glass Laser for Inertial Confinement Fusion,” Appl. Opt. 36, 4932 (1997).Google Scholar
38. Drake, R.P., “Three-Wave Parametric Instabilities in Long-Scale-Length, Somewhat Planar, Laser Produced Plasmas,” Laser Part. Beams 10, 599 (1992); R.P. Drake, R.G. Watt and K. Estabrook,“Onset and Saturation of the Spectral Intensity of Stimulated Scattering in Inhomogeneous Laser-Produced Plasmas,” Phys. Rev. Lett. 77, 79 (1996).Google Scholar
39. Forslund, D.W., Kindel, J.M. and Lindman, E.L.,“Plasma Simulation Studies of Stimulated Scattering Processes in Laser-Irradiated Plasmas,” Phys. Fluids 18, 1017 (1975).Google Scholar
40. Estabrook, K., Kruer, W.L. and Lasinski, B.,“Heating by Raman Backscatter and Forward Scatter,” Phys. Rev. Lett. 45,1399 (1980).Google Scholar
41. Zimmerman, G.B., LLNL Report UCRL-75881, 1974 (unpublished); also Zimmerman, G.B. and Kruer, W.L., “Numerical Simulation of Laser-Initiated Fusion,” Comments Plasma Phys. Controlled Fusion 2, 51 (1975).Google Scholar
42. Dahlbacka, G.H., Mead, W.C., Max, C.E. and Thomson, J.J., “Calculations of Self-Generated Magnetic Fields in Parylene Disk Experiments,” Laser Program Annual Report 1975, UCRL 50021–75, A.J. Glass, Editor, Lawrence Livermore National Laboratory (4975), p. 271.
43. Stamper, J.,“Laser-Generated Jets and Megagauss Magnetic Fields,” Science 281, 1469 (1998).Google Scholar
44. Liu, X. and Umstadter, D., “ Competition between Ponderomotive and Thermal Press ures in Short-Scale-Length Laser Plasmas,” Phys. Rev. Lett. 69, 1935 (1992).Google Scholar
45. Attwood, D.T., Sweeny, D., Auerbach, J. and Lee, P.H.Y., “Interferometric Confirmation of Radiation-Pressure Effects in Laser-Plasma Interactions,” Phys. Rev. Lett. 40,184 (1978); D.W. Sweeny, D.T. Attwood, and L.W. Coleman, “Interferometric Probing of Laser-Produced Plasmas”, Appl. Opt. 15, 1126 (1976).Google Scholar
46. Attwood, D.T., “Diagnostics for the Laser Fusion Program – Plasma Physics on the Scale of Microns and Picoseconds,” IEEE J. Quant. Electr. QE- 14, 909 (1978).Google Scholar
47. Silva, L.B. Da, Barbee, T.W., Cauble, R. et al., “Electron Density Measurements of High Density Plasmas Using Soft X-Ray Laser Interferometry,” Phys. Rev. Lett. 74, 3991 (1995); A.S. Wan, T.W. Barbee, R. Cauble et al., “Electron Density Measurement of a Colliding Plasma Using Soft X-Ray Laser Interferometry,” Phys. Rev. E 55, 6293 (1997).Google Scholar
48. Filevich, J., Rocca, J.J., Jankowska, E. et al., “Two-Dimensional Effects in Laser-Created Plasmas Measured with Soft-X-Ray Laser Interferometry,Phys. Rev. E 67, 056409 (May 2003).Google Scholar
49. Kauffman, R., “X-Ray Radiation from Laser Plasma,” Chapter 3 in Physics of Laser Plasma (North Holland, Amsterdam, 1991), A. Rubenchik and S. Witkowski, Editors.
50. Tipler, P.A. and Llewelyn, R.A., Modern Physics (Freeman, New York, 2012), Sixth Edition, p. 127.
51. Zel'dovich, Ya.B. and Rasier, Yu.P., Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966).
52. Kittel, C. and Kroemer, H., Thermal Physics (Freeman, New York, 1980).
53. Gradshteyn, I.S. and Ryzhik, I.M., Tables of Integrals, Series, and Products (Academic Press, New York, 1994), Fifth Edition, p. 370, No. 3.411–1, and p. xxxi.
54. Kelly, R.L., “Atomic and Ionic Spectrum Lines Below 2000 Å: Hydrogen Through Krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987); also R.L. Kelly and L.J. Palumbo, “Atomic and Ionic Emission Lines Below 2000 Angstroms: Hydrogen Through Krypton,” Naval Research Laboratory Report 7599, NRL, Washington, DC (1973).Google Scholar
55. J.H. Scofield, “Energy Levels for Hydrogen-, Helium-, and Neon-Like Ions,” in X-Ray Booklet, Lawrence Berkeley Laboratory PUB-490 rev. (April 1986), D. Vaughan, Editor: also LLNL Report UCID-16848 (1975). Extended to Co, Ni, and Cu-like ions by J. Scofield (1999, private communication) in part using data from C.E. Moore, NBS Pub. NSRDS-NBS 34 (1970), and Sugar, J. and Musgrove, A., J. Chem. Phys. Ref. Data 24, 1803 (1995), and others referenced therein.
56. Zigler, A., Givon, M., Yarkoni, E. et al., “Use of Unresolved Transition Arrays for Plasma Diagnostics,” Phys. Rev. A 35, 280 (1987).Google Scholar
57. Dozier, C.M., Brown, D.B., Birks, L.S., Lyons, P.B. and Benjamin, R.F., J. Appl. Phys. 47, 3732 (1976).
58. Henke, B.L., Fujiwara, F.G., Tester, M.A., Dittmore, C.H. and Palmer, M.A., J. Opt. Soc. Amer. B 1, 828 (1984).
59. Tirsell, K.G., Kornblum, H.N. and Slivinsky, V.W., “Time Resolved, Sub-keV X-Ray Measurements Using Filtered X-Ray Diodes,” Report UCRL-81478, Lawrence Livermore National Laboratory; also P.H.Y. Lee and K.G. Tirsell, “X-Ray Conversion Efficiency,” Laser Fusion Annual Report 1980, Report UCRL-50021–80, Lawrence Livermore National Laboratory, p. 7–10; also R.A. Heinle and K.G. Tirsell, “Filtered-Mirror Sub-keV X-Ray Measurement System,” Laser Program Annual Report 1979, Report UCRL-50021–79, L.W. Coleman, Editor, Lawrence Livermore National Laboratory, p. 5–5.
60. McConaghy, C.F. and Coleman, L.W., “Picosecond X-Ray Streak Camera,” Appl. Phys. Lett. 25, 268 (1974).Google Scholar
61. Stradling, G.L., Attwood, D.T., and Kauffman, R.L., “A Soft X-Ray Streak Camera,” IEEE J. Quant. Electr. QE- 19, 604 (1983); also G.L. Stradling,“Time Resolved Soft X-Ray Studies of Energy Transport in Layered and Planar Laser-Driven Targets,” PhD thesis, Department of Applied Science, University of California, Davis (1982).Google Scholar
62. Kauffman, R.L., Stradling, G.L., Attwood, D.T. and Medecki, H., “Quantitive Intensity Meas-urement Using a Soft X-Ray Streak Camera,” IEEE J. Quant. Electr. QE- 19, 616 (1983).Google Scholar
63. Sigel, R., “Laser-Generated Intense Thermal Radiation,” Chapter 4 in Ref. 2.
64. Green, H.R., Principles of Plasma Spectroscopy (Cambridge University Press, 1997).
65. Milhalas, D. and Mihalas, B.W., Foundations of Radiation Hydrodynamics (Oxford University Press, 1984); D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978), Second Edition.
66. Matthews, D.L., Campbell, E.M., Ceglio, N.H. et al., “Characterization of Laser-Produced Plasma X-Ray Sources for Use in X-Ray Radiography,” J. Appl. Phys. 54, 4260 (1983).Google Scholar
67. Attwood, D.T., Ceglio, N.H., Campbell, E.M. et al., “Compression Measurement in Laser Driven Implosion Experiments,” p. 423 in Laser Interaction and Related Plasma Phenomena, Vol. 5 (Plenum, New York, 1981), H. Schwarz, H. Hora, M. Lubin, and B. Yaakobi, Editors.
68. Yaakobi, B., Bourke, P., Conturie, Y. et al., “High X-Ray Conversion Efficiency with Target Irradiation by a Frequency-Tripled Nd: Glass Laser,” Opt. Commun. 38, 196 (1981).Google Scholar
69. Phillion, D.W. and Hailey, C.J., “Brightness and Duration of X-Ray Line Sources Irradiated with Intense 0.53-µm Laser Light at 60 and 120 ps Pulse Width,” Phys. Rev. A 34, 4886 (1986).Google Scholar
70. Yaakobi, B., Steel, D., Thoros, E., Hauser, A. and Perry, B., “Direct Measurement of Compression of Laser-Imploded Targets Using X-Ray Spectroscopy,” Phys. Rev. Lett. 39, 1526 (1977); also B. Yaakobi, D.M. Villeneuve, M.C. Richardson et al., “X-Ray Spectroscopy Measurements of Laser-Compressed, Argon Filled Shells,” Opt. Commun. 43, 343 (1982); B. Yaakobi, F.J. Marshall, D.K. Bradley et al., “Signatures of Target Performance and Mixing in Titanium Doped, Laser-Driven Target Implosions,” Plasma Phys. 4, 3021 (1997).Google Scholar
71. Hooper, C.F., Kilcrease, D.P., Mancini, R.C. et al., “Time-Resolved Spectroscopic Measurements of High Density in Ar-Filled Microballoon Implosions,” Phys. Rev. Lett. 63, 267 (1989).Google Scholar
72. Shepard, T.D., Back, C.A., Kalantar, D.H. et al., “Te Measurements in Open- and Closed-Geometry Long-Scale-Length Laser Plasmas via Isoelectronic X-Ray Spectral Line Ratios,” Rev. Sci. Instrum. 66, 749 (1995).Google Scholar
73. Slivinsky, V.W., Kornblum, H.N. and Shay, H.D., “Determination of Suprathermal Electron Distributions in Laser-Produced Plasmas,” J. Appl. Phys. 46, 1973 (1975).Google Scholar
74. Campbell, E.M., “Dependence of Laser-Plasma Interaction Physics on Laser Wavelength and Plasma Scalelength,” p. 579 in Radiation in Plasmas, Vol. II (World Science, Singapore, 1983), B. McNamara, Editor; E.M. Campbell, B. Pruett, R.E. Turner, F. Ze, and W.C. Mead, “Suprathermal Electrons from Disks,” p. 6–36 in 1981 Laser Program Annual Report, E.V. George, Editor, Lawrence Livermore National Laboratory Report UCRL-50021–81.
75. Craxton, R.S., “High Efficiency Frequency Tripling Schemes for High Power Nd: Glass Lasers,” IEEE J. Quant. Electr. QE- 17, 1771 (1981).Google Scholar
76. Max, C.E., Ze, F., Campbell, E.M. et al., “Agrus and Shiva Experiments: Absorption and Stimulated Brillouin Scatter,” p. 6–30 in 1981 Laser Program Annual Report, E.V. George, Editor, Lawrence Livermore National Laboratory Report UCRL-50021–81.
77. Ze, F., Campbell, E.M., Rupert, V.C. and Turner, R.E., “Target-Interaction Experiments at 0.53 µm and 0.35 µm: Absorption,” pp. 7–8 in 1980 Laser Program Annual Report, L.W. Coleman and W.F. Krupke, Editors, Lawrence Livermore National Laboratory Report UCRL-50021–80.
78. Kauffman, R.L., Cable, M.D., Kornblum, H.N. and Smith, J.A., “X-Ray Conversion Efficiency,” pp. 4–8 in 1985 Laser Program Annual Report, M.L. Rufer and P.W. Murphy, Editors, Lawrence Livermore National Laboratory Report UCRL-50021–85.
79. Turner, R.E., Mead, W.C., Max, C.E. et al., “X-Ray Conversion Efficiency at 1ω, 2ω, and 3ω,” p. 6–34 in 1981 Laser Program Annual Report, E.V. George, Editor, Lawrence Livermore National Laboratory Report UCRL-50021–81.
80. Goldstone, P.D., Goldman, S.R., Mead, W.C. et al., “Dynamics of High-Z Plasmas Produced by a Short-Wavelength Laser,” Phys. Rev. Lett. 59, 56 (1987).Google Scholar
81. Leemans, W.P., Nagler, B., Gonsalves, A.J. et al., “GeV Electron Beams from a Centimetre-Scale Accelerator,Nature Physics 2, 696 (October 2006); W. Leemans and E. Esarey, “Laser-Driven Plasma-Wave Electron Accelerators,” Physics Today, 44 (March 2009); E. Esarey, C.B. Schroeder and W.P. Leemans, “Physics of Laser-Driven Plasma-Based Electron Accelerators,” Rev. Mod. Phys. 81, 1229 (July–September 2009); S. Steinke, J. van Tilborg, C. Benedetti et al., “Multistage Coupling of Independent Laser-Plasma Accelerators”, Nature 530, 190 (February 11, 2016).Google Scholar
82. Moore, G.E., “Lithography and the Future of Moore's Law,” in Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing V (SPIE, Bellinghom, WA, 1995), J. Warlaumont, Editor, Proc. SPIE 2437, 2 (1995); G.E. Moore, “Cramming More Components onto Integrated Circuits,” Electr. Mag. 114 (April 19, 1965); G.E. Moore, in Proc. IEEE Int. Electr. Dev. Meeting (1975).
83. International Technology Roadmap for Semiconductors; http://public.itrs.net; Sematech's International Symposium on Extreme Ultraviolet Lithography, Maastrict, Netherlands, October 2015.
84. H. Kinoshita, Extreme Ultraviolet Lithography: Principles and Basic Technologies (Lambert Academic Publishing, Berlin, June 2016); H. Kinoshita, R. Kaneko, K. Takei, N. Takeuchi, and S. Ishihara: Ext. Abstr. (1986, 47th Autumn Meet., Japan Society of Applied Physics, 28-ZF-15 [in Japanese]; Kinoshita, H., Kurihara, K., Ishii, Y., and Torii, Y., “Soft X-Ray Reduction Lithography Using Multilayer Mirrors,” J. Vac. Sci. Technol. B 7, 1648 (1989); H. Kinoshita, T. Watanabe and T. Harada, “Development of Element Technologies for EUVL,” Adv. Optical Technol. 4(4), 319–331 (July 2015).Google Scholar
85. Bakshi, V., EUV Lithography (Wiley and SPIE, 2009); Second Edition (SPIE, 2016).
86. Wu, B. and Kumar, A., “Extreme Ultraviolet Lithography: A Review,J. Vac. Sci. Technol. B, 25, 1743 (November/December 2007).Google Scholar
87. The industry definition of acceptable EUV power is that it be centered at 13.5 nm, within a 2% spectral bandwidth, clean of both plasma debris and extraneous radiation outside this bandwidth (IR, visible, UV), and that the power be measured at what is known as the intermediate focus (IF), the entrance to the multi-mirror EUV projection optics that transfer the radiation to the mask and from there to the wafer.
88. Borodovsky, Y., Director, Advanced Lithography, Intel, “EUV Lithography at Insertion and Beyond”, International Workshop on EUV Lithography (Maui, HI, 2012).
89. Banine, V.Y., Koshelev, K.N. and Swinkels, G.H.P.M., “Physical Processes in EUV Sources for Microlithography,J. Phys. D: Appl. Phys. 44, 253001 (June 2011); V. Banine, J. Benschop, M. Leenders and R. Moors, “The Relationship Between an EUV Source and the Performance of an EUV Lithographic System,” SPIE 3997, 126 (2000).Google Scholar
90. Pankert, J. et al., “EUV Sources for the Alpha-Tools,SPIE 6151 (March2006)Google Scholar
91. Corthout, M., Teramoto, Y. and Yoshioka, M., “EXTREME Technologies: First in Tin Beta SoCoMo Ready for Wafer Exposure”, Sematech International EUV Lithography Symposium (Kobe, October 2010).
92. Brandt, D. et al., “LPP Source System Development for High Volume Manufacturing,SPIE 7636, 763611 (2010); I.V. Fomenkov et al. “Laser Produced Plasma Light Source for EUVL,” SPIE 7636, 763639 (2010); I. Fomenkov, “EUVL Exposure Tools for HVM: Status and Outlook”, EUVL Workshop, Berkeley (June 2016).Google Scholar
93. Mizoguchi, H. et al., First Generation Laser-Produced Plasma Source System for HVM EUV Lithography,” SPIE 7636, 763608 (2010).Google Scholar
94. O'Sullivan, G. and Carroll, P.K., “4d-4f Emission Resonances in Laser-Produced Plasmas,J. Opt. Soc. Amer. 71, 227 (1981); G. O'Sullivan, A. Cummings, P. Dunne et al., “Atomic Physics of Highly Charged Ions and the Case for Sn as a Source Material”, Chapter 5 in EUV Sources for Lithography (SPIE, Bellingham, WA, 2005); G. O'Sullivan, B. Li, R. D'Arcy et al., “Spectroscopy of Highly Ionized Ions and its Relevance to EUV and Soft X-Ray Source Development for Lithography,” J. Phys. B 48, 144025 (2015).Google Scholar
95. White, J., Hayden, P., Dunne, P. et al.,“Simplified Modeling of 13.5 nm Unresolved Transition Array Emission of a Sn Plasma and Comparison with Experiment,J. Appl. Phys. 98, 113301 (December 2005); J. White, “Opening the Extreme Ultraviolet Lithography Source Bottleneck: Developing a 13.5-nm Laser-Produced Plasma Source for the Semiconductor Industry”, PhD Thesis, University College Dublin (February 2006); R. Lokasani, E. Long, O. Maguire et al., “XUV Spectra of 2nd Transition Row Elements: Identification of 3d-4p and 3d-4f Transition Arrays,” J. Phys. B: At. Mol. Opt. Phys. 48, 245009 (November 13, 2015).Google Scholar
96. White, J., Dunne, P., Hayden, P., O'Reilly, F. and O'Sullivan, G.,“Optomizing 13.5 nm Laser-Produced Tin Plasma Emission as a Function of Laser Wavelength,Appl. Phys. Lett. 90, 181502 (2007).Google Scholar
97. Jin, F., Richardson, M., Kado, M., Vassiliev, A.F. and Salzmann, D., SPIE 2015, 151(1994); presented July 2013 at SPIE San Diego.
98. Richardson, M.C., Koay, C.-S., Takenoshita, K. and Keyser, C., “High Conversion Efficiency Mass-Limited Sn-Based Laser Plasma Source for EUV Lithography,J. Vac. Sci. Technol. B 22, 785 (2004); M. Richardson, C.-S. Koay, K. Takenoshita et al., “Laser Plasma EUV Sources based on Droplet Target Technology”, Chapter 26 in EUV Sources for Lithography (SPIE, Bellingham, WA, 2005); C.-W. Koay, “Radiation Studies of the Tin-Doped Microscopic Droplet Laser Plasma light Source Specific to EUV Lithography”, PhD thesis, University of Central Florida, May 2006.Google Scholar
99. Al-Rabban, M., Richardson, M., Scott, H. et al., “Modeling LPP Sources”, Chapter 10 in EUV Sources for Lithography (SPIE, Bellingham, WA, 2005).
100. Takenoshita, K.,“Debris Study and Mitigation on Tin-Doped Droplet Laser Plasma Source for EUV Lithography”, PhD thesis, University of Central Florida, August 2006.
101. S.A. George, “Spectroscopic Studies of Laser Plasmas for EUV Sources,” PhD thesis, University of Central Florida, December 2007; George, S.A., Silfvast, W.T., Takenoshita, K. et al., “Comparative Extreme Ultraviolet Emission Measurements for Lithium and Tin Laser Plasmas,Optics Lett. 32, 997 (April 15, 2007).Google Scholar
102. Tolstikhina, I. Yu., Churilov, S.S., Ryabtsev, A.N. and Koshelev, K.N., “Atomic Tin Data,” Chapter 4 in EUV Sources for Lithography (SPIE, Bellingham, WA, 2005).
103. Gillaspy, J.D., “Atomic Xenon Data”, Chapter 3 in EUV Sources for Lithography, ibid. For recent tin data see the NIST reference tables: www.physics.nist.gov/PhysRefData/ASD/ionEnergy.html
104. Nakano, M., Yabu, T., Someya, H. et al., “Sn Droplet Target Development for Laser Produced Plasma EUV Light Source,SPIE 6921, 692130 (2008)Google Scholar
105. Mizoguchi, H., Nakarai, H., Abe, T. et al., “Performance of One Hundred Watt HVM LPP-EUV Source,” SPIE 9422, 942211 (2015); H. Mizoguchi et al., “One Hundred Watt Class EUV Source Development for HVM Lithography”, 2014 EUV Source Workshop (University College Dublin, Ireland, November 2014).Google Scholar
106. Rymell, L. and Hertz, H.M., “Droplet Target for Low-Debris Laser-Plasma Soft X-Ray Generation,Optics Commun. 103, 105 (November 1, 1993).Google Scholar
107. Hertz, H.M., Rymell, L., Berglund, M. and Malmqvist, L., “Debris-Free Soft X-ray Generation Using a Liquid Droplet Laser-Plasma Source,SPIE 2523, 88 (1995); B.A.M. Hansson and H.M. Hertz, “Liquid-Jet Laser-Plasma Extreme Ultraviolet Sources: From Droplets to Filaments,” J. Phys. D: Appl. Phys. 37, 3233 (November 2004).Google Scholar
108. Berglund, M., Rymell, L. and Hertz, H.M., “Ultraviolet Prepulse for Enhanced X-Ray Emission and Brightness from Droplet-Target Laser Plasmas,Appl. Phys. Lett. 69, 1683 (September 16, 1996).Google Scholar
109. Jansson, P.A.C., Hansson, B.A.M., Hemberg, O. et al., “Liquid-Tin-Jet Laser-Plasma Extreme Ultraviolet Generation,Appl. Phys. Lett. 84, 2256 (March 29, 2004).Google Scholar
110. Nishihara, K., Sunahara, A., Sasaki, A. et al.,“Advanced Laser-Produced EUV Light Source for HVM with Conversion Efficiency of 5–7% and B-Field Mitigation of Ions,SPIE 6921, 692125 (April 2008).Google Scholar
111. Cymer: https://www.cymer.com/plasma-chamber-detail
112. Pirati, A., Peters, R., Smith, D.A. et al., “Performance Overview and Outlook of EUV Lithography Systems,SPIE 9422, 942260 (2015).Google Scholar
113. Schafgans, A.A., Brown, D.J., Fomenkov, I.V. et al., “Performance Optimization of MOPA Prepulse LPP Light Source,SPIE 9422, 942210 (2015).Google Scholar
114. Yen, A., TSMC; ASML press releases February 24, 2015 and April 22, 2015.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×