Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-28T07:07:56.345Z Has data issue: false hasContentIssue false

7 - Laser High Harmonic Generation

Published online by Cambridge University Press:  24 November 2016

David Attwood
Affiliation:
University of California, Berkeley
Anne Sakdinawat
Affiliation:
SLAC National Accelerator Laboratory
Get access
Type
Chapter
Information
X-Rays and Extreme Ultraviolet Radiation
Principles and Applications
, pp. 279 - 314
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krause, J.L., Schaler, K.J. and Kulander, K.C., “High-Order Harmonic Generation from Atoms and Ions in the High Intensity Regime,Phys. Rev. Lett. 68, 3535 (June 15, 1992).Google Scholar
2. Corkum, P.B., “Plasma Perspective on Strong-Field Multiphoton Ionization,Phys. Rev. Lett. 71, 1994 (September 27, 1993).Google Scholar
3. L'Huillier, A. and Balcou, Ph., “High-Order Harmonic Generation in Rare Gases with a 1-ps 1053 nm Laser,Phys. Rev. Lett. 70, 774 (February 8, 1993).Google Scholar
4. Macklin, J.J., Kmetec, J.D. and Gordon, C.L. III, “High-Order Harmonic Generation Using Intense Femtosecond Pulses,Phys. Rev. Lett. 70, 766 (February 8, 1993).Google Scholar
5. Schulze, D., Dorr, M., Sommerer, G. et al., “Polarization of the 61st Harmonic from 1053-nm Laser Irradiation in Neon,Phys. Rev. A 57, 3003 (1998).Google Scholar
6. Pfeifer, T., “Adaptive Control of Coherent Soft X-rays,” PhD Dissertation, Universität Würzburg (2004).
7. Gallagher, T.F., “Above-Threshold Ionization in Low-Frequency Limit,Phys. Rev. Lett. 61, 2304 (November 14, 1988).Google Scholar
8. Lewenstein, M., Balcou, Ph., Ivanov, M.Y., L'Huillier, A. and Corkum, P.B., “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,Phys. Rev. A 49 (3), 2117 (March 1994).Google Scholar
9. Spielmann, Ch., Burnett, N.H., Sartania, S. et al., “Generation of Coherent X-rays in the Water Window Using 5-Femtosecond Laser Pulses,Science 278, 661 (October 24, 1997).Google Scholar
10. Zhou, J., Peatross, J., Murnane, M.M., Kapteyn, H.C. and Christov, I.P., “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,Phys. Rev. Lett. 76, 752 (1996).Google Scholar
11. Keldysh, L.V., “Ionization in the Field of a Strong Electromagnetic Wave,Soviet Physics JETP 20 (5), 1307 (May 1965).Google Scholar
12. Ammosov, M.V., Delone, N.B. and Kraĭnov, V.P., “Tunnel Ionization of Complex Atoms and of Atomic Ions in an Alternating Electromagnetic Field,Soviet Physics JETP 64 (6), 1191 (December 1986).Google Scholar
13. Landsman, A.S., Weger, M., Maurer, J. et al., “Ultrafast Resolution of Tunneling Delay Time,Optica 1, 343 (November 2014).Google Scholar
14. Brabec, T. and Krausz, F., “Intense Few-Cycle Laser Fields: Frontiers of Nonlinear Optics,Rev. Mod. Phys. 72 (April, 2000).Google Scholar
15. Yudin, G.L. and Ivanov, M.Yu., “Nonadiabatic Tunnel Ionization: Looking Inside a Laser Cycle,Phy. Rev. A 64, 013409 (June 2001).Google Scholar
16. Pfeifer, T., Spielmann, C. and Gerber, G., “Femtosecond X-ray Sciences,Rep. Prog. Phys. 69, 443–505 (2006).Google Scholar
17. Joachain, C.J., Kylstra, N.J. and Potvliege, R.M., Atoms in Intense Fields (Cambridge University Press, 2012), Chs. 1 and 6.
18. Ott, C., Max Planck Institute for Kern Physics, Heidelberg; private communication.
19. L'Huillier, A., Lompré, L.A., Mainfray, G. and Manus, C., “Multiply Charged Ions Induced by Multiphoton Absorption in Race Gases at 0.53 µm,Phys. Rev. A 27 (5), 2503 (May1983).Google Scholar
20. Augst, S., Strickland, D., Meyerhofer, D.D., Chin, S.L., and Eberly, J.H., “Tunneling Ionization of Noble Gases in a High-Intensity Laser Field,Phys. Rev. Lett. 63, 2212 (November 13, 1989).Google Scholar
21. Auguste, T., Monot, P., Lomparé, L.A., Mainfray, G., and Manus, C., “Multiply Charged Ions Produced in Noble Gases by a 1 ps Laser Pulse at λ = 1.053 µm,J. Phys.B, 25, 4181 (1992).Google Scholar
22. Santra, R., Dunford, R.W. and Young, L., “Spin-Orbit Effect on Strong-Field Ionization of Krypton,Phys. Rev. A 74, 043403 (2006).Google Scholar
23. Takahashi, E.J., Hasegawa, H., Nabekawa, Y., and Midorikawa, K., “High-Throughput, High-Damage-Threshold Broadband Beam Splitter for High-Order Harmonics in the Extreme-Ultraviolet Region,Optics Lett. 29, 507 (March 1, 2004).Google Scholar
24. Gustafsson, E., Ruchon, T., Swoboda, M. et al., “Broadband Attosecond Pulse Shaping,Optics Lett. 32, 1353 (June 1, 2007).Google Scholar
25. Wonisch, A., Neuhäusler, U., Kabachnik, N.M. et al., “Design, Fabrication, and Analysis of Chirped Multilayer Mirrors for Reflection of Extreme-Ultraviolet Attosecond Pulses,Applied Optics 45, 4147 (June 10, 2006).Google Scholar
26. Bourassin-Bouchet, C., Rossi, S. de, Wang, J. et al., “Shaping of Single-Cycle Sub-50-Attosecond Pulses with Multilayer Mirrors,New J. Phys. 14, 023043 (February 2012).Google Scholar
27. Lewenstein, M., Balcou, Ph., Ivanov, M.Yu., L'Huillier, A., and Corkum, P.B., “Theory of High Harmonic Generation by Low-Frequency Laser Fields,Phys. Rev. A 49 (3), 2117 (March 1994).Google Scholar
28. Ivanov, M.Yu., Spanner, M., and Smirnova, O., “Anatomy of Strong Field Ionization,J. Mod. Optics 52, 165–184 (February 2005).Google Scholar
29. Corkum, P. and Krausz, F., “Attosecond Science,Nature Phys. 3, 381 (June 2007).Google Scholar
30. Krausz, F. and Ivanov, M., “Attosecond Physics,Rev. Mod. Phys. 81, 163–234 (January–March 2009).Google Scholar
31. Schnürer, M., Cheng, Z., Hentschel, M. et al., “Absorption-Limited Generation of Coherent Ultrashort Soft X-ray Pulses,Phys. Rev. Lett. 83, 722 (July 26, 1999).Google Scholar
32. Schnürer, M., Cheng, Z., Hentschel, M. et al., “Few-Cycle-Driven XUV Laser Harmonics: Generation and Focusing,Appl. Phys. B, 70, S227 Supplement (May 2000).Google Scholar
33. Constant, E. et al., “Optimizing High Harmonic Generation in Absorbing Gases: Model and Experiment,Phys. Rev. Lett. 82, 1668 (February 22, 1999).Google Scholar
34. Tate, J., Auguste, T., Muller, H.G. et al., “Scaling of Wave-Packet Dynamics in an Intense Midinfrared Field,Phys. Rev. Lett. 98, 013901 (January 5, 2007).Google Scholar
35. Shiner, A.D., Trallero-Herrero, C., Kajumba, N. et al., “Wavelength Scaling of High Harmonic Generation Efficiency,Phys. Rev. Lett. 103, 073902 (August 14, 2009).Google Scholar
36. Lai, C.-J., Cirmi, G., Hong, K.-H. et al., “Wavelength Scaling of High Harmonic Generation Close to the Multiphoton Ionization Regime,Phys. Rev. Lett. 111, 073901 (August 16, 2013).Google Scholar
37. Hong, K.-H., Lai, C.-J., Siqueira, J.P. et al., “Multi-mJ, kHz, 2.1 µm Optical Parametric Chirped-Pulse Amplifier and High-Flux Soft X-Ray High-Harmonic Generation,Optics Lett. 39, 3145 (June 1, 2014).Google Scholar
38. Ditmire, T., Gumbrell, E., Smith, R. et al., “Spatial Coherence Measurement of Soft X-Ray Radiation Produced by High Order Harmonic Generation,Phys. Rev. Lett. 77, 4756 (December 2, 1996).Google Scholar
39. Ditmire, T., Tisch, J., Gumbrell, E. et al., “Spatial Coherence of Short Wavelength High-Order Harmonic,Appl. Phys. B, 65, 313 (1997).Google Scholar
40. Bartels, R., Paul, A., Green, H. et al., “Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths,Science 297, 376 (July 19, 2002).Google Scholar
41. Born, M. and Wolf, E., Principles of Optics (Cambridge University Press, 1999), Seventh Edition.
42. Lynga, C., Gaarde, M., Deflin, D. et al., “Temporal Coherence of High-Order Coherence,Phys. Rev. A, 60, 4823 (December 1999).Google Scholar
43. Salières, P., L'Huillier, A. and Lewenstein, M., “Coherence Control of High-Order Harmonics,Phys. Rev. Lett., 74, 3776 (May 8, 1995).Google Scholar
44. Salières, P., Carré, B., Déroff, L. Le et al., “Feynman's Path-Integral Approach for Intense-Laser-Atom Interactions,Science 292, 902 (May 4, 2001).Google Scholar
45. Hergott, J.-F., Kovacev, M., Merdji, H. et al., “Extreme-Ultraviolet High-Order Harmonic Pulses in the Microjoule Range,Phys. Rev. A, 66, 021801(R) (2002).Google Scholar
46. Boyd, R.W., Nonlinear Optics (Academic Press, 2008), Third Edition; Phase Matching, Section 2.3; Quasi-Phase-Matching Section 2.4.
47. Heyl, C.M., “Scaling and Gating Attosecond Pulse generation,” Doctoral Thesis, Department of Physics, Lund University (2014).
48. Hecht, E., Optics (Addison-Wesley, 2002); Fourth Edition; Table 1, p. 653.
49. Allen, C.W., Astrophysical Quantities (University of London, Athlone Press, 1963).
50. Henke, B.L., Gullikson, E.M. and Davis, J.C., “X-Ray Interactions: Photoabsorption, Scattering, Transmission and Reflection at E = 50–30,000 eV, Z = 1–92,Atomic Data and Nuclear Data Tables, 54, 181 (1993).Google Scholar
51. Gullikson, E.M., http://www.cxro.LBL.gov/optical_constants
52. Ditmire, T., Crane, J.K., Nguyen, H., DaSilva, L.B., and Perry, M.D., “Energy-Yield and Conversion-Efficiency Measurements of High-Order Harmonic Radiation,Phys. Rev. A, 51, R902 (February 1995).Google Scholar
53. Kienberger, R. and Scrizi, A., “Attosecond Pulses”, in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Pulses (Springer, 2000), edited by R. Trebino; http://www.frog.gatech.edu/prose.html
54. Paul, A., Bartels, R.A., Tobey, R. et al., “Quasi-phase-Matched Generation of Coherent Extreme Ultraviolet Light,Nature 421, 51 (January 2, 2003).Google Scholar
55. Gibson, E.A., Paul, A., Wagner, N. et al., “Coherent Soft X-Ray Generation in the Water Window with Quasi-Phase Matching,Science 302, 95 (October 3, 2003).Google Scholar
56. Lytle, A.L., Zhang, X., Peatross, J. et al., “Probe of High-Order Harmonic Generation in a Hollow Waveguide Geometry Using Counterpropagating Light,Phys. Rev. Lett. 98, 123904 (March 23, 2007).Google Scholar
57. Zhang, X., Lytle, A.L., Popmintchev, T. et al., “Quasi-Phase-Matching and Quantum-Path Control of High-Harmonic Generation Using Counterpropagating Light,Nature Phys. 3, 270 (April 2007).Google Scholar
58. Cohen, O., Lytle, A.L., Zhang, X., Murnane, M.M., and Kapteyn, H.C., “Optimizing Quasi-Phase-Matching of High Harmonic Generation Using Counterpropagating Pulse Trains,Opt. Lett. 32, 2975 (October 15, 2007).Google Scholar
59. Baltuška, A., Udem, Th., Uiberacker, M. et al., “Attosecond Control of Electronic Processes by Intense Light Fields,Nature 421, 611 (February 6, 2003).Google Scholar
60. Sartania, S., Cheng, Z., Lenzner, M. et al., “Generation of 0.1-TW 5-fs Optical Pulses at a 1-kHz Repetition Rate,Opt. Lett. 22, 1562 (October 15, 1997).Google Scholar
61. Bradley, D.J., Liddy, B., and Sleat, W.E., “Direct Linear Measurement of Ultrashort Laser Pulses with a Picosecond Streak Camera,Opt. Commun. 2, 391 (1971).Google Scholar
62. Schelev, M.Ya., Richardson, M.C., and Alcock, A.J., “Image Converter Streak Camera with Picosecond Resolution,Appl. Phys. Lett. 18, 354 (1971).Google Scholar
63. Attwood, D.T., Coleman, L.W., Boyle, M.J. et al., “Space-Time Implosion Characteristics of Laser-Irradiated Fusion Targets,Phys. Rev. Lett. 38, 282 (February 7, 1977); and references 60–62 in Chapter 7.Google Scholar
64. Kienberger, R. and Krausz, F., “Attosecond Metrology Comes of Age,Physica Script T110, 32 (2004).Google Scholar
65. Agostini, P. and DiMauro, L.F., “The Physics of Attosecond Light Pulses,Rep. Progr. Phys. 67, 813–855 (May 2004).Google Scholar
66. Drescher, M., Hentschel, M., Kienberger, R. et al., “X-Ray Pulses Approaching the Attosecond Frontier,Science 291, 1923 (March 9, 2001).Google Scholar
67. Hentschel, M., Kienberger, R., Spielmann, Ch. et al., “Attosecond Metrology,Nature 414, 509 (November 29, 2001).Google Scholar
68. Itatani, J., Quéré, F., Yudin, G.L. et al., “Attosecond Streak Camera,Phys. Rev. Lett. 88, 173903 (April 29, 2002).Google Scholar
69. Drescher, M., Hentschel, M., Kienberger, R. et al., “Time-Resolved Atomic Inner-Shell Spectroscopy,Nature 419, 803 (October 24, 2002).Google Scholar
70. Kienberger, R., Goulielmakis, E., Uiberacker, M. et al., “Atomic Transient Recorder,Nature 427, 817 (February 26, 2004).Google Scholar
71. Goulielmakis, E., Uiberacker, M., Kienberger, R. et al., “Direct Measurement of Light Waves,Science 305, 1267 (August 27, 2004).Google Scholar
72. Goulielmakis, E., Schultze, M., Hofstetter, M. et al., “Single-Cycle Nonlinear Optics,Science 320, 1614 (June 20, 2008); A.L. Aquila, “Development of Extreme Ultraviolet and Soft X-Ray Multilayer Optics for Scientific Studies with Femtosecond/Attosecond Sources,” PhD Thesis, Applied Science and Technology, University of California, Berkeley, May 2009.Google Scholar
73. Gagnon, J. and Yakovlev, V.S., “The Robustness of Attosecond Streaking Measurements,Opt. Express 17, 17678 (September 28, 2009).Google Scholar
74. Schultze, M. et al., “Delay in Photoemission,Science 328, 1658 (June 25, 2010); H. W. van der Hart, “When Does Photoemission Begin?” Science 328, 1645 (June 25, 2010).Google Scholar
75. Goulielmakis, E., Loh, Z.-H., Wirth, A. et al., “Real-Time Observation of Valence Electron Motion,Nature 466, 739 (August 5, 2010).Google Scholar
76. Klünder, K., Dahlstrom, J.M., Gisselbrecht, M. et al., “Probing Single-Photon Ionization on the Attosecond Time Scale,Phys. Rev. Lett. 106, 143002 (April 8, 2011).Google Scholar
77. Wirth, A., Santra, R., and Goulielmakis, E., “Real Time Tracing of Valence-Shell Electronic Coherences with Attosecond Transient Absorption Spectroscopy,Chem. Physics 414, 149 (2013).Google Scholar
78. Ott, C., Kaldun, A., Argenti, L. et al., “Reconstruction and Control of a Time-Dependent Two-Electron Wave packet,Nature 516, 374 (December 18, 2014).Google Scholar
79. Månsson, E.P., Guénot, D., Arnold, C.L. et al., “Double Ionization Probed on the Attosecond Timescale,Nature Phys. 10, 207 (March 2014).Google Scholar
80. Smirnova, O., Mairesse, Y., Patchkovskii, S. et al., “High Harmonic Interferometry of Multi-Electron Dynamics in Molecules,Nature 460, 972 (August 20, 2009).Google Scholar
81. Niikura, H., Wörner, H.J., Villeneuve, D.M., and Corkum, P.B., “Probing the Spatial Structure of a Molecular Attosecond Electron Wave Packet Using Shaped Recollision Trajectories,Phys. Rev. Lett. 107, 093004 (August 26, 2011).Google Scholar
82. Neidel, Ch., Klei, J., Yang, C.-H. et al., “Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale,Phys. Rev. Lett. 111, 033001 (July 19, 2013).Google Scholar
83. Calegari, F., Ayuso, D., Trabattoni, A. et al., “Ultrafast Electron Dynamics in Phenylalanine Initiated by Attosecond Pulses,Science 346, 336 (October 17, 2014).Google Scholar
84. Lépine, F., Ivanov, M.Y., and Vrakking, M.J.J., “Attosecond Molecular Dynamics: Fact or Fiction?Nature Photon. 8, 195 (March 2014).Google Scholar
85. Cavalieri, A.L., Müller, N., Uphues, Th. et al., “Attosecond Spectroscopy in Condensed Matter,Nature 449, 1029 (October 25, 2007).Google Scholar
86. Villeneuve, D.M., “Attosecond at a Glance,Nature 449, 997 (October 25, 2007).Google Scholar
87. Neppi, S., Ernstorfer, R., Bothschafter, E.M. et al., “Attosecond Time-Resolved Photoemission from Core and Valence States of Magnetism,Phys. Rev. Lett. 109, 087401 (August 24, 2012).Google Scholar
88. Neppl, S., Ernstorfer, R., Cavalieri, A.L. et al., “Direct Observation of Electron Propagation and Dielectric Screening on the Atomic Scale Length,Nature 517, 342 (January 15, 2015).Google Scholar
89. Schultze, M., Bothschafter, E.M., Sommer, A. et al., “Controlling Dielectrics with the Electric Field of Light,Nature 493, 75 (January 3, 2013).Google Scholar
90. Schultze, M., Ramasesha, K., Pemmaraju, C.D. et al., “Attosecond Band-Gap Dynamics in Silicon,Science 346, 1348 (December 12, 2014).Google Scholar
91. Luu, T.T., Garg, M., Kruchinin, S.Yu. et al., “Extreme Ultraviolet High-Harmonic Spectroscopy of Solids,Nature 521, 498 (May 28, 2015).Google Scholar
92. Vampa, G., Hammond, T.J., Thiré, N. et al., “Linking High Harmonics from Gases and Solids,Nature 522, 462 (June 25, 2015).Google Scholar
93. Hohenleutner, M., Langer, F., Schubert, O. et al., “Real-Time Observation of Interfering Crystal Electrons in High-Harmonic Generation,Nature 523, 572 (July 30, 2015).Google Scholar
94. Pedatzur, O., Orenstein, G., Serbinenko, V. et al., “Attosecond Tunnelling Interfereometry,Nature Physics 11, 815 (October 2015).Google Scholar
95. Pronin, O., Seidel, M., Lücking, F. et al., “High-Power Multi-Gigahertz Source of Waveform-Stabilized Few-Cycle Light,Nature Commun. 6, 7988 (May 5, 2015).Google Scholar
96. Pupeza, I., Holzberger, S., Eidam, T. et al., “Compact High-Repitition-Rate Source of Coherent 100 eV Radiation,Nature Photonics 7, 608 (August 2013).Google Scholar
97. Leone, S.R. et al., “What Will it Take to Observe Processes in ‘Real Time’?Nature Photon. 8, 162 (March 2014).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×