Skip to main content Accessibility help
×
Home
The Theory of Large-Scale Ocean Circulation
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Mounting evidence that human activities are substantially modifying the Earth's climate brings a new imperative to the study of the ocean's large-scale circulation. This textbook provides a concise but comprehensive introduction to the theory of large-scale ocean circulation, as it is currently understood and established. Students and instructors will benefit from the carefully chosen chapter-by-chapter exercises. This advanced textbook is invaluable for graduate students and researchers in the fields of oceanic, atmospheric and climate sciences, and other geophysical scientists, as well as physicists and mathematicians with a quantitative interest in the planetary fluid environment.

Reviews

'… provides a very nice deductive derivation of the planetary geostrophic equations using scaling analysis, and is one of the most rigorous treatments that this reviewer has seen … There is also a nice selection of exercises at the end of the book relating to each chapter, varying in degree of difficulty. Speaking as an educator, this is a useful and welcome resource for those who plan on using this book as a class text … I would recommend this book to anyone who wishes to gain an understanding of some of the fundamental ideas that underpin our current thinking about the dynamics that govern the large-scale circulation. I would also recommend it as a graduate-level text for a dynamics-based physical oceanography class.'

Andrew M. Moore Source: Bulletin of the American Meteorological Society

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Batchelor, G. K. 1956. Steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech., 1, 177–190.
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. New York: Cambridge University Press.
Bennett, A. 2002. Inverse Modeling of the Ocean and Atmosphere. New York: Cambridge University Press.
Bryan, F. O. 1987. Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970–985.
Burger, A. P. 1958. Scale consideration of planetary motions of the atmosphere. Tellus, 10, 195–205.
Cao, C., Titi, E. S., and Ziane, M. 2004. A “horizontal” hyper-diffusion three-dimensional thermocline planetary geostrophic model: Well-posedness and long-time behaviour. Nonlinearity, 17, 1749–1776.
Cox, M., and Bryan, K. 1984. A numerical model of the ventilated thermocline. J. Phys. Oceanogr., 14, 674–687.
de Szoeke, R. A. 1987. On the wind-driven circulation of the South Pacific Ocean. J. Phys. Oceanogr., 17, 613–630.
de Szoeke, R. A. 1995. A model of wind- and buoyancy-forced ocean circulation. J. Phys. Oceanogr., 25, 918–941.
de Szoeke, R. A. 2004. An effect of the thermobaric nonlinearity of the equation of state: A mechanism for sustaining solitary Rossby waves. J. Phys. Oceanogr., 34, 2042–2056.
de Szoeke, R. A., and Samelson, R. M. 2004. The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion. J. Phys. Oceanogr., 32, 2194–2203.
de Verdiére, A., Colin. 1988. Buoyancy driven planetary flows. J. Mar. Res., 46, 215–265.
Dewar, W. K., Samelson, R. M., and Vallis, G. K. 2005. The ventilated pool: A model of subtropical mode water. J. Phys. Oceanogr., 35, 137–150.
Fofonoff, N. P. 1962. Physical properties of sea water. In The Sea, vol. 1., edited by M. N., Hill. New York: Interscience, 3–30.
Gill, A. 1968. A linear model of the Antarctic circumpolar current. J. Fluid Mech., 32, 465–488.
Gill, A. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press.
Gill, A., and Bryan, K. 1971. Effects of geometry on the circulation of a three-dimensional southern hemisphere ocean model. Deep Sea Res. Oceanogr. Abstr., 18, 685–721.
Gnanadesikan, A. 1999. A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 2077–2079.
Griffies, S. 2004. Fundamentals of Ocean Climate Models. Princeton, NJ: Princeton University Press.
Holton, J. 1992. Dynamical Meteorology. New York: Academic Press.
Huang, R. X. 1988. On boundary value problems of the ideal-fluid thermocline. J. Phys. Oceanogr., 18, 619–641.
Huag, R. X. 2009. Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge: Cambridge University Press.
Huang, R. X., and Pedlosky, J. 1999. Climate variability inferred from a layered model of the ventilated thermocline. J. Phys. Oceanogr., 29, 779–790.
,IOC, SCOR, and IAPSO, 2010. The international thermodynamic equation of seawater–2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp.
Johnson, H. L., Marshall, D. P., and Sproson, D. A. J. 2007. Reconciling theories of a mechanically-driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Clim. Dyn., 29, 821–836.
Kamenkovich, V. 1960. The influence of bottom relief on the Antarctic Circumpolar Current. (Translated from Russian.) Dokl. Akad. Nauk SSSR, 134, 983–984.
Keffer, T. 1985. The ventilation of the world's oceans: Maps of the potential vorticity field. J. Phys. Oceanogr., 15, 509–523.
Leetmaa, A., Niiler, P. P., and Stommel, H. 1977. Does the Sverdrup relation account for the mid-Atlantic circulation?J. Nav. Res., 35, 1–10.
Ledwell, J. R., Watson, A. J., and Law, C. S. 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res., 103(C10), 21, 499–21, 529.
Luyten, J., Pedlosky, J., and Stommel, H. 1983. The ventilated thermocline. J. Phys.Oceanogr., 13, 292–309.
Manabe, S., and Stouffer, R. J. 1988. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim., 1, 841–866.
Martinez, C. C., Alanís, E. E., and Romero, G. G. 2002. Determinación interferométrica del coeficiente de difusión de NaCl-H2O, a distintas concentrationes y temperaturas. Energ. Renovables Medio Ambiente, 10, 1–8.
Munk, W. H. 1950. On the wind-driven ocean circulation. J. Meteorol., 7, 79–93.
Parsons, A. T. 1969. A two-layer model of Gulf Stream separation. J. Fluid Mech., 39, 511–528.
Pedlosky, J. 1987. Geophysical Fluid Dynamics. New York: Springer.
Pedlosky, . 1996. Ocean Circulation Theory. New York: Springer.
Pedlosky, J., and Young, W. 1983. Ventilation, potential-vorticity homogenization and the structure of the ocean circulation. J. Phys. Oceanogr., 13, 2020–2037.
Prandtl, L. 1905. Uber Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlungen des dritten Internationalen Mathematiker-Kongresses, Heldelberg, pp. 484–491, Leipzig, Germany: Teubner.
Pratt, L. J., and Whitehead, J. A. 2007. Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere. New York: Springer.
Rhines, P. B., and Young, W. R. 1982a. Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347–367.
Rhines, P. B., and Young, W. R. 1982b. A theory of wind-driven circulation: I. Mid-ocean gyres. J. Mar. Res., 40(Suppl.), 559–596.
Robinson, A. R., and Stommel, H. 1959. The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295–308.
Salmon, R. 1990. The thermocline as an “internal boundary layer.” J. Mar. Res., 48, 437–469.
Salmon, R. 1998. Lectures in Geophysical Fluid Dynamics. New York: Oxford University Press.
Samelson, R. M. 1999. Geostrophic circulation in a rectangular basin with a circumpolar connection. J. Phys. Oceanogr., 29, 3175–3184.
Samelson, R. M. 2004. Simple mechanistic models of mid-depth meridional overturning. J. Phys. Oceanogr., 34, 2096–2103.
Samelson, R. M. 2009. A simple dynamical model of the warm-water branch of the mid-depth meridional overturning cell. J. Phys. Oceanogr., 39, 1216–1230.
Samelson, R. M. 2011. Time-dependent adjustment in a simple model of the mid-depth meridional overturning cell. J. Phys. Oceanogr., doi: 10.1175/2010JPO4562.1, in press.
Samelson, R., and Vallis, G. K. 1997. Large-scale circulation with small diapycnal diffusivity: the two-thermocline limit. J. Mar. Res., 55, 1–54.
Samelson, R. M, Temam, R., and Wang, S. 2000. Remarks on the planetary geostrophic model of gyre scale ocean circulation. Differ. Integr. Equat., 13, 1–14.
Samelson, R. M., and Wiggins, S. 2006. Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach. New York: Springer.
Schmitz, W. J. Jr., 1996a. On the world ocean circulation: Vol. I. Woods Hole Oceanographic Institution Tech. Rept. WHOI-96-03, 140 pp.
Schmitz, W. J. Jr., 1996b. On the world ocean circulation: Vol. II. Woods Hole Oceanographic Institution Tech. Rep. WHOI-96-08, 237 pp.
Schmitz, W. Jr., Thompson, J., and Luyten, J. 1992. The Sverdrup circulation for the Atlantic along 24 N. J. Geophys. Res., 97(C5), 7251–7256.
Stommel, H. 1948. The westward intensification of wind-driven ocean currents. Eos Trans. AGU, 99, 202–206.
Stommel, H., and Arons, A. 1960. On the abyssal circulation of the world ocean: I. Stationary planetary flow patterns on a sphere. Deep Sea Res., 6, 140–154.
Stommel, H., and Webster, J. 1962. Some properties of the thermocline equations in a subtropical gyre. J. Mar. Res., 44, 695–711.
Sverdrup, H. 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. U.S.A., 33, 318–326.
Talley, L. D. 1985. Ventilation of the subtropical North Pacific: The shallow salinity minimum. J. Phys. Oceanogr., 15, 633–649.
Toggweiler, J. R., and Samuels, B. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep Sea Res., Part I, 42, 477–500.
Truesdell, C. 1954. The Kinematics of Vorticity. Bloomington: Indiana University Press.
Tziperman, E. 1986. On the role of interior missing and air-sea fluxes in determining the stratification and circulation of the ocean. J. Phys. Oceanogr., 16, 680–693.
Vallis, G. 2006. Atmospheric and Ocean Fluid Dynamics. New York: Cambridge University Press.
Veronis, G. 1973. Model of the world ocean circulation: I, wind-driven, two-layer. J. Mar. Res., 31, 228–288.
Webb, D. 1993. A simple model of the effect of Kerguelen Plateau on the strength of the Antarctic Circumpolar Current. Geophys. Astrophys. Fluid Dyn., 70, 57–84.
Welander, P. 1959. An advective model of the ocean thermocline. Tellus, 11, 309–318.
Welander, P. 1971. The thermocline problem. Phil. Trans. R. Soc. Lond. A., 270, 415–421.
Wunsch, C. 1996. The Ocean Circulation Inverse Problem. New York: Cambridge University Press.
Young, W. R., and Ierley, G. 1986. Eastern boundary conditions and weak solutions of the ideal thermocline equations. J. Phys. Oceanogr., 16, 1884–1900.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed