Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T03:05:36.108Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 October 2011

R. M. Samelson
Affiliation:
Oregon State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1956. Steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech., 1, 177–190.CrossRefGoogle Scholar
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. New York: Cambridge University Press.Google Scholar
Bennett, A. 2002. Inverse Modeling of the Ocean and Atmosphere. New York: Cambridge University Press.CrossRefGoogle Scholar
Bryan, F. O. 1987. Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970–985.2.0.CO;2>CrossRefGoogle Scholar
Burger, A. P. 1958. Scale consideration of planetary motions of the atmosphere. Tellus, 10, 195–205.CrossRefGoogle Scholar
Cao, C., Titi, E. S., and Ziane, M. 2004. A “horizontal” hyper-diffusion three-dimensional thermocline planetary geostrophic model: Well-posedness and long-time behaviour. Nonlinearity, 17, 1749–1776.CrossRefGoogle Scholar
Cox, M., and Bryan, K. 1984. A numerical model of the ventilated thermocline. J. Phys. Oceanogr., 14, 674–687.2.0.CO;2>CrossRefGoogle Scholar
de Szoeke, R. A. 1987. On the wind-driven circulation of the South Pacific Ocean. J. Phys. Oceanogr., 17, 613–630.2.0.CO;2>CrossRefGoogle Scholar
de Szoeke, R. A. 1995. A model of wind- and buoyancy-forced ocean circulation. J. Phys. Oceanogr., 25, 918–941.2.0.CO;2>CrossRefGoogle Scholar
de Szoeke, R. A. 2004. An effect of the thermobaric nonlinearity of the equation of state: A mechanism for sustaining solitary Rossby waves. J. Phys. Oceanogr., 34, 2042–2056.2.0.CO;2>CrossRefGoogle Scholar
de Szoeke, R. A., and Samelson, R. M. 2004. The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion. J. Phys. Oceanogr., 32, 2194–2203.2.0.CO;2>CrossRefGoogle Scholar
de Verdiére, A., Colin. 1988. Buoyancy driven planetary flows. J. Mar. Res., 46, 215–265.CrossRefGoogle Scholar
Dewar, W. K., Samelson, R. M., and Vallis, G. K. 2005. The ventilated pool: A model of subtropical mode water. J. Phys. Oceanogr., 35, 137–150.CrossRefGoogle Scholar
Fofonoff, N. P. 1962. Physical properties of sea water. In The Sea, vol. 1., edited by M. N., Hill. New York: Interscience, 3–30.Google Scholar
Gill, A. 1968. A linear model of the Antarctic circumpolar current. J. Fluid Mech., 32, 465–488.CrossRefGoogle Scholar
Gill, A. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press.Google Scholar
Gill, A., and Bryan, K. 1971. Effects of geometry on the circulation of a three-dimensional southern hemisphere ocean model. Deep Sea Res. Oceanogr. Abstr., 18, 685–721.CrossRefGoogle Scholar
Gnanadesikan, A. 1999. A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 2077–2079.CrossRefGoogle ScholarPubMed
Griffies, S. 2004. Fundamentals of Ocean Climate Models. Princeton, NJ: Princeton University Press.Google Scholar
Holton, J. 1992. Dynamical Meteorology. New York: Academic Press.Google Scholar
Huang, R. X. 1988. On boundary value problems of the ideal-fluid thermocline. J. Phys. Oceanogr., 18, 619–641.2.0.CO;2>CrossRefGoogle Scholar
Huag, R. X. 2009. Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge: Cambridge University Press.Google Scholar
Huang, R. X., and Pedlosky, J. 1999. Climate variability inferred from a layered model of the ventilated thermocline. J. Phys. Oceanogr., 29, 779–790.2.0.CO;2>CrossRefGoogle Scholar
,IOC, SCOR, and IAPSO, 2010. The international thermodynamic equation of seawater–2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp.
Johnson, H. L., Marshall, D. P., and Sproson, D. A. J. 2007. Reconciling theories of a mechanically-driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Clim. Dyn., 29, 821–836.CrossRefGoogle Scholar
Kamenkovich, V. 1960. The influence of bottom relief on the Antarctic Circumpolar Current. (Translated from Russian.) Dokl. Akad. Nauk SSSR, 134, 983–984.Google Scholar
Keffer, T. 1985. The ventilation of the world's oceans: Maps of the potential vorticity field. J. Phys. Oceanogr., 15, 509–523.2.0.CO;2>CrossRefGoogle Scholar
Leetmaa, A., Niiler, P. P., and Stommel, H. 1977. Does the Sverdrup relation account for the mid-Atlantic circulation?J. Nav. Res., 35, 1–10.Google Scholar
Ledwell, J. R., Watson, A. J., and Law, C. S. 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res., 103(C10), 21, 499–21, 529.CrossRefGoogle Scholar
Luyten, J., Pedlosky, J., and Stommel, H. 1983. The ventilated thermocline. J. Phys.Oceanogr., 13, 292–309.2.0.CO;2>CrossRefGoogle Scholar
Manabe, S., and Stouffer, R. J. 1988. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim., 1, 841–866.2.0.CO;2>CrossRefGoogle Scholar
Martinez, C. C., Alanís, E. E., and Romero, G. G. 2002. Determinación interferométrica del coeficiente de difusión de NaCl-H2O, a distintas concentrationes y temperaturas. Energ. Renovables Medio Ambiente, 10, 1–8.Google Scholar
Munk, W. H. 1950. On the wind-driven ocean circulation. J. Meteorol., 7, 79–93.2.0.CO;2>CrossRefGoogle Scholar
Parsons, A. T. 1969. A two-layer model of Gulf Stream separation. J. Fluid Mech., 39, 511–528.CrossRefGoogle Scholar
Pedlosky, J. 1987. Geophysical Fluid Dynamics. New York: Springer.CrossRefGoogle Scholar
Pedlosky, . 1996. Ocean Circulation Theory. New York: Springer.CrossRefGoogle Scholar
Pedlosky, J., and Young, W. 1983. Ventilation, potential-vorticity homogenization and the structure of the ocean circulation. J. Phys. Oceanogr., 13, 2020–2037.2.0.CO;2>CrossRefGoogle Scholar
Prandtl, L. 1905. Uber Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlungen des dritten Internationalen Mathematiker-Kongresses, Heldelberg, pp. 484–491, Leipzig, Germany: Teubner.Google Scholar
Pratt, L. J., and Whitehead, J. A. 2007. Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere. New York: Springer.CrossRefGoogle Scholar
Rhines, P. B., and Young, W. R. 1982a. Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347–367.CrossRefGoogle Scholar
Rhines, P. B., and Young, W. R. 1982b. A theory of wind-driven circulation: I. Mid-ocean gyres. J. Mar. Res., 40(Suppl.), 559–596.Google Scholar
Robinson, A. R., and Stommel, H. 1959. The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295–308.Google Scholar
Salmon, R. 1990. The thermocline as an “internal boundary layer.” J. Mar. Res., 48, 437–469.CrossRefGoogle Scholar
Salmon, R. 1998. Lectures in Geophysical Fluid Dynamics. New York: Oxford University Press.Google Scholar
Samelson, R. M. 1999. Geostrophic circulation in a rectangular basin with a circumpolar connection. J. Phys. Oceanogr., 29, 3175–3184.2.0.CO;2>CrossRefGoogle Scholar
Samelson, R. M. 2004. Simple mechanistic models of mid-depth meridional overturning. J. Phys. Oceanogr., 34, 2096–2103.2.0.CO;2>CrossRefGoogle Scholar
Samelson, R. M. 2009. A simple dynamical model of the warm-water branch of the mid-depth meridional overturning cell. J. Phys. Oceanogr., 39, 1216–1230.CrossRefGoogle Scholar
Samelson, R. M. 2011. Time-dependent adjustment in a simple model of the mid-depth meridional overturning cell. J. Phys. Oceanogr., doi: 10.1175/2010JPO4562.1, in press.CrossRefGoogle Scholar
Samelson, R., and Vallis, G. K. 1997. Large-scale circulation with small diapycnal diffusivity: the two-thermocline limit. J. Mar. Res., 55, 1–54.CrossRefGoogle Scholar
Samelson, R. M, Temam, R., and Wang, S. 2000. Remarks on the planetary geostrophic model of gyre scale ocean circulation. Differ. Integr. Equat., 13, 1–14.Google Scholar
Samelson, R. M., and Wiggins, S. 2006. Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach. New York: Springer.Google Scholar
Schmitz, W. J. Jr., 1996a. On the world ocean circulation: Vol. I. Woods Hole Oceanographic Institution Tech. Rept. WHOI-96-03, 140 pp.
Schmitz, W. J. Jr., 1996b. On the world ocean circulation: Vol. II. Woods Hole Oceanographic Institution Tech. Rep. WHOI-96-08, 237 pp.
Schmitz, W. Jr., Thompson, J., and Luyten, J. 1992. The Sverdrup circulation for the Atlantic along 24 N. J. Geophys. Res., 97(C5), 7251–7256.CrossRefGoogle Scholar
Stommel, H. 1948. The westward intensification of wind-driven ocean currents. Eos Trans. AGU, 99, 202–206.CrossRefGoogle Scholar
Stommel, H., and Arons, A. 1960. On the abyssal circulation of the world ocean: I. Stationary planetary flow patterns on a sphere. Deep Sea Res., 6, 140–154.CrossRefGoogle Scholar
Stommel, H., and Webster, J. 1962. Some properties of the thermocline equations in a subtropical gyre. J. Mar. Res., 44, 695–711.Google Scholar
Sverdrup, H. 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. U.S.A., 33, 318–326.CrossRefGoogle Scholar
Talley, L. D. 1985. Ventilation of the subtropical North Pacific: The shallow salinity minimum. J. Phys. Oceanogr., 15, 633–649.2.0.CO;2>CrossRefGoogle Scholar
Toggweiler, J. R., and Samuels, B. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep Sea Res., Part I, 42, 477–500.CrossRefGoogle Scholar
Truesdell, C. 1954. The Kinematics of Vorticity. Bloomington: Indiana University Press.Google Scholar
Tziperman, E. 1986. On the role of interior missing and air-sea fluxes in determining the stratification and circulation of the ocean. J. Phys. Oceanogr., 16, 680–693.2.0.CO;2>CrossRefGoogle Scholar
Vallis, G. 2006. Atmospheric and Ocean Fluid Dynamics. New York: Cambridge University Press.CrossRefGoogle Scholar
Veronis, G. 1973. Model of the world ocean circulation: I, wind-driven, two-layer. J. Mar. Res., 31, 228–288.Google Scholar
Webb, D. 1993. A simple model of the effect of Kerguelen Plateau on the strength of the Antarctic Circumpolar Current. Geophys. Astrophys. Fluid Dyn., 70, 57–84.CrossRefGoogle Scholar
Welander, P. 1959. An advective model of the ocean thermocline. Tellus, 11, 309–318.CrossRefGoogle Scholar
Welander, P. 1971. The thermocline problem. Phil. Trans. R. Soc. Lond. A., 270, 415–421.CrossRefGoogle Scholar
Wunsch, C. 1996. The Ocean Circulation Inverse Problem. New York: Cambridge University Press.CrossRefGoogle Scholar
Young, W. R., and Ierley, G. 1986. Eastern boundary conditions and weak solutions of the ideal thermocline equations. J. Phys. Oceanogr., 16, 1884–1900.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • R. M. Samelson, Oregon State University
  • Book: The Theory of Large-Scale Ocean Circulation
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736605.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • R. M. Samelson, Oregon State University
  • Book: The Theory of Large-Scale Ocean Circulation
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736605.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • R. M. Samelson, Oregon State University
  • Book: The Theory of Large-Scale Ocean Circulation
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736605.013
Available formats
×