Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T08:09:06.448Z Has data issue: false hasContentIssue false

2 - Reduced Equations for Large-Scale Motion

Published online by Cambridge University Press:  07 October 2011

R. M. Samelson
Affiliation:
Oregon State University
Get access

Summary

Scaling

As a model of the fluid motion and thermodynamics of the Earth's oceans, the basic equations (1.15)–(1.19) include a formidable array of distinct types of physical processes, from divergence of molecular diffusive fluxes on scales of millimeters to coherent fluid flow on the scales of the Earth's circumference, a range of space scales of order 1010. This range of scales is comparable to that between the molecular scale and the scale of a mammal's body. Thus, in a rough sense, the problem of using these equations to understand the large-scale structure of the ocean is comparable in difficulty to using numerical computations of molecular interactions to simulate the behavior of a mammal. Numerical solution of this full set of equations is thus well beyond current computational capacities and will remain so for the foreseeable futuremore. Furthermore, these equations are sufficiently challenging that fundamental mathematical properties, such as the existence and uniqueness of solutions, are not established. Some of these basic properties remain a subject of mathematical research even for the incompressible Navier-Stokes equations, a simplified set of four equations that may be obtained from (1.15) and (1.16) by replacing the density variable ρ with a constant value ρ0.

Despite these formidable challenges, it is possible to make progress by using a combination of mathematical and physical reasoning to derive simplified, or reduced, equation sets that describe motions on the largest space and time scales of interest.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×