Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: October 2011

Preface

Summary

The purpose of this text is to give a concise but comprehensive introduction to the basic elements of the theory of large-scale ocean circulation as it is currently understood and established. The intended audience is graduate students and researchers in the fields of oceanic, atmospheric, and climate sciences and other geophysical scientists, physicists, and mathematicians with a quantitative interest in the planetary fluid environment.

When I first began to study the physics of ocean circulation, it was the intrinsic scientific interest of the subject that was most apparent and appealing to me. Since that time, evidence has grown strong that human activities are substantially modifying the Earth's climate, with long-term effects that threaten to significantly disrupt the environmental structures on which human life and civilization depend. This troubling development brings a new imperative to the study of the ocean's large-scale circulation as this circulation and its interactions with the atmosphere and cryosphere play a clearly important, but still poorly understood, role in the global climate system. Although the ocean components of most numerical climate models are based on the primitive equations, the dynamics that they represent are essentially those of the planetary geostrophic equations described here, because of the necessarily coarse horizontal resolution of climate-model computational grids. Thus, the present material should be of particular interest to climate dynamicists.

The text is based on lecture notes that accumulated over roughly the last decade, during which I regularly taught a core graduate physical oceanography course on the theory of large-scale ocean circulation.