Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T03:35:24.510Z Has data issue: false hasContentIssue false

8 - Photodiodes for high performance analog links

Published online by Cambridge University Press:  06 July 2010

P. K. L. Yu
Affiliation:
University of California, San Diego
Ming C. Wu
Affiliation:
University of California, Los Angeles
William S. C. Chang
Affiliation:
University of California, San Diego
Get access

Summary

Introduction

The optical detector plays an important role in an analog fiber link as its performance determines the baseline characteristics of the link. In the past, the development of the detector has evolved around on-off operation, high speed and high responsivity aspects due to its extensive uses in digital fiber links. However, for analog applications, as discussed in Chapter 1, the detector has to incorporate additional designs to ensure high power and high linear dynamic range operation, both of which are essential for meeting the high link gain and low noise figure requirements.

The organization of this chapter goes as follows. In the remainder of this section an overall view of optical detection is presented including key terminology and figures of merit. Section 8.2 compares the baseline properties of different photodiodes. Section 8.3 briefly discusses the noise sources for photodiodes, with special attention to shot noise and noise attributed to laser relative intensity noise. These noise sources are dependent on the optical power. Section 8.4 highlights the research status of photodiode nonlinearity. Section 8.5 presents some recent advances in photodiodes related to analog fiber link applications.

Definitions

Semiconductor materials are commonly employed for optical detectors mainly because the resultant detectors are usually small, low noise, operate with a low voltage, and can be easily assembled with the rest of the receiver circuits. Photons interact with electrons in semiconductors and are absorbed in processes whereby electrons make a transition from a lower to a higher energy state.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. J. Keyes (ed.), Optical and Infrared Detectors, Topics in Applied Physics, Vol. 19, Springer-Verlag, Berlin, 1980
D. P. Schinke, R. G. Smith, and A. R. Hartman, “Photodetectors,” in Semiconductor Devices for Optical Communication, 2nd Edn., ed. H. Kessel, Topics in Applied Physics, Vol. 39, Springer-Verlag, Heidelberg, 1982
S. B. Alexander, Optical Communication Receiver Design, SPIE Press Tutorial Texts in Optical Engineering, Vol. TT22, and IEE Telecommunication Series, Vol. 37, 1997
R. J. McIntyre, IEEE Trans. Electron. Dev., ED-19, 703, 1972
A. R. Williams, A. L. Kellner, and P. K. L. Yu, Electron. Lett., 29, 1298, 1993
T. Ishibashi et al., Technical Digest, 1999 Microwave Photonics Meeting MWP'99, p. 75, 1999
K. Kato, IEEE Trans. Microwave Theory Tech., 47, 1265, 1999
P. L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, IEEE Trans. Microwave Theory Tech., 47, 1297, 1999
W. Franz, Z. Naturforsch, A13, 484, 1958; L. V. Keldysh, Zh. Eskp. Teor. Fiz., 34, 1158, 1958
J. S. Weiner et al., Appl. Phys. Lett., 47, 1148, 1985
K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, IEEE J. Quantum Electron., 28, 2728, 1992
S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 649, 1981
D. Wake, R. H. Walling, S. K. Sargood, and I. D. Henning, Electron. Lett., 23, 415, 1987
M. A. Washington, R. E. Nahory, and E. D. Beebe, Appl. Phys. Lett., 33, 854, 1978
T. P. Lee, C. A. Burrus, and A. G. Dentai, IEEE. J. Quantum Electron., 17, 232, 1981
J. N. Patellon, J. P. Andre, J. P. Chane, J. L. Gentner, B. G. Martin, and G. M. Martin. Phillips J. Res., 44, 465, 1990
W. Gao, K. Al Sameen, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, Appl. Phys. Lett., 65, 1930, 1994
K. C. Hwang, S. S. Li, and Y. C. Kao, Proc. SPIE, 1371, 128, 1991
S. Y. Wang and D. M. Bloom, Electron. Lett., 19, 554, 1983
P. Bhattacharya, Semiconductor Optoelectronic Device, Ch. 9, 2nd Ed., Prentice Hall, 1986
A. van der Ziel, Noise in Solid State Devices and Circuits, Wiley, 1986
R. J. Deri et al., IEEE Photon. Technol. Lett., 4, 1238, 1992
M. S. Islam, T. Chau, S. Mathai, T. Itoh. M. C. Wu, D. L. Sivco, and A. Y. Cho, IEEE Trans. Microwave Theory Tech., 47, 1282, 1999
H. Jiang and P. K. L. Yu, IEEE Photon. Technol. Lett., 10, 1608, 1998
C. K. Sun, P. K. L. Yu, C. T. Chang, and D. J. Albares, IEEE Trans. Electron Devices, 39, 2240, 1992
K. J. Williams, Appl. Phys. Lett., 65, 1219, 1994
R. R. Hayes and D. L. Persechini, IEEE Photon. Technol. Lett., 5, 70, 1993
J. Harari, G. Jin, J. P. Vilcot, and D. Decoster, IEEE Trans. Microwave Theory Tech., 45, 4332, 1997
T. Ozeki and E. H. Hara, Electron. Lett., 12, 80, 1976
H. Jiang, D. S. Shin, G. L. Li, J. T. Zhu, T. A. Vang, D. C. Scott, and P. K. L. Yu, IEEE Photon. Technol. Lett., 12, 540, 2000
D. Ralston, A. Metzger, Y. Kang, P. Asbeck, and P. K. L. Yu, Proc. SPIE, 4112, 132, 2000
H. Jiang and P. K. L. Yu, IEEE International Microwave Symposium, IMS 2000 Digest, Vol. 2, p. 679, 2000
K. Kato, IEEE Trans. Microwave Theory Tech., 37, 1265, 1999
J. E. Bowers and C. A. Burrus, Jr. J. Lightwave Technol., 5, 1339, 1987
G. H. Olsen and T. J. Zamesowski, IEEE J. Quantum Electron., 17, 128, 1981
Catalog, Discovery Semiconductor, Inc., 1999
Z. Zhu, R. Gillon, and A. V. Vorst, Microwave Opt. Technol. Lett., 8, 8, 1995
L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, IEEE Photon. Technol. Lett., 11, 111, 1999
H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, Proc. SPIE Optoelectronic Signal Processing Phased Array Antenna II, 1217, 59, 1990
K. S. Giboney, M. Rodwell, and J. Bowers, IEEE Photon. Technol. Lett., 4, 1363, 1992
L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, IEEE Trans. Microwave Theory Tech., 45, 1320, 1997
K. S. Giboney, R. Nagarajan, T. Reynolds, S. Allen, R. Mirin, M. Rodwell, and J. E. Bowers, IEEE Photon. Technol. Lett., 7, 412, 1995
E. Droge, E. H. Bottcher, S. Kollakowski, A. Strittmatter, O. Reimann, R. Steingruber, A. Umbach, and D. Bimberg, ECOC'98, vol. 1, p. 20, 1998
N. Shimuzu, Y. Miyamoto, A. Hirano, K. Sato, and T. Ishibashi, Electron. Lett., 36, 750, 2000
T. Furuta, S. Kodama, T. Ishibashi, Electron. Lett., 36, 1809, 2000

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×