Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2002
  • Online publication date: July 2010

8 - Photodiodes for high performance analog links



The optical detector plays an important role in an analog fiber link as its performance determines the baseline characteristics of the link. In the past, the development of the detector has evolved around on-off operation, high speed and high responsivity aspects due to its extensive uses in digital fiber links. However, for analog applications, as discussed in Chapter 1, the detector has to incorporate additional designs to ensure high power and high linear dynamic range operation, both of which are essential for meeting the high link gain and low noise figure requirements.

The organization of this chapter goes as follows. In the remainder of this section an overall view of optical detection is presented including key terminology and figures of merit. Section 8.2 compares the baseline properties of different photodiodes. Section 8.3 briefly discusses the noise sources for photodiodes, with special attention to shot noise and noise attributed to laser relative intensity noise. These noise sources are dependent on the optical power. Section 8.4 highlights the research status of photodiode nonlinearity. Section 8.5 presents some recent advances in photodiodes related to analog fiber link applications.


Semiconductor materials are commonly employed for optical detectors mainly because the resultant detectors are usually small, low noise, operate with a low voltage, and can be easily assembled with the rest of the receiver circuits. Photons interact with electrons in semiconductors and are absorbed in processes whereby electrons make a transition from a lower to a higher energy state.

R. J. Keyes (ed.), Optical and Infrared Detectors, Topics in Applied Physics, Vol. 19, Springer-Verlag, Berlin, 1980
D. P. Schinke, R. G. Smith, and A. R. Hartman, “Photodetectors,” in Semiconductor Devices for Optical Communication, 2nd Edn., ed. H. Kessel, Topics in Applied Physics, Vol. 39, Springer-Verlag, Heidelberg, 1982
S. B. Alexander, Optical Communication Receiver Design, SPIE Press Tutorial Texts in Optical Engineering, Vol. TT22, and IEE Telecommunication Series, Vol. 37, 1997
R. J. McIntyre, IEEE Trans. Electron. Dev., ED-19, 703, 1972
A. R. Williams, A. L. Kellner, and P. K. L. Yu, Electron. Lett., 29, 1298, 1993
T. Ishibashi et al., Technical Digest, 1999 Microwave Photonics Meeting MWP'99, p. 75, 1999
K. Kato, IEEE Trans. Microwave Theory Tech., 47, 1265, 1999
P. L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, IEEE Trans. Microwave Theory Tech., 47, 1297, 1999
W. Franz, Z. Naturforsch, A13, 484, 1958; L. V. Keldysh, Zh. Eskp. Teor. Fiz., 34, 1158, 1958
J. S. Weiner et al., Appl. Phys. Lett., 47, 1148, 1985
K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, IEEE J. Quantum Electron., 28, 2728, 1992
S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 649, 1981
D. Wake, R. H. Walling, S. K. Sargood, and I. D. Henning, Electron. Lett., 23, 415, 1987
M. A. Washington, R. E. Nahory, and E. D. Beebe, Appl. Phys. Lett., 33, 854, 1978
T. P. Lee, C. A. Burrus, and A. G. Dentai, IEEE. J. Quantum Electron., 17, 232, 1981
J. N. Patellon, J. P. Andre, J. P. Chane, J. L. Gentner, B. G. Martin, and G. M. Martin. Phillips J. Res., 44, 465, 1990
W. Gao, K. Al Sameen, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, Appl. Phys. Lett., 65, 1930, 1994
K. C. Hwang, S. S. Li, and Y. C. Kao, Proc. SPIE, 1371, 128, 1991
S. Y. Wang and D. M. Bloom, Electron. Lett., 19, 554, 1983
P. Bhattacharya, Semiconductor Optoelectronic Device, Ch. 9, 2nd Ed., Prentice Hall, 1986
A. van der Ziel, Noise in Solid State Devices and Circuits, Wiley, 1986
R. J. Deri et al., IEEE Photon. Technol. Lett., 4, 1238, 1992
M. S. Islam, T. Chau, S. Mathai, T. Itoh. M. C. Wu, D. L. Sivco, and A. Y. Cho, IEEE Trans. Microwave Theory Tech., 47, 1282, 1999
H. Jiang and P. K. L. Yu, IEEE Photon. Technol. Lett., 10, 1608, 1998
C. K. Sun, P. K. L. Yu, C. T. Chang, and D. J. Albares, IEEE Trans. Electron Devices, 39, 2240, 1992
K. J. Williams, Appl. Phys. Lett., 65, 1219, 1994
R. R. Hayes and D. L. Persechini, IEEE Photon. Technol. Lett., 5, 70, 1993
J. Harari, G. Jin, J. P. Vilcot, and D. Decoster, IEEE Trans. Microwave Theory Tech., 45, 4332, 1997
T. Ozeki and E. H. Hara, Electron. Lett., 12, 80, 1976
H. Jiang, D. S. Shin, G. L. Li, J. T. Zhu, T. A. Vang, D. C. Scott, and P. K. L. Yu, IEEE Photon. Technol. Lett., 12, 540, 2000
D. Ralston, A. Metzger, Y. Kang, P. Asbeck, and P. K. L. Yu, Proc. SPIE, 4112, 132, 2000
H. Jiang and P. K. L. Yu, IEEE International Microwave Symposium, IMS 2000 Digest, Vol. 2, p. 679, 2000
K. Kato, IEEE Trans. Microwave Theory Tech., 37, 1265, 1999
J. E. Bowers and C. A. Burrus, Jr. J. Lightwave Technol., 5, 1339, 1987
G. H. Olsen and T. J. Zamesowski, IEEE J. Quantum Electron., 17, 128, 1981
Catalog, Discovery Semiconductor, Inc., 1999
Z. Zhu, R. Gillon, and A. V. Vorst, Microwave Opt. Technol. Lett., 8, 8, 1995
L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, IEEE Photon. Technol. Lett., 11, 111, 1999
H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, Proc. SPIE Optoelectronic Signal Processing Phased Array Antenna II, 1217, 59, 1990
K. S. Giboney, M. Rodwell, and J. Bowers, IEEE Photon. Technol. Lett., 4, 1363, 1992
L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, IEEE Trans. Microwave Theory Tech., 45, 1320, 1997
K. S. Giboney, R. Nagarajan, T. Reynolds, S. Allen, R. Mirin, M. Rodwell, and J. E. Bowers, IEEE Photon. Technol. Lett., 7, 412, 1995
E. Droge, E. H. Bottcher, S. Kollakowski, A. Strittmatter, O. Reimann, R. Steingruber, A. Umbach, and D. Bimberg, ECOC'98, vol. 1, p. 20, 1998
N. Shimuzu, Y. Miyamoto, A. Hirano, K. Sato, and T. Ishibashi, Electron. Lett., 36, 750, 2000
T. Furuta, S. Kodama, T. Ishibashi, Electron. Lett., 36, 1809, 2000