Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T02:23:59.604Z Has data issue: false hasContentIssue false

10 - Photonic link techniques for microwave frequency conversion

Published online by Cambridge University Press:  06 July 2010

Stephen A. Pappert
Affiliation:
Lightwave Solutions, Inc., San Diego
Roger Helkey
Affiliation:
MIT Lincoln Laboratory (presently with Calient Networks)
Ronald T. Logan
Affiliation:
JDS Uniphase (presently with Phasebridge, Inc.)
William S. C. Chang
Affiliation:
University of California, San Diego
Get access

Summary

Introduction

Microwave frequency conversion techniques using analog photonic link technology are reviewed in this chapter. Opto-electronic or photonic radio-frequency (RF) signal mixing refers to converting intensity modulation of an optical carrier at one modulation frequency to intensity modulation or an electrical output at a different frequency. Frequency conversion optical links integrate the functions of electrical frequency mixing, traditionally provided by electronics, together with the transport of the RF carrier by the optical link. Photonic RF signal mixing using fiber optic link technology has recently become a topic of interest for reducing front-end hardware complexity of antenna systems and efficiently extending link frequency coverage into the millimeter-wave (MMW, 30–300 GHz) range. As commercial and military systems push to higher operating frequencies, microwave optical transmission and signal conversion techniques offer attractive benefits to designers of RF systems for communications, radar and electronic warfare applications

The frequency converting link diagram displayed in Fig. 10.1 can be used to introduce the concept of photonic link signal mixing as well as to introduce some nomenclature that will be used throughout the chapter. Here, an example antenna remoting configuration is shown that incorporates both optical RF up-conversion for transmit operation and optical RF down-conversion for receive operation. Referring to the transmit-mode up-conversion path of Fig. 10.1, the photonic frequency conversion occurs by multiplying the MMW optical local oscillator (LO) signal at fLO1, with the lower frequency RF input or information bearing signal at fIF1 in the integrated optical modulator (IOM).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gopalakrishnan, G. K., Bulmer, C. H., Burns, W. K., McElhanon, R. W., and Greenblatt, A. S., “40 GHz, low half-wave voltage Ti:LiNbO3 intensity modulator,” Electron. Lett., 28, 826–7, 1992CrossRefGoogle Scholar
Noguchi, D., Miyazawa, H., and Mitomi, O., “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett., 30, 949–51, 1994CrossRefGoogle Scholar
Cox, C., Ackerman, E., Helkey, R., and Betts, G., “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech., 45, 1375–83, 1997CrossRefGoogle Scholar
N. Mineo, K. Yamada, K. Nakamura, S. Sakai, and T. Ushikobo, “60 GHz band electroabsorption modulator module,” Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series, Optical Society of America, Washington, D.C., pp. 287–8
Seeds, A. J. and Lenoir, B., “Avalanche diode harmonic optoelectronic mixer,” IEE Proc., 133, pt. J, 353–7, 1986Google Scholar
Maury, G., Hilt, A., Berceli, T., Cabon, B., and Vilcot, A., “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microwave Theory Tech., 45, 1481–5, 1997CrossRefGoogle Scholar
Sun, C. K., Orazi, R. J., and Pappert, S. A., “Efficient microwave frequency conversion using photonic link signal mixing,” IEEE Photon. Technol. Lett., 8, 154–6, 1996CrossRefGoogle Scholar
Helkey, R., Twichell, J., and Cox, C., “A down-conversion optical link with RF gain,” J. Lightwave Technol., 15, 956–61, 1997CrossRefGoogle Scholar
Gopalakrishnan, G. K., Burns, W. K., and Bulmer, C. H., “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech., 41, 2383–91, 1993CrossRefGoogle Scholar
Logan, R. T. and Gertel, E., “Millimeter-wave photonic downconvertors: theory and demonstrations,” Proc. SPIE, 2560, 58–65, 1995CrossRefGoogle Scholar
Lima, C. R., Wake, D., and Davies, P. A., “Compact optical millimeter-wave source using a dual-mode semiconductor laser,” Electron. Lett., 31, 364–6, 1995CrossRefGoogle Scholar
Wake, D., Lima, C. R., and Davies, P. A., “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech., 43, 2270–6, 1995CrossRefGoogle Scholar
Loh, W. H., Sandro, J. P., Cowle, G. J., Samson, B. N., and Ellis, A. D., “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett., 33, 594–5, 1996CrossRefGoogle Scholar
Pajarola, S., Guekos, G., and Kawaguchi, H., “Frequency tunable beat note from a dual-polarization emitting external cavity diode laser,” Opt. Quantum Electron., 29, 489–99, 1997CrossRefGoogle Scholar
Pajarola, S., Guekos, G., Nizzola, P., and Kawaguchi, H., “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microwave Theory Tech., 47, 1234–40, 1999CrossRefGoogle Scholar
Steele, R. C., “Optical phase-locked loop using semiconductor laser diodes,” Electron. Lett., 19, 69–70, 1983CrossRefGoogle Scholar
Harrison, J. and Mooradian, A., “Linewidth and offset frequency locking of GaAlAs lasers,” IEEE J. Quantum Electron., 25, 1152–5, 1989CrossRefGoogle Scholar
Williams, K. J., Goldberg, L., Esman, R. D., Dagenais, M., and Weller, J. F., “–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett., 25, 1242–3, 1989CrossRefGoogle Scholar
Simonis, G. J. and Purchase, K. G., “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microwave Theory Tech., 38, 667–9, 1990CrossRefGoogle Scholar
M. J. Wale M. G. Holliday, “Microwave signal generation using optical phased locked loops,” 21st European Microwave Conference Workshop, pp. 78–82, 1991
Ramos, R. T.Seeds, A. J., “Fast heterodyne optical phase lock loop using double quantum well laser diodes,” Electron. Lett., 28, 82–3, 1992CrossRefGoogle Scholar
Gliese, U., Nielsen, T. N., Bruun, M., Christensen, E. L., Stubkjaer, K. E., Lindgren, S., and Broberg, B., “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photon. Technol. Lett., 4, 936–8, 1992CrossRefGoogle Scholar
Santarelli, G., Clairon, A., Lea, S. N., and Tino, G. M., “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Opt. Commun., 104, 339–44, 1994CrossRefGoogle Scholar
Braun, R. P., Grosskopf, G., Rohde, D., and Schmidt, F., “Optical millimetre-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett., 32, 626–8, 1996CrossRefGoogle Scholar
Fan, Z. F., Heim, P. J. S., and Dagenais, M., “Highly coherent RF signal generation by heterodyne optical phase locking of external cavity semiconductor lasers,” IEEE Photon. Technol. Lett., 10, 719–21, 1998CrossRefGoogle Scholar
Davidson, A. C., Wise, F. W., and Compton, R. C., “Low phase noise 33–40 GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett., 10, 1304–6, 1998CrossRefGoogle Scholar
Goldberg, L., Taylor, H. F., Weller, J. F., and Bloom, D. M., “Microwave signal generation with injection locked laser diodes,” Electron. Lett., 19, 491–3, 1983CrossRefGoogle Scholar
Goldberg, L., Yurek, A. M., Taylor, H. F., and Weller, J. F., “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett., 21, 814–15, 1985CrossRefGoogle Scholar
Goldberg, L., Esman, R. D., and Williams, K. J., “Generation and control of microwave signals by optical techniques,” IEE Proc., 139, 288–95, 1992Google Scholar
Braun, R. P., Grosskopf, G., Meschenmoser, R., Rohde, D., Schmidt, F., and Villino, G., “Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking,” Electron. Lett., 33, 1395–6, 1997CrossRefGoogle Scholar
Braun, R. P, Grosskopf, G., Rohde, D., and Schmidt, F., “;Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett., 10, 728–30, 1998CrossRefGoogle Scholar
Bordonalli, A. C, Walton, C., and Seeds, A. J., “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol., 17, 328–42, 1999CrossRefGoogle Scholar
Laperle, C., Svilans, M., Poirier, M., and Tetu, M., “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech., 47, 1219–24, 1999CrossRefGoogle Scholar
Ramos, R. T. and Seeds, A. J., “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electron. Lett., 26, 389–90, 1990CrossRefGoogle Scholar
Gliese, U., Christensen, E. L., and Stubkjaer, K. E., “Laser linewidth requirements and improvements for coherent optical beam forming networks in satellites,” J. Lightwave Technol., 9, 779–90, 1991CrossRefGoogle Scholar
Langley, L. N., Edge, C., Wale, M. J., Gliese, U., Seeds, A. J., Walton, C., Wright, J., and Coryell, L., “Optical phase locked loop signal sources for phased array communications antennas,” Proc. SPIE., 3160, 142–53, 1997CrossRefGoogle Scholar
Langley, L. N., Elkin, M. D., Edge, C., Wale, M. J., Gliese, U., Huang, X., and Seeds, A. J., “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., 47, 1257–64, 1999CrossRefGoogle Scholar
Margalit, M., Orenstein, M., Eisenstein, G., and Mikhailshvili, V., “Injection locking of an actively mode-locked semiconductor laser,” Opt. Lett., 19, 2125–7, 1994CrossRefGoogle ScholarPubMed
Kim, D. Y., Pelusi, M., Ahmed, Z., Novak, D., Liu, H. F., and Ogawa, Y., “Ultrastable millimeter-wave signal generation using hybrid modelocking of a monolithic DBR laser,” Electron. Lett., 31, 733–4, 1995CrossRefGoogle Scholar
Ahmed, Z., Liu, H. F., Novak, D., Pelusi, M., Ogawa, Y., and Kim, D. Y., “Low phase noise millimetre-wave signal generation using a passively modelocked monolithic DBR laser injection locked by an optical DSBSC signal,” Electron. Lett., 31, 1254–5, 1995CrossRefGoogle Scholar
Novak, D., Ahmed, Z., Waterhouse, R. B., and Tucker, R. S., “Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links,” IEEE Trans. Microwave Theory Tech., 43, 2257–62, 1995CrossRefGoogle Scholar
Bordonalli, A. C., Cai, B, Seeds, A. J., and Williams, P. J., “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett., 8, 151–3, 1996CrossRefGoogle Scholar
Logan, R. T., “Photonic radio-frequency synthesizer,” Proc. SPIE, 2844, 312–17, 1996CrossRefGoogle Scholar
R. T. Logan, R. D. Li, and R. Perusse, Demonstration of a 1–94 GHz photonic synthesizer, 9th Annual DARPA Photonic Systems for Antenna Applications Conference Proc., 1999
Ahmed, Z., Liu, H. F., Novak, D., Ogawa, Y., Pelusi, M., and Kim, D. Y., “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., 8, 37–9, 1996CrossRefGoogle Scholar
Takada, A. and Imajuku, W., “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett., 9, 1328–30, 1997CrossRefGoogle Scholar
Jung, T., Shen, J. L., Tong, D. T. K., Murthy, S., Wu, M. C., Tanbun-Ek, T., Wang, W., Lodenkamper, R., Davis, R., Lembo, L. J., and Brock, J. C., “CW injection locking of a mode-locked semiconductor laser as a local oscillator comb for channelizing broad-band RF signals,” IEEE Trans. Microwave Theory Tech., 47, 1225–33, 1999CrossRefGoogle Scholar
Bowers, J. E., Morton, P. A., Mar, A., and Corzine, S. W., “Actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron., 25, 1426–39, 1989CrossRefGoogle Scholar
Mar, A., Derickson, D., Helkey, R., Bowers, J. E., Huang, R. T., and Wolf, D., “Actively mode-locked external-cavity semiconductor lasers with transform-limited single-pulse output,” Opt. Lett., 17, 868–70, 1992CrossRefGoogle ScholarPubMed
O'Reilly, J. J., Lane, P. M., Heidelmann, R., and Hofstetter, R., “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett., 28, 2309–11, 1992CrossRefGoogle Scholar
O'Reilly, J. J. and Lane, P. M., “Fiber-supported optical generation and delivery of 60 GHz signals,” Electron. Lett., 30, 1329–30, 1994CrossRefGoogle Scholar
O'Reilly, J. J. and Lane, P. M., “Remote delivery of video services using mm-waves and optics,” J. Lightwave Technol., 12, 369–75, 1994CrossRefGoogle Scholar
Pappert, S. A., Sun, C. K., and Orazi, R. J., “Tunable RF optical source using optical harmonic carrier generation,” Proc. SPIE, 3038, 89–96, 1997CrossRefGoogle Scholar
Menders, J. and Miles, E., “Agile MM-wave generation by sideband filtering,” Proc. SPIE, 3795, 272–8, 1999CrossRefGoogle Scholar
Sun, C. K., Orazi, R. J., Pappert, S. A., and Burns, W. K., “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett., 8, 1166–8, 1996CrossRefGoogle Scholar
W. P. Robins, Phase Noise in Signal Sources, IEE Telecommunications Series 9, Peter Peregrinus Ltd., p. 78, 1984
Yao, X. S. and Maleki, L., “Converting light into spectrally pure microwave oscillation,” Opt. Lett., 21, 483–5, 1996CrossRefGoogle ScholarPubMed
Wang, X., Mao, W., Al-Mumin, M., Pappert, S. A., Hong, J., and Li, G., “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett., 11, 1292–4, 1999CrossRefGoogle Scholar
Walker, N. G., Wake, D., and Smith, I. C., “Efficient millimetre-wave signal generation through FM–IM conversion in dispersive optical fibre links,” Electron. Lett., 28, 2027–8, 1992CrossRefGoogle Scholar
Razavi, K. E. and Davies, P. A., “Semiconductor laser sources for the generation of millimetre-wave signals,” IEE Proc., 145, Pt. J, 159–63, 1998Google Scholar
Braun, R. P., Grosskopf, G., Heidrich, H., Helmolt, C., Kaiser, R., Kruger, K., Rohde, D., Schmidt, F., Stenzel, R., and Trommer, D., “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microwave Theory Tech., 46, 320–30, 1998CrossRefGoogle Scholar
Gliese, U., Norskov, T. Nielsen, Norskov, S., and Stubkjaer, K. E., “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microwave Theory Tech., 46, 458–68, 1998CrossRefGoogle Scholar
Gliese, U., “Multi-functional fibre-optic microwave links,” Opt. Quantum Electron., 30, 1005–19, 1998CrossRefGoogle Scholar
Roulston, D., “Low-noise photoparametric up-converter,” IEEE J. Solid-State Circuits, SC-3, 431–40, 1968CrossRefGoogle Scholar
Kulczyk, W. and Davis, Q., “The avalanche photodiode as an electronic mixer in an optical receiver,” IEEE Trans. Electron. Dev., 19, 1181–90, 1972CrossRefGoogle Scholar
MacDonald, R. and Hill, K., “Avalanche optoelectronic downconverter,” Opt. Lett., 7, 83–5, 1982CrossRefGoogle ScholarPubMed
Humphreys, D. A. and Lobbett, R. A., “Investigation of an optoelectronic nonlinear effect in a GaInAs photodiode, and its application in a coherent optical communication system,” IEE Proc., 135, Pt. J, 45–51, 1988Google Scholar
MacDonald, R. and Swekla, B., “Frequency domain optical reflectometer using a GaAs optoelectronic mixer,” Appl. Opt., 29, 4578–82, 1990CrossRefGoogle ScholarPubMed
Liu, Q., Davies, R., and MacDonald, R., “Experimental investigation of fiber optic microwave link with monolithic integrated optoelectronic mixing receiver,” IEEE Trans. Microwave Theory Tech., 43, 2357–60, 1995CrossRefGoogle Scholar
Hoshida, T. and Tsuchiya, M., “Broad-band millimeter-wave upconversion by nonlinear photodetection using a waveguide p-i-n photodiode,” IEEE Photon. Technol. Lett., 10, 860–2, 1998CrossRefGoogle Scholar
Ogawa, H. and Kamiya, Y., “Fiber-optic microwave transmission using harmonic laser mixing, optoelectronic mixing, and optically pumped mixing,” IEEE Trans. Microwave Theory Tech., 39, 2045–51, 1991CrossRefGoogle Scholar
Urey, Z., Wake, D., Newson, D. J., and Henning, I. D., “Comparison of InGaAs transistors as optoelectronic mixers,” Electron. Lett., 29, 1796–7, 1993CrossRefGoogle Scholar
Betser, Y., Ritter, D., Liu, C. P., Seeds, A. J., and Madjar, A., “A single-stage three-terminal heterojunction bipolar transistor optoelectronic mixer,” J. Lightwave Technol., 16, 605–9, 1998CrossRefGoogle Scholar
Foyt, A., Leonberger, F., and Williamson, R., “InP optoelectronic mixers,” Proc. SPIE, 269, 109–14 (1981)CrossRefGoogle Scholar
Lam, D. and MacDonald, R., “GaAs optoelectronic mixer operation at 4.5 GHz,” IEEE Trans. Electron Dev., ED-31, 1766–8, 1984CrossRefGoogle Scholar
Cox, C. H., Diadiuk, V., Williamson, R. C., and Foyt, A. C., “Linearity measurements of high-speed InP optoelectronic switches,” Solid State Research Report MIT Lincoln Laboratory, vol. 3, p. 5–11, 1983Google Scholar
Pan, J. J., “Cost-effective microwave fiber optic links using the heterodyne laser,” Proc. SPIE, 995, 94–8, 1988CrossRefGoogle Scholar
Ogawa, H. and Kamitsuna, Y., “Fiber-optic microwave links using balanced laser harmonic generation, and balanced/image cancellation laser mixing,” IEEE Trans. Microwave Theory Tech., 40, 2278–84, 1992CrossRefGoogle Scholar
Portnoi, E., Gorfinkel, V., Avrutin, E., Thayne, I., Barrow, D., Marsh, J., and Luryi, S., “Optoelectronic microwave-range frequency mixing in semiconductor lasers,” IEEE J. Sel. Topics Quantum Electron., 1, 451–9, 1995CrossRefGoogle Scholar
Lasri, J., Shtaif, M., Eisenstein, G., Avrutin, E. A., and Koren, U., “Optoelectronic mixing using a short cavity distributed Bragg reflector laser,” J. Lightwave Technol., 16, 443–7, 1998CrossRefGoogle Scholar
Eichen, E., “Interferometric generation of high-power, microwave frequency, optical harmonics,” Appl. Phys. Lett., 51, 398–400, 1987CrossRefGoogle Scholar
Kolner, B. H. and Dolfi, D. W., “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Opt., 26, 3676–80, 1987CrossRefGoogle Scholar
Pajarola, S., Guekos, G., and Mørk, J., “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photon. Technol. Lett., 8, 157–9, 1996CrossRefGoogle Scholar
Hall, J. L. and Morey, W. W., “Optical heterodyne measurement of Neon laser's millimeter wave difference frequency,” Appl. Phys. Lett., 10, 152–5, 1967CrossRefGoogle Scholar
M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, and W. Nowak, “Simultaneous electro-optical upconversion to 60 GHz of uncoded OFDM signals,” International Topical Meeting on Microwave Photonics, Princeton, NJ, 219–21, 1998
T. Kuri, K. Kitayama, and Y. Ogawa, “A novel fiber-optic millimeter-wave uplink incorporating 60 GHz-band photonic downconversion with remotely fed optical pilot tone using an electroabsorption modulator,” International Topical Meeting on Microwave Photonics, Princeton, NJ, 17–20, 1998
Smith, G. H., Novak, D. and Ahmed, Z., “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., 33, 74–5, 1997CrossRefGoogle Scholar
G. P. Kurpis and J. J. Taub, “Wideband X-band microstrip image rejection balanced mixer,” IEEE MTT Symposium Digest, 200–5, 1970
Chao, L., Wenyue, C. and Shiang, J. F., “Photonic mixers and image-rejection mixers for optical SCM systems,” IEEE Trans. Microwave Theory Tech., 45, 1478–80, 1997CrossRefGoogle Scholar
R. Helkey, “Advances in frequency conversion optical links,” MICROCOLL, Budapest, 1999
Gopalakrishnan, G. K., Moeller, R. P., Howerton, M. M., Burns, W. K., Williams, K. J. and Esman, R. D., “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech., 43, 2318–23, 1995CrossRefGoogle Scholar
Williams, K. J., Esman, R. D. and Dagenais, M., “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett., 6, 639–41, 1994CrossRefGoogle Scholar
Davis, G. A., Weiss, R. E., LaRue, R. A., Williams, K. J., and Esman, R. D., “A 920–1650-nm high-current photodetector,” IEEE Photon. Technol. Lett., 8, 1373–5, 1996CrossRefGoogle Scholar
Lin, L. Y., Wu, M. C., Itoh, T., Vang, T. A., Muller, R. E., Sivco, D. L., and Cho, A. Y., “Velocity-matched distributed photodetectors with high-saturation power and large bandwidth,” IEEE Photon. Technol. Lett., 8, 1376–8, 1996CrossRefGoogle Scholar
Howerton, M. M., Moeller, R. P., Gopalakrishnan, G. K. and Burns, W. K., “Low-biased fiber-optic link for microwave downconversion,” IEEE Photon. Technol. Lett., 8, 1692–4, 1996CrossRefGoogle Scholar
Williams, K J. and Esman, R. D., “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett., 8, 148–50, 1996CrossRefGoogle Scholar
Yao, X. S., “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photon. Technol. Lett., 10, 264–6, 1998CrossRefGoogle Scholar
Young, T., Conradi, J., and Tinga, W. R., “Generation and transmission of FM and /4 DQPSK signals at microwave frequencies using harmonic generation and optoelectronic mixing in Mach-Zehnder modulators,” IEEE Trans. Microwave Theory Tech., 44, 446–53, 1996CrossRefGoogle Scholar
Ho, K. P., Liaw, S. K., and Lin, C., “Efficient photonic mixer with frequency doubling,” IEEE Photon. Technol. Lett., 9, 511–13, 1997Google Scholar
Hashimoto, E., Takada, A., and Katagiri, Y., “Synchronisation of sub-Terahertz optical pulse train from PLL-controlled colliding pulse modelocked semiconductor laser,” Electron. Lett., 34, 580–2, 1998CrossRefGoogle Scholar
Helkey, R., Derickson, D., Mar, A., Wasserbauer, J., Bowers, J. E., and Thornton, R., “Repetition frequency stabilisation of passively mode-locked semiconductor lasers,” Electron. Lett., 28, 1920–1, 1992CrossRefGoogle Scholar
Helkey, R., Mar, A., Zou, W., Young, D., and Bowers, J. E., “Mode-locked repetition rate feedback stabilization of semiconductor diode lasers,” SPIE Ultrafast Pulse Generation and Spectroscopy Processings, 1861, 62–71, 1993CrossRefGoogle Scholar
Fuster, J. M., Marti, J., and Corral, J. L., “Chromatic dispersion effects in electrooptical upconverted millimetre-wave fibre optic links,” Electron. Lett., 33, 1969–70, 1997CrossRefGoogle Scholar
Fuster, J. M., Marti, J., Polo, V., and Corral, J. L., “Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers,” IEEE Photon. Technol. Lett., 9, 1161–3, 1997CrossRefGoogle Scholar
Cox, C. H., Betts, G. E., and Johnson, L. M., “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech., 38, 501–9, 1990CrossRefGoogle Scholar
Lindsay, A. C., Knight, G. A., and Winnall, S. T., “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech., 43, 2311–17, 1995CrossRefGoogle Scholar
J. Önnegren and J. Svedin, “Photonic mixing using a Franz-Keldysh electroabsorption modulator monolithically integrated with a DFB laser,” International Topical Meeting on Microwave Photonics, IEEE, Kyoto, vol. WE1-4, 1996
Yao, X. S., “High-quality microwave signal generation by use of Brillouin scattering in optical fibers,” Opt. Lett., 22, 1329–31, 1997CrossRefGoogle ScholarPubMed
Yao, X. S., “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett., 10, 138–40, 1998CrossRefGoogle Scholar
Sun, C. K., Orazi, R. J., Welstand, R. B., Zhu, J T., Yu, P. K. L., Liu, Y. Z. and Chen, J. M., “High spurious free dynamic range fibre link using a semiconductor electroabsorption modulator,” Electron. Lett., 31, 902–3, 1995CrossRefGoogle Scholar
G. E. Betts, F. J. O'Donnell, K. G. Ray, D. K. Lewis, D. E. Bossi, K. Kissa, and G. W. Drake, “Reflective linearized modulator,” Integrated Photonics Research, OSA Technical Digest Series,vol. 6, 1996
Roussell, H. and Helkey, R., “Optical frequency conversion using a linearized LiNbO3 modulator,” IEEE Microwave Guided Wave Lett., 8, 408–10, 1998CrossRefGoogle Scholar
Betts, G. E., “A linearized modulator for high performance bandpass optical analog links,” IEEE MTT-S Intl. Symp. Dig. vol. 2, 1097–1100, 1994Google Scholar
Helkey, R., “Narrowband optical A/D converter with suppressed second-order distortion,” IEEE Photon. Technol. Lett., 11, 599–601, 1999CrossRefGoogle Scholar
Ogawa, H., Polifko, D., and Banda, S., “Millimeter-wave fiber optics systems for personal radio communications,” IEEE Trans. Microwave Theory Tech., 40, 2285–93, 1992CrossRefGoogle Scholar
Morita, K. and Ohtsuka, H., “The new generation of wireless communications based on fiber-radio technologies,” IEICE Trans. Commun., E76-B, 1061–8, 1993Google Scholar
O'Reilly, J. J., Lane, P. M., Capstick, M. H., Salgado, H. M., Heidemann, R., Hofstetter, R., and Schmuck, H., “Race R2005: microwave optical duplex antenna link,” IEE Proc. 140, pt. J, 385–91, 1993Google Scholar
Komaki, S. and Ogawa, E., “Trends of fiber-optic microcellular radio communication networks,” IEICE Trans. Electron., E79-C, 98–104, 1996Google Scholar
Kuri, T., Kitayama, K., and Ogawa, Y., “Fiber-optic millimeter-wave uplink system incorporating remotely fed 60-GHz band optical pilot tone,” IEEE Trans. Microwave Theory Tech., 47, 1332–7, 1999CrossRefGoogle Scholar
Biernacki, P. D., Nichols, L. T., Enders, D. G., Williams, K. J., and Esman, R. D., “A two-channel optical downcoverter for phase detection,” IEEE Trans. Microwave Theory Tech., 46, 1784–7, 1998CrossRefGoogle Scholar
Corral, J. L., Marti, J., and Fuster, J. M., “Optical up-conversion on continuously variable true-time-delay lines based on chirped fiber gratings for millimeter-wave optical beamforming networks,” IEEE Trans. Microwave Theory Tech., 47, 1315–20, 1999CrossRefGoogle Scholar
Pappert, S. A., Sun, C. K., Orazi, R. J., and Weiner, T. E., “Photonic link technology for shipboard rf signal distribution,” Proc. SPIE, 3463, 123–34, 1998CrossRefGoogle Scholar
Roman, J. E., Nichols, L. T., Williams, K. J., Esman, R. D., Tavik, G. C., Livingston, M., and Parent, M. G., “Fiber optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Tech., 46, 2317–23, 1998CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×