Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T01:03:51.233Z Has data issue: false hasContentIssue false

4 - LiNbO3 external modulators and their use in high performance analog links

Published online by Cambridge University Press:  06 July 2010

Garry E. Betts
Affiliation:
MIT Lincoln Laboratory
William S. C. Chang
Affiliation:
University of California, San Diego
Get access

Summary

Introduction

This chapter will cover the design of modulators for high performance externally modulated analog links. This includes development of a model of the externally modulated analog link so that the connection between modulator design parameters and link performance is clear. The only type of link considered here is one using amplitude modulation of the light and direct detection.

Section 4.2 will go through the basic modulator designs in detail. Section 4.3 will relate the modulator performance to link performance, including an explanation of modulator linearization and an overview of several types of linearized modulator.

The link analysis in Section 4.3 is applicable to any externally modulated link using a modulator that can be characterized by a transfer function that depends on voltage (i.e., the optical transmission depends on voltage). It applies to modulators of any type in any material that meet this criterion. The modulator designs given in Section 4.2, and the linearized modulators described in Section 4.3.2, can be built on a variety of materials.

Lithium niobate (LiNbO3) presently is the material in widest use as a modulator substrate for modulators used in analog links. It is an insulating crystal whose refractive index changes with voltage. It has a high electro-optic coefficient, it is stable at normal electronic operating temperatures, low-loss (0.1 dB/cm) optical waveguides can be made in it, there are manufacturable ways to attach optical fibers with low coupling loss, and its dielectric constant is low enough that high speed modulators can be made without too much trouble.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Yariv, Introduction to Optical Electronics, Holt, Rinehart and Winston, New York, 1976
T. Tamir, Guided-Wave Optoelectronics, Springer-Verlag, New York, 1990
J. Pankove, Optical Processes in Semiconductors, Dover Publications, New York, 1971
Martin, W. E., “A new waveguide switch/modulator for integrated optics,” Appl. Phys. Lett. 26, 562–3, 1975CrossRefGoogle Scholar
Alferness, R. C., “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121–37, 1982CrossRefGoogle Scholar
Walker, R. G., “High-speed III–V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–67, 1991CrossRefGoogle Scholar
Gnauck, A. H., Korotky, S. K., Veselka, J. J., Nagel, J., Kemmerer, C. T., Minford, W. J., and Moser, D. T., “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett. 3, 916–18, 1991CrossRefGoogle Scholar
Rediker, R. H. and Leonberger, F. J., “Analysis of integrated-optics near 3 dB coupler and Mach-Zehnder interferometric modulator using four-port scattering matrix,” IEEE J. Quantum Electron. QE-18, 1813–16, 1982CrossRefGoogle Scholar
Soref, R. A., McDaniel, D. L. Jr., and Bennett, B. R., “Guided-wave intensity modulators using amplitude-and-phase perturbations,” J. Lightwave Technol. 6, 437–44, 1988CrossRefGoogle Scholar
Kissa, K. M., Suchoski, P. G., Lewis, and D. K., “Accelerated aging of annealed proton-exchanged waveguides,” J. Lightwave Technol. 13, 1521–9, 1995CrossRefGoogle Scholar
Williams, K. J. and Esman, R. D., “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett. 8, 148–50, 1996CrossRefGoogle Scholar
Ramaswamy, V., Devino, M. D., and Standley, R. D., “Balanced bridge modulator switch using Ti-indiffused LiNb03 strip waveguides,” Appl. Phys. Lett. 32, 644–6, 1978CrossRefGoogle Scholar
Bulmer, C. H., Burns, W. K., and Greenblatt, A. S., “Phase tuning by laser ablation of LiNb03 interferometric modulators to optimum linearity,” IEEE Photon. Technol. Lett. 3, 510–12, 1991CrossRefGoogle Scholar
Bulmer, C. H. and Burns, W. K., “Linear interferometric modulators in Ti:LiNb03,” J. Lightwave Technol. LT-2, 512–21, Aug. 1984CrossRefGoogle Scholar
Betts, G. E., Johnson, L. M., and, Cox, C. H. III, “High-sensitivity lumped-element bandpass modulators in LiNb03,” J. Lightwave Technol. 7, 2078–83, 1989CrossRefGoogle Scholar
Howerton, M. M., Moeller, R. P., Greenblatt, A. S., and Krahenbuhl, R., “Fully packaged, broadband LiNb03 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–4, 2000CrossRefGoogle Scholar
Becker, R. A., “Broad-band guided-wave electrooptic modulators,” IEEE J. Quantum Electron. QE-20, 723–7, 1984CrossRefGoogle Scholar
Donnelly, J. P. and Gopinath, A., “A comparison of power requirements of traveling-wave LiNb03 optical couplers and interferometric modulators,” IEEE J. Quantum Electron. QE-23, 30–41, 1987CrossRefGoogle Scholar
Noguchi, K., Mitomi, O., and Miyazawa, H., “Millimeter-wave Ti:LiNb03 optical modulators,” J. Lightwave Technol. 16, 615–19, 1998CrossRefGoogle Scholar
Cummings, U. V. and Bridges, W. B., “Bandwidth of linearized electrooptic modulators,” J. Lightwave Technol. 16, 1482–90, 1998CrossRefGoogle Scholar
Kurazono, S., Iwasaki, K., and Kumagai, N., “New optical modulator consisting of coupled optical waveguides,” Electron. Commun. Jap. 55, 103–9, 1972Google Scholar
Kogelnik, H. and Schmidt, R. V., “Switched directional couplers with alternating ΔβIEEE J. Quantum Electron. QE-12, 396–401, 1976CrossRefGoogle Scholar
Marom, E., Ramer, O. G., and Ruschin, S., “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. QE-20, 1311–19, 1984CrossRefGoogle Scholar
Halemane, T. R. and Korotky, S. K., “Distortion characteristics of optical directional coupler modulators,” IEEE Trans. Microwave Theory Tech. 38, 669–73, 1990CrossRefGoogle Scholar
Watson, J. E., Milbrodt, M. A., Bahadori, K., Dautartas, M. F., Kemmerer, C. T., Moser, D. T., Schelling, A. W., Murphy, T. O., Veselka, J. J., and Herr, D. A., “A lowvoltage TiLiNb03 switch with a dilated-Benes architecture,” J. Lightwave Technol. 8, 794–801, 1990CrossRefGoogle Scholar
Burns, W. K., Howerton, M. M., and, Moeller, R. P., “Performance and modeling of proton exchanged LiTaO3 branching modulators,” J. Lightwave Technol. 10, 1403–8, 1992CrossRefGoogle Scholar
Silberberg, Y., Perlmutter, P., and Baran, J. E., “Digital optical switch,” Appl. Phys. Lett. 51, 1230–2, 1987CrossRefGoogle Scholar
Burns, W. K., “Shaping the digital switch,” IEEE Photon. Technol. Lett. 4, 861–3, 1992CrossRefGoogle Scholar
Burns, W. K. and Milton, A. F., “Mode conversion in planar dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–9, 1975CrossRefGoogle Scholar
Sheem, S. K., “Total internal reflection integrated-optics switch: a theoretical evaluation,” Appl. Opt. 17, 3679–87, 1978CrossRefGoogle ScholarPubMed
Neyer, A., “Operation mechanism of electrooptic multimode X-switches,” IEEE J. Quantum Electron. QE-20, 999–1002, 1984CrossRefGoogle Scholar
Betts, G. E., and Chang, W. S. C., “Crossing-channel waveguide electrooptic modulators,” IEEE J. Quantum Electron. QE-22, 1027–38, 1986CrossRefGoogle Scholar
Baba, S., Shimomura, K., and Arai, S., “A novel integrated twin guide (ITG) optical switch with a built-in TIR region,” IEEE Photon. Technol. Lett. 4, 486–8, 1992CrossRefGoogle Scholar
Neyer, A. and Sohler, W., “High-speed cutoff modulator using a Ti-diffused LiNb03 channel waveguide,” Appl. Phys. Lett. 35, 256–8, 1979CrossRefGoogle Scholar
Hamilton, S. A., Yankelevich, D. R., Knoesen, A., Weverka, R. T., Hill, R. A., and Bjorklund, G. C., “Polymer in-line fiber modulators for broadband radio-frequency optical links,” J. Opt. Soc. Am. B 15, 740–50, 1998CrossRefGoogle Scholar
Weiner, J. S., Miller, D. A. B., and Chemla, D. S., “Quadratic electro-optic effect due to quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–4, 1987CrossRefGoogle Scholar
Kim, Y., Lee, H., Lee, J., Han, J., Oh, T. W., and Jeong,, J., “Chirp characteristics of 10Gb/s electroabsorption modulator integrated DFB lasers,” IEEE J. Quantum Electron. 36, 900–8, 2000Google Scholar
Zhang, S. Z., Chiu, Y. J., Abraham, P., and Bowers, J. E., “25-GHz polarization- insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11, 191–3, 1999CrossRefGoogle Scholar
Properties of lithium niobate, The institution of Electrical Engineers, London, 1989
Noguchi, K., Miyazawa, H., and, Mitomi, O., “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNb03 optical modulator,” Electron. Lett. 34, 661–3, 1998CrossRefGoogle Scholar
Burns, W. K., Klein, P. H., West, E. J., and Plew, L. E., “Ti diffusion in Ti:LiNb03 planar and channel optical waveguides,” J. Appl. Phys. 50, 6175–82, 1979CrossRefGoogle Scholar
Cao, X. F., Ramaswamy, R. V., and Srivastava, R., “Characterization of annealed proton exchanged LiNb03 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–13, 1992CrossRefGoogle Scholar
Suchoski, P. G., Findakly, T. K., and Leonberger, F. J., “Stable low-loss proton- exchanged LiNb03 waveguide devices with no electro-optic degradation,” Opt. Lett. 13, 1050–52, 1988CrossRefGoogle Scholar
Wooten, E. L., Kissa, K. M., Yi-Yan, A., Murphy, E. J., Lafaw, D. A., Hallemeier, P. F., Maack, D., Attanasio, D. V., Fritz, D. J., McBrien, G. J., and Bossi, D. E., “A review of lithium niobate modulators for fiber-optic communications systems,”IEEE J. Sel. Topics Quantum Electron. 6, 69–82, 2000CrossRefGoogle Scholar
Betts, G. E., O'Donnell, F. J., and Ray, K. G., “Effect of annealing on photorefractive damage in titanium-indiffused LiNb03 modulators,” IEEE Photon. Technol. Lett. 6, 211–13, 1994CrossRefGoogle Scholar
Bulmer, C. H., Burns, W. K., and Hiser, S. C., “Pyroelectric effects in LiNb03 channel-waveguide devices,”Appl. Phys. Lett. 48, 1036–8, 1986CrossRefGoogle Scholar
Nayyer, J. and Nagata, H., “Suppression of thermal drifts of high speed Ti:LiNb03 optical modulators,” IEEE Photon. Technol. Lett. 6, 952–5, 1994CrossRefGoogle Scholar
M. Seino, M. Naoyuki, T. Nakazawa, Y. Kubota, and M. Doi, “Optical waveguide device with suppressed dc drift,”US Patent 5,214,724, May 25,1993
G. E. Betts, K. G. Ray, and L. M. Johnson, “Suppression of acoustic effects in lithium niobate integrated-optical modulators,” in Integrated Photonics Research, 1990 Technical Digest Series Vol. 5, Optical Society of America, Washington, D.C., 1990, pp. 37–8
Kuo, C. Y. and Bergmann, E. E., “Second-order distortion and electronic compensation in analog links containing fiber amplifiers,” J. Lightwave Technol. 10, 1751–9, 1992CrossRefGoogle Scholar
Williams, K. J., Esman, R. D., and Dagenais, M., “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14, 84–96, 1996CrossRefGoogle Scholar
S. B. Alexander, Optical Communication Receiver Design, SPIE Press, Bellingham, WA, 1997
Uehara, S., “Calibration of optical modulator frequency response with application to signal level control,”Appl. Opt. 17, 68–71, 1978CrossRefGoogle ScholarPubMed
Childs, R. B. and O'Byrne, V. B., “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Commun. 8, 1369–76, 1990CrossRefGoogle Scholar
Nazarathy, M., Berger, J., Ley, A. J., Levi, I. M., and Kagan, Y., “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11, 82–105, 1993CrossRefGoogle Scholar
J. C. Twichell and R. J. Helkey, “Linearized optical sampler,” US patent 6,028,424, Feb. 22,2000
Bridges, W. B. and Schaffner, J. H., “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–97, 1995CrossRefGoogle Scholar
Welstand, R. B., Sun, C. K., Pappert, S. A., Liu, Y. Z., Chen, J. M., Zhu, J. T., Kellner, A. L., and Yu, P. K. L., “Enhanced linear dynamic range property of Franz–Keldysh effect waveguide modulator,” IEEE Photon. Technol. Lett. 7, 751–3, 1995CrossRefGoogle Scholar
Lin, Z.- Q. and Chang, W. S. C., “Reduction of intermodulation distortion of interferometric optical modulators through incoherent mixing of optical waves,” Electron. Lett. 26, 1980–2, 1990CrossRefGoogle Scholar
Korotky, S. K. and Ridder, R. M., “Dual parallel modulation schemes for low- distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377–81, 1990CrossRefGoogle Scholar
Johnson, L. M. and Roussell, H. V., “Reduction of intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13, 928–30, 1988CrossRefGoogle ScholarPubMed
Liu, P.- L., Li, B. J., and Trisno, Y. S., “In search of a linear electrooptic amplitude modulator,” IEEE Photon. Technol. Lett. 3, 144–6, 1991CrossRefGoogle Scholar
Betts, G. E., “A linearized modulator for sub-octave-bandpass optical analog links,” IEEE Trans. Microwave Theory Tech. 42, 2642–9, 1994CrossRefGoogle Scholar
G. E. Betts, F. J. O'Donnell, K. G. Ray, D. K. Lewis, D. E. Bossi, K. Kissa, and G. W. Drake, “Reflective linearized modulator,” in Integrated Photonics Research, 1996 OSA Technical Digest Series Vol. 6, Optical Society of America, Washington, D.C., 1996, pp. 626–9
Burns, W. K., Howerton, M. M., Moeller, R. P., Greenblatt, A. S., and McElhanon, R. W., “Broad-band reflection traveling-wave LiNb03 modulator,” IEEE Photon. Technol. Lett. 10, 805–6, 1998CrossRefGoogle Scholar
G. J. McBrien and J. D. Farina, “Cascaded optic modulator arrangement,” US patent 5,168,534, Dec. 1, 1992
Skeie, H. and Johnson, R. V., “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153–64, 1991CrossRefGoogle Scholar
M. Nazarathy, Y. Kagan, and Y. Simler, “Cascaded optical modulation system with high linearity,” US patent 5,278,923, Jan. 11, 1994
Farwell, M. L., Lin, Z.- Q., Wooten, E., and Chang, W. S. C., “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3, 792–5, 1991CrossRefGoogle Scholar
Ackerman, E. I., Cox, C. H. III, Betts, G. E., Roussell, H. V., Ray, K. G., and O'Donnell, F. J., “Input impedance conditions for minimizing the noise figure of an analog optical link,” IEEE Trans. Microwave Theory Tech. 46, 2025–31, 1998CrossRefGoogle Scholar
Gimlett, J. L. and Cheung, N. K., “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems,” J. Lightwave Technol. 7, 888–95, 1989CrossRefGoogle Scholar
S. E. Wilson, “Evaluate the distortion of modular cascades,” Microwaves 67–70, March 1981
Schaffner, J. H. and Bridges, W. B., “Intermodulation distortion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11, 3–6, 1993CrossRefGoogle Scholar
Farwell, M. L., Chang, W. S. C., and Huber, D. R., “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 5, 779–82, 1993CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×