Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T00:28:31.972Z Has data issue: false hasContentIssue false

3 - Analog modulation of semiconductor lasers

Published online by Cambridge University Press:  06 July 2010

Joachim Piprek
Affiliation:
University of California, Santa Barbara
John E. Bowers
Affiliation:
University of California, Santa Barbara
William S. C. Chang
Affiliation:
University of California, San Diego
Get access

Summary

Introduction

The laser is one of the most important elements in fiber optic links since it generates the coherent optical wave that carries the signal. Typical laser wavelengths are 1.3 μm and 1.55 μm corresponding to the dispersion and absorption minimum, respectively, of silica fibers. The laser frequency is about 200 THz and the RF (10 kHz-300 MHz) or microwave (300 MHz-300 GHz) signal can be modulated onto the laser beam either directly or externally. This chapter focuses on direct modulation. It is simpler to implement than external modulation but the usable bandwidth is limited to a few GHz. Applications of direct analog laser modulation include cable TV, base station links for mobile communication, and antenna remoting. Laser performance requirements include high slope efficiency to obtain high link gain, low laser noise to keep the link noise figure low, and low distortion to achieve a large spurious free dynamic range (SFDR).

Section 3.2 outlines basic physical mechanisms of semiconductor lasers. We emphasize the quantum nature of electrons and photons which helps to understand efficiency and noise issues. The slope efficiency is discussed in detail. Section 3.3 presents the laser rate equations which are the common basis for the analysis of analog performance. Numerical solutions to the rate equations allow for an exploration of a wide spectrum of lasing effects. However, analytical formulas based on the small signal approximation are valid in many cases and they are given throughout this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E. I. Ackerman, C. H. Cox III,III and N. A. Riza (eds.), Selected Papers on Analog Fiber-Optic Links, SPIE Milestone Series, vol. 149, Bellingham, 1998
S. L. Chuang, Physics of Optoelectronic Devices, Wiley & Sons, New York, 1995
Nagarajan, R., Fukushima, T., Ishikawa, M., Bowers, J. E., Geels, R. S., and Coldren, L. A., “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett., 4 (2), 121–3, 1992CrossRefGoogle Scholar
Morthier, G., “Design and optimization of strained-layer-multiquantum-well lasers for high-speed analog communication,” IEEE J. Quantum Electron., 30, 1520–7, 1994CrossRefGoogle Scholar
C. Wilmsen, H. Temkin, and L. A Coldren (eds.), Vertical Cavity Surface Emitting Lasers, Cambridge University Press, 1999
L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, New York, 1995
Piprek, J., Abraham, P., and Bowers, J. E., “Carrier non-uniformity effects on the internal efficiency of multi-quantum-well laser diodes,” Appl. Phys. Lett., 74 (4), 489–91, 1999CrossRefGoogle Scholar
Chen, T. R., Chen, P. C., Ungar, J., Paslaski, J., Oh, S., Luong, H., and Bar-Chaim, N., “Wide temperature range linear DFB lasers with very low threshold current,” Electron. Lett., 33, 963–4, 1997CrossRefGoogle Scholar
Olson, T., “An RF and microwave fiber-optic design guide,” Microwave J., 39 (8), 54–78, 1996Google Scholar
Jaeger, R., Grabherr, M., Jung, C., Michalzik, R., Reiner, G., Weigl, B., and Ebeling, K. J., “57% wallplug efficiency oxide-confined 850nm wavelength GaAs VCSELs,” Electron. Lett., 33, 330–1, 1997CrossRefGoogle Scholar
Margalit, N. M., Piprek, J., Zhang, S., Babic, D. I., Streubel, K., Mirin, R. P., Wesselmann, J. R., Bowers, J. E., and Hu, E. L., “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron., 3, 359–65, 1997CrossRefGoogle Scholar
Jayaraman, V., Geske, J. C., MacDougal, M. H., Peters, F. H., Lowes, T. D., and Char, T. T., “Uniform threshold current, continuous-wave, singlemode 1300nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett., 34, 1405–6, 1998CrossRefGoogle Scholar
Joindot, I. and Beylat, J. L., “Intervalence band absorption coefficient measurements in bulk layer, strain and unstrained multiquantum well 1.55 μm semiconductor lasers,” Electron. Lett., 29 (7), 604–6, 1993CrossRefGoogle Scholar
Tessler, N. and Eisenstein, G., “On carrier injection and gain dynamics in quantum well lasers,” IEEE J. Quantum Electron., 29 (6), 1586–93, 1993CrossRefGoogle Scholar
J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, IEE/SPIE Press, London/Washington, 1998
G. Morthier and P. Vankwikelberge, Handbook of Distributed Feedback Laser Diodes, Artech House, Norwood, 1997
K. Petermann, Laser Diode Modulation and Noise, Kluwer Academic Publishers, Dordrecht, 1988
G. H. B. Thompson, Physics of Semiconductor Laser Devices, John Wiley & Sons, New York, 1980
K. Y. Lau and A. Yariv, “High-frequency current modulation of semiconductor injection lasers,” Ch. 2 in Semiconductors and Semimetals, vol. 22, Academic Press, Orlando, 1985
Katz, J., Margalit, S., Harder, C., Wilt, D., and Yariv, A., “The intrinsic equivalent circuit of a laser diode,” IEEE J. Quantum Electron., 17 (1), 4–7, 1981CrossRefGoogle Scholar
Harder, C., Katz, J., Margalit, S., Shacham, J., and Yariv, A., “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron., 18 (3), 333–7, 1982CrossRefGoogle Scholar
Flynn, E. J., “A note on the semiconductor laser equivalent circuit,” J. Appl. Phys., 85 (4), 2041–5, 1999CrossRefGoogle Scholar
K. Y. Lau, “Dynamics in quantum well lasers,” Ch. 5 in Quantum Well Lasers, ed. P. S. Zory, Academic Press, San Diego, 1993
J. E. Bowers, “Modulation properties of semiconductor lasers,” in Optoelectronics for the Information Age, ed. C. Lin, Van Nostrand, New York, 1989
Atlas, D. A. and Rosiewicz, A., “A 20 GHz bandwidth InGaAsPΓInP MTBH laser module,” IEEE Photon. Technol. Lett., 5 (2), 123–6, 1993CrossRefGoogle Scholar
Goldsmith, C. L. and Kanack, B., “Broad-band reactive matching of high-speed directly modulated laser diodes,” IEEE Microwave & Guided Wave Lett., 3 (9), 336–8, 1993CrossRefGoogle Scholar
Kjebon, O., Schatz, R., Lourdudoss, S., Nilsson, S., Stalnacke, B., and Backbom, L., “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett., 33, 488–9, 1997CrossRefGoogle Scholar
Lear, K. L., Mar, A., Choquette, K. D., Kilcoyne, S. P., Schneider, R. P., and Geib, K. M., “High-frequency modulation of oxide-confined vertical-cavity surface emitting lasers,” Electron. Lett., 32, 457–8, 1996CrossRefGoogle Scholar
Kjebon, O., Schatz, R., Lourdudoss, S., Nilsson, S., and Stalnacke, B., “Modulation response measurement and evaluation of MQW InGaAsP lasers of various design,” Proc., SPIE, 2687, 138–52, 1996CrossRefGoogle Scholar
Tauber, D., Wang, G., Geels, R. S., Bowers, J. E., and Coldren, L. A., “Large and small dynamics of vertical cavity surface emitting lasers,” Appl. Phys. Lett., 62, 325–7, 1993CrossRefGoogle Scholar
Bowers, J. E., “High speed semiconductor laser design and performance,” Solid State Electron., 30, 1–11, 1987CrossRefGoogle Scholar
K. Kishino, “Direct modulation of semiconductor lasers,” in Handbook of Semiconductor Lasers and Photonic Integrated Circuits, eds. Y. Suematsu and A. R. Adams, Chapman & Hall, London, 1994
Yamamoto, Y. and Machida, S., “High-impedance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A, 35 (12), 5114–30, 1987CrossRefGoogle ScholarPubMed
Schunk, N. and Petermann, K., “Numerical analysis of feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron., 24 (7), 1242–7, 1988CrossRefGoogle Scholar
Chen, T. R., Hsin, W., and Bar-Chaim, N., “Very high-power InGaAsP/InP distributed feedback lasers at 1.55 μm wavelength,” Appl. Phys. Lett., 72, 1269–71, 1998CrossRefGoogle Scholar
C. H. Cox, “Optical transmitters,” in The Electronics Handbook, ed. J. C. Whitaker, CRC Press & IEEE Press, 1996
Roussell, H., Helkey, R., Betts, G., and Cox, C., “Effect of optical feedback on high-dynamic-range Fabry–Perot laser optical links,” IEEE Photon Technol. Lett., 9, 106–8, 1997CrossRefGoogle Scholar
Yoshikawa, T., Kawakami, T., Saito, H., Kosaka, H., Kajita, M., Kurihara, K., Sugimoto, Y., and Kasahara, K., “Polarization-controlled single-mode VCSEL,” IEEE J. Quantum Electron., 34 (6), 1009–15, 1998CrossRefGoogle Scholar
Bae, J. W., Temkin, H., Swirhun, S. E., Quinn, W. E., Brusenbach, P., Parson, C., Kim, M., and Uchida, T., “Reflection noise in vertical cavity surface emitting lasers,” Appl. Phys. Lett., 63, 1480–2, 1993CrossRefGoogle Scholar
Lin, M. S., Wang, S. J., and Dutta, N., “Measurement and modeling of the harmonic distortion in InGaAsP/InP distributed feedback lasers,” IEEE J. Quantum Electron., 26, 998–1004, 1990CrossRefGoogle Scholar
Morthier, G., Libbrecht, F., David, K., Vankwikelberge, P., and Baets, R. G., “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 μm FP and DFB lasers,” IEEE J. Quantum Electron., 27, 1990–2002, 1991CrossRefGoogle Scholar
Morthier, G., “Influence of the carrier density dependence of the absorption on the harmonic distortion in semiconductor lasers,” J. Lightwave Technol., 11, 16–19, 1993CrossRefGoogle Scholar
Gorfinkel, V. B. and Luryi, S., “Fundamental limits for linearity of CATV lasers,” J. Lightwave Technol., 13, 252–60, 1995CrossRefGoogle Scholar
Takemoto, A., Watanabe, H., Nakajima, Y., Sakakibara, Y., Kakimoto, S., Yamashita, J., Hatta, T., and Miyake, Y., “Distributed feedback laser diode and module for CATV systems,” J. Select. Areas Commun., 8, 1359–64, 1990CrossRefGoogle Scholar
J. Chen, R. Ram, and R. Helkey, “Linearity and third order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron., 1999
Lau, K. Y. and Yariv, A., “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett., 45 (10), 1034–6, 1984CrossRefGoogle Scholar
Shi, Q., Burroughs, R. S., and Lewis, D., “An alternative model for laser clipping-induced nonlinear distortion for analog lightwave CATV systems,” IEEE Photon Technol. Lett., 4 (7), 784–7, 1992CrossRefGoogle Scholar
Darcie, T. E., Tucker, R. S., and Sullivan, G. J., “Intermodulation and harmonic distortion in InGaAsP lasers,” Electron. Lett., 21 (16), 665–6, 1985CrossRefGoogle Scholar
T. E. Darcie, R. S. Tucker, and G. J. Sullivan, (correction in Electron. Lett., 22 (11), 619, 1986)
H. Lee, R. V. Dalal, R. J. Ram, and K D. Choquette, “Resonant distortion in vertical cavity surface emitting lasers for RF communication,” Optical Fiber Conference, Paper FE1, Digest F, pp. 84–6, Optical Society of America, Washington, 1999
J. Piprek, K. Takiguchi, A. Black, P. Abraham, A. Keating, V. Kaman, S. Zhang, and J. E. Bowers, “Analog modulation of 1.55 μm vertical cavity lasers,” Proc. SPIE, 3627, Vertical-Cavity Surface-Emitting Lasers III, eds. K. D. Choquette and C. Lei, 1999
Cox, C., Ackerman, E., Helkey, R., and Betts, G. E., “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech., 45 (8), 1375–83, 1997CrossRefGoogle Scholar
Dalal, R. V., Ram, R. J., Helkey, R., Roussell, H., and Choquette, K. D., “Low distortion analogue signal transmission using vertical cavity lasers,” Electron. Lett., 34, 1590–1, 1998CrossRefGoogle Scholar
Wesselmann, J. R., Margalit, N. M., and Bowers, J. E., “Analog measurements of long wavelength vertical cavity lasers,” Appl. Phys. Lett., 72, 2084–6, 1998CrossRefGoogle Scholar
Koch, T. L. and Bowers, J. E., “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett., 20 (25–26), 1038–40, 1984CrossRefGoogle Scholar
Kobayashi, S., Yamamoto, Y., Ito, M., and Kimura, T., “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron., 18 (4), 582–95, 1982CrossRefGoogle Scholar
Kimura, T., “Coherent optical fiber transmission,” J. Lightwave Technol., 5 (4) 414–28, 1987CrossRefGoogle Scholar
Chai, B. and Seeds, A. J., “Optical frequency modulation links: theory and experiments,” IEEE Trans. Microwave Theory Tech., 45 (4), 505–11, 1997Google Scholar
Fujitsu 1.3 μm DFB laser with bulk active region, R. Ram, personal communication

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×