Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T08:35:51.869Z Has data issue: false hasContentIssue false

5 - Early Placental Development and Disorders

Published online by Cambridge University Press:  16 February 2017

Roy G. Farquharson
Affiliation:
Liverpool Women's Hospital
Mary D. Stephenson
Affiliation:
University of Illinois College of Medicine
Get access
Type
Chapter
Information
Early Pregnancy , pp. 43 - 53
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Seller, M.J., Some aspects of placental function. Postgrad Med J, 1965. 41(481): 680.CrossRefGoogle ScholarPubMed
Cross, J.C., et al., Genes, development and evolution of the placenta. Placenta, 2003. 24: 123–30.CrossRefGoogle ScholarPubMed
Jaffe, R., Jauniaux, E., and Hustin, J., Maternal circulation in the first-trimester human placenta – myth or reality? Am J Obstet Gynecol, 1997. 176(3): 695705.CrossRefGoogle ScholarPubMed
Cataldi, L. and Fanos, V., [Leonardo da Vinci and his studies on the human fetus and the placenta]. Acta Biomed Ateneo Parmense, 2000. 71 (Suppl 1): 405–06.Google Scholar
Pijnenborg, R. and Vercruysse, L., Shifting concepts of the fetal-maternal interface: a historical perspective. Placenta, 2008. 29 (Suppl A): S20–5.Google Scholar
Pijnenborg, R. and Vercruysse, L., Erasmus Darwin's enlightened views on placental function. Placenta, 2007. 28(89): 775–78.CrossRefGoogle ScholarPubMed
Burton, G.J., Jauniaux, E., and Watson, A.L., Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol, 1999. 181(3): 718–24.Google Scholar
Boyd, J.D. and Hamilton, W.J., The Human Placenta. 1970, Cambridge: Heffer.CrossRefGoogle Scholar
Selwood, L. and Johnson, M.H., Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. Bioessays, 2006. 28(2): 128–45.CrossRefGoogle ScholarPubMed
Schier, A.F., The maternal-zygotic transition: death and birth of RNAs. Science, 2007. 316(5823): 406–07.CrossRefGoogle ScholarPubMed
Telford, N.A., Watson, A.J., and Schultz, G.A., Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev, 1990. 26(1): 90100.CrossRefGoogle ScholarPubMed
Watson, A.J. and Barcroft, L.C., Regulation of blastocyst formation. Front Biosci, 2001. 6: D708–30.CrossRefGoogle ScholarPubMed
Moore, K.L., Persaud, T.V.N., and Torchia, M.G., The Developing Human: Clinically Oriented Embryology. 9th edn. 2013, Philadelphia: Elsevier/Saunders.Google Scholar
Pennington, K.A., et al., Preeclampsia: multiple approaches for a multifactorial disease. Dis Model Mech, 2012. 5(1): 918.CrossRefGoogle ScholarPubMed
Burghardt, R.C., et al., Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals. Cells Tissues Organs, 2002. 172(3): 202–17.CrossRefGoogle ScholarPubMed
Aplin, J.D., Jones, C.J., and Harris, L.K., Adhesion molecules in human trophoblast – a review. I. Villous trophoblast. Placenta, 2009. 30(4): 293–98.CrossRefGoogle ScholarPubMed
Blomberg, L., Hashizume, K., and Viebahn, C., Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction, 2008. 135(2): 181–95.CrossRefGoogle ScholarPubMed
Bolouri, H., Embryonic pattern formation without morphogens. Bioessays, 2008. 30(5): 412–17.Google Scholar
Wildman, D.E., Sources for comparative studies of placentation. II. Genomic resources. Placenta, 2008. 29(2): 144–47.CrossRefGoogle ScholarPubMed
Carter, A.M. and Enders, A.C., Comparative aspects of trophoblast development and placentation. Reprod Biol Endocrinol, 2004. 2: 46.CrossRefGoogle ScholarPubMed
Caniggia, I., et al., Oxygen and placental development during the first trimester: implications for the pathophysiology of preeclampsia. Placenta, 2000. 21 (Suppl A): S2530.CrossRefGoogle Scholar
Simmons, D.G. and Cross, J.C., Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol, 2005. 284(1): 1224.CrossRefGoogle ScholarPubMed
Whitley, G.S. and Cartwright, J.E., Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta, 2010. 31(6): 465–74.CrossRefGoogle ScholarPubMed
O'Leary, M.A., et al., The placental mammal ancestor and the post-K-Pg radiation of placentals. Science, 2013. 339(6120): 662–67.Google Scholar
Vogel, P., The Current molecular phylogeny of eutherian mammals challenges previous interpretations of placental evolution. Placenta, 2005. 26: 591–96.CrossRefGoogle ScholarPubMed
Carter, A.M., et al., Comparative placentation and animal models: patterns of trophoblast invasion – A workshop report. Placenta, 2006. 27: S3033.CrossRefGoogle ScholarPubMed
Enders, A.C. and Carter, A.M., Comparative placentation: some interesting modifications for histotrophic nutrition – A review. Placenta, 2006. 27: S1116.CrossRefGoogle ScholarPubMed
Aubuchon, M., Schulz, L.C., and Schust, D.J., Preeclampsia: animal models for a human cure. Proc Natl Acad Sci U S A, 2011. 108(4): 1197–98.CrossRefGoogle ScholarPubMed
Rawn, S.M. and Cross, J.C., The evolution, regulation, and function of placenta-specific genes. Ann Rev Cell Dev Biol, 2008. 24: 159–81.CrossRefGoogle ScholarPubMed
Zeh, J.A. and Zeh, D.W., Viviparity-driven conflict: more to speciation than meets the fly. Ann N Y Acad Sci, 2008. 1133: 126–48.CrossRefGoogle ScholarPubMed
Fowden, A.L. and Moore, T., Maternal-fetal resource allocation: co-operation and conflict. Placenta, 2012. 33 (Suppl 2): e1115.CrossRefGoogle ScholarPubMed
Hyde, K.J. and Schust, D.J., Genetic considerations in recurrent pregnancy loss. Cold Spring Harb Perspect Med, 2015. 5(3): a023119.Google Scholar
Oyelese, Y. and Smulian, J.C., Placenta previa, placenta accreta, and vasa previa. Obstet Gynecol, 2006. 107(4): 927–41.Google Scholar
Froeling, F.E. and Seckl, M.J., Gestational trophoblastic tumours: an update for 2014. Curr Oncol Rep, 2014. 16(11): 408.CrossRefGoogle ScholarPubMed
Hefner, L.J. and Schust, D.J., The Reproductive System at a Glance. Third edn. 2010, London: Wiley-Blackwell.Google Scholar
Seckl, M.J., Sebire, N.J., and Berkowitz, R.S., Gestational trophoblastic disease. Lancet, 2010. 376(9742): 717–29.CrossRefGoogle ScholarPubMed
Cunningham, F., et al., Williams Obstetrics. 24 edn. 2014. New York City: McGraw-Hill Companies, Inc.Google Scholar
Rao, K.P., et al., Abnormal placentation: evidence-based diagnosis and management of placenta previa, placenta accreta, and vasa previa. Obstet Gynecol Surv, 2012. 67(8): 503–19.CrossRefGoogle ScholarPubMed
Caniggia, I., et al., Inhibition of TGF-beta 3 restores the invasive capability of extravillous trophoblasts in preeclamptic pregnancies. J Clin Invest, 1999. 103(12): 1641–50.CrossRefGoogle ScholarPubMed
Xu, R.H., et al., BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotech, 2002. 20(12): 1261–64.CrossRefGoogle ScholarPubMed
Das, P., et al., Effects of fgf2 and oxygen in the bmp4-driven differentiation of trophoblast from human embryonic stem cells. Stem Cell Res, 2007. 1(1): 6174.CrossRefGoogle ScholarPubMed
Yang, Y., et al., Heightened potency of human pluripotent stem cell lines created by transient BMP exposure. PNAS, 2015. 112(18): E2337–46Google Scholar
Amita, M., et al., Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci U S A, 2013. 110(13): E1212–21.CrossRefGoogle ScholarPubMed
Yang, P., et al., Abnormal oxidative stress responses in fibroblasts from preeclampsia infants. PLoS One, 2014. 9(7): e103110.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×