Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-26T05:06:33.988Z Has data issue: false hasContentIssue false

31 - HLA Associations and Recurrent Pregnancy Loss

Published online by Cambridge University Press:  16 February 2017

Roy G. Farquharson
Affiliation:
Liverpool Women's Hospital
Mary D. Stephenson
Affiliation:
University of Illinois College of Medicine
Get access
Type
Chapter
Information
Early Pregnancy , pp. 300 - 313
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Parham, P. Elements of the immune system and their roles in defense. In Parham, P (ed), The Immune System. 2nd edn. New York: New York Garland Science Publishing; 2005, pp. 134.Google Scholar
Billington, WD. The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. Journal of reproductive immunology 2003;60:111.CrossRefGoogle ScholarPubMed
Moffett-King, A. Natural killer cells and pregnancy. Nature Reviews Immunology 2002;2:656–63.Google ScholarPubMed
Beydoun, H, Saftlas, AF. Association of human leucocyte antigen sharing with recurrent spontaneous abortions. Tissue Antigens 2005;65:123–35.CrossRefGoogle ScholarPubMed
Meuleman, T, Lashley, LE, Dekkers, OM, van Lith, JM, Claas, FH, Bloemenkamp, KW. HLA associations and HLA sharing in recurrent miscarriage: a systematic review and meta-analysis. Human Immunology 2015;76(5):362–73.CrossRefGoogle ScholarPubMed
Ober, C, Hyslop, T, Elias, S, Weitkamp, LR, Hauck, WW. Human leukocyte antigen matching and fetal loss: results of a 10 year prospective study. Human Reproduction 1998;13:33–8.CrossRefGoogle ScholarPubMed
Regan, L, Braude, PR, Hill, DP. A prospective study of the incidence, time of appearance and significance of anti-paternal lymphocytotoxic antibodies in human pregnancy. Human Reproduction 1991;6:294–98.CrossRefGoogle ScholarPubMed
Nielsen, HS, Witvliet, MD, Steffensen, R, et al. The presence of HLA-antibodies in recurrent miscarriage patients is associated with a reduced chance of a live birth. Journal of Reproductive Immunology 2010;87:6773.CrossRefGoogle ScholarPubMed
Bartel, G, Walch, K, Wahrmann, M, et al. Prevalence and qualitative properties of circulating anti-human leukocyte antigen alloantibodies after pregnancy: no association with unexplained recurrent miscarriage. Human Immunology 2011;72:187–92.CrossRefGoogle ScholarPubMed
Klein, J, Sato, A. The HLA system. Second of two parts. The New England Journal of Medicine 2000;343:782–86.CrossRefGoogle ScholarPubMed
Christiansen, OB, Ulcova-Gallova, Z, Mohapeloa, H, Krauz, V. Studies on associations between human leukocyte antigen (HLA) class II alleles and antiphospholipid antibodies in Danish and Czech women with recurrent miscarriages. Human Reproduction 1998;13:3326–31.CrossRefGoogle ScholarPubMed
Christiansen, OB, Ring, M, Rosgaard, A, Grunnet, N, Gluud, C. Association between HLA-DR1 and -DR3 antigens and unexplained repeated miscarriage. Human Reproduction Update 1999;5:249–55.CrossRefGoogle ScholarPubMed
Kruse, C, Steffensen, R, Varming, K, Christiansen, OB. A study of HLA-DR and -DQ alleles in 588 patients and 562 controls confirms that HLA-DRB1*03 is associated with recurrent miscarriage. Human Reproduction 2004;19:1215–21.CrossRefGoogle Scholar
Christiansen, OB. Reproductive immunology. Molecular Immunology 2013;55:815.CrossRefGoogle ScholarPubMed
Nielsen, HS. Secondary recurrent miscarriage and H-Y immunity. Human Reproduction Update 2011;17:558–74.CrossRefGoogle ScholarPubMed
Nielsen, HS, Steffensen, R, Varming, K, et al. Association of HY-restricting HLA class II alleles with pregnancy outcome in patients with recurrent miscarriage subsequent to a firstborn boy. Human Molecular Genetics 2009;18:1684–91.CrossRefGoogle ScholarPubMed
Nielsen, HS, Steffensen, R, Lund, M, et al. Frequency and impact of obstetric complications prior and subsequent to unexplained secondary recurrent miscarriage. Human Reproduction 2010;25:1543–52.CrossRefGoogle ScholarPubMed
Nielsen, HS, Mogensen, M, Steffensen, R, Kruse, C, Christiansen, OB. Indications of anti-HY immunity in recurrent placental abruption. Journal of Reproductive Immunology 2007;75:6369.CrossRefGoogle ScholarPubMed
Hiby, SE, Apps, R, Sharkey, AM, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. The Journal of Clinical Investigation 2010;120:4102–10.CrossRefGoogle ScholarPubMed
Alecsandru, D, Garrido, N, Vicario, JL, et al. Maternal KIR haplotype influences live birth rate after double embryo transfer in IVF cycles in patients with recurrent miscarriages and implantation failure. Human Reproduction 2014;29:2637–43.CrossRefGoogle ScholarPubMed
Strong, RK, Holmes, MA, Li, P, Braun, L, Lee, N, Geraghty, DE. HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities. The Journal of Biological Chemistry 2003;278:5082–90.Google ScholarPubMed
Bhalla, A, Stone, PR, Liddell, HS, Zanderigo, A, Chamley, LW. Comparison of the expression of human leukocyte antigen (HLA)-G and HLA-E in women with normal pregnancy and those with recurrent miscarriage. Reproduction 2006;131:583–89.CrossRefGoogle ScholarPubMed
Redman, CW, McMichael, AJ, Stirrat, GM, Sunderland, CA, Ting, A. Class 1 major histocompatibility complex antigens on human extra-villous trophoblast. Immunology 1984;52:457–68.Google ScholarPubMed
Geraghty, DE, Koller, BH, Orr, HT. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proceedings of the National Academy of Sciences of the United States of America 1987;84:9145–49.Google ScholarPubMed
Ellis, SA, Palmer, MS, McMichael, AJ. Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA Class I molecule. Journal of immunology 1990;144:731–35.Google ScholarPubMed
Schmidt, CM, Orr, HT. A physical linkage map of HLA-A, -G, -7.5p, and -F. Human Immunology 1991;31:180–85.CrossRefGoogle ScholarPubMed
Ishitani, A, Sageshima, N, Lee, N, et al. Protein expression and peptide binding suggest unique and interacting functional roles for HLA-E, F, and G in maternal-placental immune recognition. Journal of Immunology 2003;171:1376–84.CrossRefGoogle Scholar
Fujii, T, Ishitani, A, Geraghty, DE. A soluble form of the HLA-G antigen is encoded by a messenger ribonucleic acid containing intron 4. Journal of Immunology 1994;153:5516–24.Google ScholarPubMed
Hviid, TV, Moller, C, Sorensen, S, Morling, N. Co-dominant expression of the HLA-G gene and various forms of alternatively spliced HLA-G mRNA in human first trimester trophoblast. Human Immunology 1998;59:8798.CrossRefGoogle ScholarPubMed
Park, GM, Lee, S, Park, B, et al. Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochemical and Biophysical Research Communications 2004;313:606–11.CrossRefGoogle ScholarPubMed
Ponte, M, Cantoni, C, Biassoni, R, et al. Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proceedings of the National Academy of Sciences of the United States of America 1999;96:5674–79.Google ScholarPubMed
Rajagopalan, S, Long, EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. The Journal of Experimental Medicine 1999;189:1093–100.CrossRefGoogle ScholarPubMed
Riteau, B, Menier, C, Khalil-Daher, I, et al. HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. International Immunology 2001;13:193201.CrossRefGoogle ScholarPubMed
Menier, C, Riteau, B, Carosella, ED, Rouas-Freiss, N. MICA triggering signal for NK cell tumor lysis is counteracted by HLA-G1-mediated inhibitory signal. International Journal of Cancer 2002;100:6370.CrossRefGoogle ScholarPubMed
Kapasi, K, Albert, SE, Yie, S, Zavazava, N, Librach, CL. HLA-G has a concentration-dependent effect on the generation of an allo-CTL response. Immunology 2000;101:191200.CrossRefGoogle Scholar
McIntire, RH, Morales, PJ, Petroff, MG, Colonna, M, Hunt, JS. Recombinant HLA-G5 and -G6 drive U937 myelomonocytic cell production of TGF-beta1. Journal of Leukocyte Biology 2004;76:1220–28.CrossRefGoogle ScholarPubMed
LeMaoult, J, Krawice-Radanne, I, Dausset, J, Carosella, ED. HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America 2004;101:7064–69.Google ScholarPubMed
Kovats, S, Main, EK, Librach, C, Stubblebine, M, Fisher, SJ, DeMars, R. A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990;248:220–23.CrossRefGoogle ScholarPubMed
Le Discorde, M, Moreau, P, Sabatier, P, Legeais, JM, Carosella, ED. Expression of HLA-G in human cornea, an immune-privileged tissue. Human Immunology 2003;64:1039–44.CrossRefGoogle ScholarPubMed
Larsen, MH, Bzorek, M, Pass, MB, et al. Human leukocyte antigen-G in the male reproductive system and in seminal plasma. Molecular Human Reproduction 2011;17:727–38.CrossRefGoogle ScholarPubMed
Crisa, L, McMaster, MT, Ishii, JK, Fisher, SJ, Salomon, DR. Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. The Journal of Experimental Medicine 1997;186:289–98.CrossRefGoogle ScholarPubMed
Rebmann, V, Busemann, A, Lindemann, M, Grosse-Wilde, H. Detection of HLA-G5 secreting cells. Human Immunology 2003;64:1017–24.CrossRefGoogle ScholarPubMed
Feger, U, Tolosa, E, Huang, YH, et al. HLA-G expression defines a novel regulatory T-cell subset present in human peripheral blood and sites of inflammation. Blood 2007;110:568–77.CrossRefGoogle ScholarPubMed
Amodio, G, Mugione, A, Sanchez, AM, et al. HLA-G expressing DC-10 and CD4(+) T cells accumulate in human decidua during pregnancy. Human Immunology 2013;74:406–11.CrossRefGoogle ScholarPubMed
Hsu, P, Santner-Nanan, B, Joung, S, Peek, MJ, Nanan, R. Expansion of CD4(+) HLA-G(+) T cell in human pregnancy is impaired in pre-eclampsia. American Journal of Reproductive Immunology 2014;71:217–28.CrossRefGoogle ScholarPubMed
Hviid, TV, Hylenius, S, Lindhard, A, Christiansen, OB. Association between human leukocyte antigen-G genotype and success of in vitro fertilization and pregnancy outcome. Tissue Antigens 2004;64:6669.CrossRefGoogle ScholarPubMed
Chen, XY, Yan, WH, Lin, A, Xu, HH, Zhang, JG, Wang, XX. The 14 bp deletion polymorphisms in HLA-G gene play an important role in the expression of soluble HLA-G in plasma. Tissue Antigens 2008;72:335–41.CrossRefGoogle ScholarPubMed
Rizzo, R, Andersen, AS, Lassen, MR, et al. Soluble human leukocyte antigen-G isoforms in maternal plasma in early and late pregnancy. American Journal of Reproductive Immunology 2009;62:320–38.CrossRefGoogle ScholarPubMed
Klitkou, L, Dahl, M, Hviid, TV, et al. Human leukocyte antigen (HLA)-G during pregnancy part I: Correlations between maternal soluble HLA-G at midterm, at term, and umbilical cord blood soluble HLA-G at term. Human Immunology 2015;76(4):254–59.CrossRefGoogle Scholar
Jurisicova, A, Casper, RF, MacLusky, NJ, Mills, GB, Librach, CL. HLA-G expression during preimplantation human embryo development. Proceedings of the National Academy of Sciences of the United States of America 1996;93:161–65.Google ScholarPubMed
Yao, YQ, Barlow, DH, Sargent, IL. Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses. Journal of Immunology 2005;175:8379–85.Google ScholarPubMed
Verloes, A, Van de Velde, H, LeMaoult, J, et al. HLA-G expression in human embryonic stem cells and preimplantation embryos. Journal of Immunology 2011;186:2663–71.CrossRefGoogle ScholarPubMed
Fuzzi, B, Rizzo, R, Criscuoli, L, et al. HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. European Journal of Immunology 2002;32:311–15.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Van Lierop, MJ, Wijnands, F, Loke, YW, et al. Detection of HLA-G by a specific sandwich ELISA using monoclonal antibodies G233 and 56B. Molecular Human Reproduction 2002;8:776–84.CrossRefGoogle ScholarPubMed
Sher, G, Keskintepe, L, Nouriani, M, Roussev, R, Batzofin, J. Expression of sHLA-G in supernatants of individually cultured 46-h embryos: a potentially valuable indicator of ‘embryo competency’ and IVF outcome. Reproductive Biomedicine Online 2004;9:7478.CrossRefGoogle ScholarPubMed
Sageshima, N, Shobu, T, Awai, K, et al. Soluble HLA-G is absent from human embryo cultures: a reassessment of sHLA-G detection methods. Journal of Reproductive Immunology 2007;75:1122.CrossRefGoogle ScholarPubMed
Vercammen, MJ, Verloes, A, Van de Velde, H, Haentjens, P. Accuracy of soluble human leukocyte antigen-G for predicting pregnancy among women undergoing infertility treatment: meta-analysis. Human Reproduction Update 2008;14:209–18.CrossRefGoogle ScholarPubMed
Yie, SM, Balakier, H, Motamedi, G, Librach, CL. Secretion of human leukocyte antigen-G by human embryos is associated with a higher in vitro fertilization pregnancy rate. Fertility and Sterility 2005;83:3036.CrossRefGoogle ScholarPubMed
Sun, LL, Wang, AM, Haines, CJ, Han, Y, Yao, YQ. Down-regulation of HLA-G attenuates cleavage rate in human triploid embryos. Journal of Reproduction & Infertility 2011;12:215–20.Google ScholarPubMed
Alegre, E, Diaz-Lagares, A, Lemaoult, J, Lopez-Moratalla, N, Carosella, ED, Gonzalez, A. Maternal antigen presenting cells are a source of plasmatic HLA-G during pregnancy: longitudinal study during pregnancy. Human Immunology 2007;68:661–67.CrossRefGoogle ScholarPubMed
Darmochwal-Kolarz, D, Kolarz, B, Rolinski, J, Leszczynska-Gorzelak, B, Oleszczuk, J. The concentrations of soluble HLA-G protein are elevated during mid-gestation and decreased in pre-eclampsia. Folia Histochemica et Cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 2012;50:286–91.Google ScholarPubMed
Pfeiffer, KA, Rebmann, V, van der Ven, K. Soluble histocompatibility antigen levels in early pregnancy after IVF. Human Immunology 2000;61:559–64.CrossRefGoogle Scholar
Sipak-Szmigiel, O, Ronin-Walknowska, E, Cybulski, C, Plonka, T, Lubinski, J. Antigens HLA-G, sHLA- G and sHLA- class I in reproductive failure. Folia Histochemica et Cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 2007;45 Suppl 1:S137–41.Google Scholar
Emmer, PM, Steegers, EA, Kerstens, HM, et al. Altered phenotype of HLA-G expressing trophoblast and decidual natural killer cells in pathological pregnancies. Human Reproduction 2002;17:1072–80.CrossRefGoogle ScholarPubMed
Papamitsou, T, Toskas, A, Papadopoulou, K, et al. Immunohistochemical study of immunological markers: HLAG, CD16, CD25, CD56 and CD68 in placenta tissues in recurrent pregnancy loss. Histology and Histopathology 2014;29:1047–55.Google ScholarPubMed
Wang, X, Li, B, Wang, J, et al. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reproductive Biomedicine Online 2012;25:415–24.CrossRefGoogle ScholarPubMed
Dahl, M, Hviid, TV. Human leucocyte antigen class Ib molecules in pregnancy success and early pregnancy loss. Human Reproduction Update 2012;18:92109.CrossRefGoogle ScholarPubMed
Hviid, TV. HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Human Reproduction Update 2006;12:209–32.CrossRefGoogle ScholarPubMed
Hviid, TV, Sorensen, S, Morling, N. Polymorphism in the regulatory region located more than 1.1 kilobases 5ʹ to the start site of transcription, the promoter region, and exon 1 of the HLA-G gene. Human Immunology 1999;60:1237–44.CrossRefGoogle Scholar
Ober, C, Aldrich, CL, Chervoneva, I, et al. Variation in the HLA-G promoter region influences miscarriage rates. American Journal of Human Genetics 2003;72:1425–35.CrossRefGoogle ScholarPubMed
Castelli, EC, Mendes-Junior, CT, Veiga-Castelli, LC, Roger, M, Moreau, P, Donadi, EA. A comprehensive study of polymorphic sites along the HLA-G gene: implication for gene regulation and evolution. Molecular Biology and Evolution 2011;28:3069–86.CrossRefGoogle ScholarPubMed
Harrison, GA, Humphrey, KE, Jakobsen, IB, Cooper, DW. A 14 bp deletion polymorphism in the HLA-G gene. Human Molecular Genetics 1993;2:2200.CrossRefGoogle ScholarPubMed
Hviid, TV, Hylenius, S, Hoegh, AM, Kruse, C, Christiansen, OB. HLA-G polymorphisms in couples with recurrent spontaneous abortions. Tissue Antigens 2002;60:122–32.CrossRefGoogle ScholarPubMed
Larsen, MH, Hylenius, S, Andersen, AM, Hviid, TV. The 3ʹ-untranslated region of the HLA-G gene in relation to pre-eclampsia: revisited. Tissue Antigens 2010;75:253–61.CrossRefGoogle ScholarPubMed
Iversen, AC, Nguyen, OT, Tommerdal, LF, et al. The HLA-G 14bp gene polymorphism and decidual HLA-G 14bp gene expression in pre-eclamptic and normal pregnancies. Journal of Reproductive Immunology 2008;78:158–65.CrossRefGoogle ScholarPubMed
Suarez, MB, Morales, P, Castro, MJ, et al. A new HLA-G allele (HLA-G*0105N) and its distribution in the Spanish population. Immunogenetics 1997;45:464–65.Google Scholar
Pfeiffer, KA, Fimmers, R, Engels, G, van der Ven, H, van der Ven, K. The HLA-G genotype is potentially associated with idiopathic recurrent spontaneous abortion. Molecular Human Reproduction 2001;7:373–78.CrossRefGoogle ScholarPubMed
Aldrich, CL, Stephenson, MD, Karrison, T, et al. HLA-G genotypes and pregnancy outcome in couples with unexplained recurrent miscarriage. Molecular Human Reproduction 2001;7:1167–72.CrossRefGoogle ScholarPubMed
Abbas, A, Tripathi, P, Naik, S, Agrawal, S. Analysis of human leukocyte antigen (HLA)-G polymorphism in normal women and in women with recurrent spontaneous abortions. European Journal of Immunogenetics 2004;31:275–78.CrossRefGoogle ScholarPubMed
Le Discorde, M, Le Danff, C, Moreau, P, Rouas-Freiss, N, Carosella, ED. HLA-G*0105N null allele encodes functional HLA-G isoforms. Biology of Reproduction 2005;73:280–88.CrossRefGoogle Scholar
Penzes, M, Rajczy, K, Gyodi, E, Reti, M, Feher, E, Petranyi, G. HLA-G gene polymorphism in the normal population and in recurrent spontaneous abortion in Hungary. Transplantation Proceedings 1999;31:1832–33.CrossRefGoogle ScholarPubMed
Yamashita, T, Fujii, T, Tokunaga, K, et al. Analysis of human leukocyte antigen-G polymorphism including intron 4 in Japanese couples with habitual abortion. American Journal of Reproductive Immunology 1999;41:159–63.CrossRefGoogle ScholarPubMed
Yan, WH, Fan, LA, Yang, JQ, Xu, LD, Ge, Y, Yao, FJ. HLA-G polymorphism in a Chinese Han population with recurrent spontaneous abortion. International Journal of Immunogenetics 2006;33:5558.CrossRefGoogle Scholar
Vargas, RG, Sarturi, PR, Mattar, SB, et al. Association of HLA-G alleles and 3ʹ UTR 14 bp haplotypes with recurrent miscarriage in Brazilian couples. Human Immunology 2011;72:479–85.CrossRefGoogle ScholarPubMed
Roussev, RG, Coulam, CB. HLA-G and its role in implantation (review). Journal of Assisted Reproduction and Genetics 2007;24:288–95.CrossRefGoogle ScholarPubMed
Agrawal, D, Prakash, S, Misra, MK, Phadke, SR, Agrawal, S. Implication of HLA-G 5ʹ upstream regulatory region polymorphisms in idiopathic recurrent spontaneous abortions. Reproductive Biomedicine Online 2015;30:8291.CrossRefGoogle ScholarPubMed
Hviid, TV, Hylenius, S, Rorbye, C, Nielsen, LG. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 2003;55:6379.CrossRefGoogle ScholarPubMed
Djurisic, S, Teiblum, S, Tolstrup, CK, Christiansen, OB, Hviid, TV. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells. Molecular Human Reproduction 2015;21:281–95.CrossRefGoogle ScholarPubMed
Rousseau, P, Le Discorde, M, Mouillot, G, Marcou, C, Carosella, ED, Moreau, P. The 14 bp deletion-insertion polymorphism in the 3ʹ UT region of the HLA-G gene influences HLA-G mRNA stability. Human Immunology 2003;64:1005–10.CrossRefGoogle ScholarPubMed
Svendsen, SG, Hantash, BM, Zhao, L, et al. The expression and functional activity of membrane-bound human leukocyte antigen-G1 are influenced by the 3ʹ-untranslated region. Human Immunology 2013;74:818–27.CrossRefGoogle ScholarPubMed
Yan, WH, Lin, A, Chen, XJ, et al. Association of the maternal 14-bp insertion polymorphism in the HLA-G gene in women with recurrent spontaneous abortions. Tissue Antigens 2006;68:521–23.CrossRefGoogle ScholarPubMed
Suryanarayana, V, Rao, L, Kanakavalli, M, et al. Association between novel HLA-G genotypes and risk of recurrent miscarriages: a case-control study in a South Indian population. Reproductive Sciences 2008;15:817–24.CrossRefGoogle Scholar
Zhu, Y, Huo, Z, Lai, J, et al. Case-control study of a HLA-G 14-bp insertion-deletion polymorphism in women with recurrent miscarriages. Scandinavian Journal of Immunology 2010;71:5254.CrossRefGoogle ScholarPubMed
Berger, DS, Hogge, WA, Barmada, MM, Ferrell, RE. Comprehensive analysis of HLA-G: implications for recurrent spontaneous abortion. Reproductive Sciences 2010;17:331–38.CrossRefGoogle ScholarPubMed
Shankarkumar, U, Shankarkumar, A, Chedda, Z, Ghosh, K. Role of 14-bp deletion/insertion polymorphism in exon 8 of the HLA-G gene in recurrent spontaneous abortion patients. Journal of Human Reproductive Sciences 2011;4:143–46.CrossRefGoogle ScholarPubMed
Christiansen, OB, Kolte, AM, Dahl, M, et al. Maternal homozygocity for a 14 base pair insertion in exon 8 of the HLA-G gene and carriage of HLA class II alleles restricting HY immunity predispose to unexplained secondary recurrent miscarriage and low birth weight in children born to these patients. Human Immunology 2012;73:699705.CrossRefGoogle ScholarPubMed
Jassem, RM, Shani, WS, Loizel, DA, Sharief, M, Billstrand, C, Ober, C. HLA-G polymorphisms and soluble HLA-G protein levels in women with recurrent pregnancy loss from Basrah province in Iraq. Human Immunology 2012;73:811–17.CrossRefGoogle ScholarPubMed
Tripathi, P, Abbas, A, Naik, S, Agrawal S. Role of 14-bp deletion in the HLA-G gene in the maintenance of pregnancy. Tissue Antigens 2004;64:706–10.CrossRefGoogle ScholarPubMed
Xue, S, Yang, J, Yao, F, Xu, L, Fan, L. Recurrent spontaneous abortions patients have more −14 bp/+14 bp heterozygotes in the 3ʹUT region of the HLA-G gene in a Chinese Han population. Tissue Antigens 2007;69 Suppl 1:153–55.CrossRefGoogle Scholar
Afkhami, F, Shekari Khaniani, M, Farzadi, L, Paknejad, Z, Mansoori Derakhshan, S. The HLA-G 14bp insertion/deletion polymorphism in women with recurrent spontaneous abortion. Iranian Journal of Allergy, Asthma, and Immunology 2014;13:364–69.Google ScholarPubMed
Aruna, M, Sudheer, PS, Andal, S, et al. HLA-G polymorphism patterns show lack of detectable association with recurrent spontaneous abortion. Tissue Antigens 2010;76:216–22.CrossRefGoogle ScholarPubMed
Dahl, M, Klitkou, L, Christiansen, OB, et al. Human leukocyte antigen (HLA)-G during pregnancy part II: associations between maternal and fetal HLA-G genotypes and soluble HLA-G. Human Immunology 2015;76(4):260–71.CrossRefGoogle ScholarPubMed
Wang, X, Jiang, W, Zhang, D. Association of 14-bp insertion/deletion polymorphism of HLA-G gene with unexplained recurrent spontaneous abortion: a meta-analysis. Tissue Antigens 2013;81:108–15.CrossRefGoogle ScholarPubMed
Fan, W, Li, S, Huang, Z, Chen, Q. Relationship between HLA-G polymorphism and susceptibility to recurrent miscarriage: a meta-analysis of non-family-based studies. Journal of Assisted Reproduction and Genetics 2014;31:173–84.CrossRefGoogle ScholarPubMed
Dahl, M, Perin, TL, Djurisic, S, et al. Soluble human leukocyte antigen-G in seminal plasma is associated with HLA-G genotype: possible implications for fertility success. American Journal of Reproductive Immunology 2014;72:89105.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×