We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Interactions between particles in multiphase flow may also involve adhesion – i.e., an attraction between the particles. This issue is the main topic of this chapter. The first sections of the chapter, however, focus on a primary case: forces acting between two solid surfaces close to each other. A typical example is an interaction between two spherical bodies, which mimic two particles in a multiphase flow. This situation is later extended to a more complex case: the bodies change their shape due to these adhesive interactions. For this, two theories were developed in the literature (JKR and DMT), and they are fully described in the chapter. Later, it is shown how these theories can be adopted to investigate particle-particle collisions in a multiphase flow. In other words, this topic constitutes an extension of the previous chapter, where the focus was on purely “mechanical” interactions without considering any adhesive forces. Finally, the last section of the chapter describes rough surfaces. There is a brief description of how this real-life issue influences the adhesion between two bodies in contact.
A range of neuropathological changes occur in the brains of individuals with adult Niemann-Pick type C disease (NPC), a recessive disorder of cholesterol trafficking that results in accumulation of cholesterol and gangliosides in lysosomes, particularly in neurons. One of the most significant regions of grey matter loss occurs in the thalami, which abut the midline. What is not known is whether these are neurodevelopmental in origin well prior to symptomatic onset. We aimed to examine other markers of midline developmental anomalies in adults with NPC.
Method:
We examined the size of adhesio interthalamica (AI) and cavum septum pellucidum (CSP) (if present) in nine individuals diagnosed with NPC and nine healthy comparison subjects, matched for age and gender, using a 3T magnetic resonance volumetric sequence and measured the length of the AI and CSP in mm.
Results:
We found that 5/9 NPC patients and 0/9 controls had a missing AI. AI length was significantly shorter in the patient group. No subject in other group had a large CSP, and CSP length did not differ. Duration of illness showed a trend to a negative correlation with AI length in patients.
Conclusions:
Our findings suggest that adult NPC patients show some markers of early neurodevelopmental disturbance, matching findings seen in psychotic disorders. The differences in AI, but not CSP, suggest neurodevelopmental change may occur early in gestation rather than post-partum. The relationship with duration of illness suggests that there may be atrophy over time in these structures, consistent with prior analyses of grey matter regions in NPC.
This chapter discusses modification of the fluid dynamic point forces due to proximity to the wall and due to neighboring particles, where the latter focuses on the Richardson–Zaki exponent. In addition, particle collision with other particles and with walls is discussed for normal and tangential restitution. This includes effects of viscoelasticity, spin, plasticity, fluid viscosity, and adhesion for solid particles as well as deformation and wetting for fluid particles.
In many networks, fibers interact though surface interactions such as cohesion and capillarity, which cause fiber bundling. In adequate conditions, the same process leads to the formation of percolated networks of fiber bundles. These have a specific structure and their mechanical properties are quite different from those of regular networks of fibers and molecular filaments. Separate sections are dedicated to crosslinked and non-crosslinked networks with surface interactions. Surface interactions perturb weakly the structure of crosslinked networks, but have a significant effect on their mechanics. If the network is not crosslinked, surface interactions reorganize the network and define the resulting structure. The properties of networks of fiber bundles embedded in solvents (colloidal suspensions) and in the dry state (buckypaper) are discussed in separate sections.
Thin films of platinum deposited by physical vapor deposition (PVD) processes such as evaporation and sputtering are used in many academic and industrial settings, for example to provide metallization when tolerance to corrosive thermal cycling is desired, or in electrocatalysis research. In this review, various practical considerations for platinum (Pt) metallization on both Si and SiO2 are placed in context with a comprehensive data review of diffusion measurements. The relevance of diffusion phenomena to the development of microstructure during deposition as well as the effect of microstructure on the properties of deposited films are discussed with respect to the Pt–Si system. Since Pt and Si readily form silicides, diffusion barriers are essential components of Pt metallization on Si, and various failure modes for diffusion barriers between Pt and Si are clarified with images obtained by electron microscopy. Adhesion layers for Pt films deposited on SiO2 are also considered.
The demands of modern materials are highly challenging as well as partially contradictory. For example, materials should be strong like steels but chemically inert like soft low-surface energy polymers. These conflicts can be overcome by effectively combining disparate materials in composites that allow fusing of the traditional material classes like ceramics, polymers, and metals. Such combinations require sufficient adhesion between the individual materials. If adhesion is based on mechanical interlocking, the chemistry and chemical compatibility of the individual materials play a negligible role for the adhesion, but the mechanical properties of the materials are exclusively important. This work focusses on a technologically relevant example of a micro-mechanical interlocking surface structure on grade 304 stainless steel (SST) by nanoscale sculpturing. Using a low aggressive/low toxic seawater-like and diluted HNO3-based electrolyte, the resulting structure is free from preferential grain-boundary etching. The sculptured surface is super hydrophilic with undercuts suitable for mechanical interlocking with polymers. In single-lap shear tests, different two-component adhesives failed cohesively on structured SST while showing more than a doubling of the ultimate shear strength compared to the state-of-the-art grit-blasted SST composites which only showed adhesive failure.
This study presents a dual Eulerian–Lagrangian particle approach for time-accurate computational fluid dynamics (CFD) modeling of volcanic ash in gas turbine engines and initial results. The objective is to enable high-fidelity simulations of calcia–magnesia–alumina-silica (CMAS) particles in gas turbine engines to better predict deposition and particle paths to rapidly test mitigation solutions. The approach uses a primarily first principles framework to account for the various physical phenomena in the system. Particles are modeled using Lagrangian methods which track individual particles and Equilibrium Eulerian methods which track particles in terms of concentration densities. Lagrangian methods become prohibitively expensive for fine particles. Eulerian methods are physically appropriate for fine particles but become inaccurate for large particle sizes. A dual approach using both Eulerian and Lagrangian methods allows for optimal computational cost with maximum accuracy. Simulation results using the proposed approach are compared against experimental data for a representative gas turbine engine blade.
Human milk oligosaccharides, such as 2′-fucosyllactose (2′-FL), and galacto-oligosaccharides (GOS), a prebiotic carbohydrate mixture, are being increasingly added to infant formulas, necessitating the understanding of their impact on the oral microbiota. Here, for the first time, the effects of 2′-FL and GOS on the planktonic growth and adhesion characteristics of the caries-associated oral pathogen Streptococcus mutans were assessed, and the results were compared against the effects of xylitol, lactose and glucose. There were differences in S. mutans growth between 2′-FL and GOS. None of the three S. mutans strains grew with 2′-FL, while they all grew with GOS as well as lactose and glucose. Xylitol inhibited S. mutans growth. The adhesion of S. mutans CI 2366 to saliva-coated hydroxyapatite was reduced by 2′-FL and GOS. Exopolysaccharide-mediated adhesion of S. mutans DSM 20523 to a glass surface was decreased with 2′-FL, GOS and lactose, and the adhesion of strain CI 2366 strain was reduced only by GOS. Unlike GOS, 2′-FL did not support the growth of any S. mutans strain. Neither 2′-FL nor GOS enhanced the adhesive properties of the S. mutans strains, but they inhibited some of the tested strains. Thus, the cariogenic tendency may vary between infant formulas containing different types of oligosaccharides.
The aim of the paper is to introduce and investigate a dynamical system which consists of a variational–hemivariational inequality of hyperbolic type combined with a non-linear evolution equation. Such a dynamical system arises in studies of complicated contact problems in mechanics. Existence, uniqueness and regularity of a global solution to the system are established. The approach is based on a new semi-discrete approximation with an application of a surjectivity result for a pseudomonotone perturbation of a maximal monotone operator. A new dynamic viscoelastic frictional contact model with adhesion is studied as an application, in which the contact boundary condition is described by a generalised normal damped response condition with unilateral constraint and a multivalued frictional contact law.
Intelligent control of friction and adhesion has attracted much attention for use in soft robotics, human-sensor interfaces, and bionics. Here we introduce a shape memory photonic crystal (SMPC) polymer that can be programmed and recovered by solvent to realize switchable surface friction. Micro sliding test show that the friction coefficient on this SMPC in the programmed and recovered state can vary by three times. We also show that the mechanism behind this switchable friction coefficient is the surface roughness related adhesion.
Chemically modified polymer coatings have been synthesized using a blend of soft polymeric material polydimethylsiloxane (h-PDMS) incorporated with stiff polymer epoxy resin (EP) and was cross-linked using silane compatibilizer 3-aminopropyltriethoxysilane (APTES). A comparative analysis has been carried out between neat epoxy coating (N-EP) and epoxy–hydroxy-terminated polydimethylsiloxane (EP-hPD) blends to study the influence of blending ratio on various properties to cater marine applications. An increase of 144.4% in the Young’s modulus (E) and 37.5% increment in adhesion strength at 30 wt% h-PDMS content was observed as compared with N-EP. The water contact angle results demonstrated a substantial increase in contact angle from 52.3° to 90.1° at 30 wt% h-PDMS content as compared to N-EP. Taber abrasion results revealed a decrease in weight loss (mg/1000 cycles) by 24.1 and 17.7% at 10 and 30 wt% loading of h-PDMS in comparison to N-EP. The surface roughness of N-EP and 30 wt% EP-hPD blend were found to be 33.4 nm and 41.4 nm, respectively. To determine the applicability of the developed blend coatings obligatory tests such as field immersion study and chemical resistance evaluation were conducted, and optimum performance was manifested by EP-hPD blend at an EP:h-PDMS ratio of 70:30.
A kind of novel Ni–P gradient coating/stannate conversion film was deposited on AZ91D magnesium alloy (AZ91D alloy) by an integrative method involved stannate conversion and electroless plating. The results indicated that using sodium hypophosphite concentrations varied as 5, 10, 22, 46, and 60 g/L in the bath, the electroless Ni–P gradient coating with typical cell morphologies was successfully prepared, and the structures transited from crystalline → microcrystalline → amorphous were obtained as increasing P content from 3.31 to 12.58 wt%. Furthermore, the corrosion morphologies, polarization curves, and the electrochemical impedance spectroscopy result indicated that the corrosion resistance of AZ91D alloy substrate was significantly improved and the corrosion resistance of Ni–P gradient coating was superior than that of stannate conversion film, which might be attributed to the gradient structure and rising P content with unique function.
Cu films are widely used in electronics for interconnections. In some applications, reliable thin-film connecting elements having high electrical conductivity, mechanical stability and adhesion to a glass substrate are required. In this case the length of the elements amounts to tens of centimetres. In this paper, Cu was used as the basis for the connecting elements. To ensure high adhesion Cr was used as an underlayer. The paper investigates the structure, electrical conductivity, adhesion, defect formation of Cu, Cu-Cr, Cr-Cu-Cr thin-film conductors. As a result of the performed research, the regularities of changes of the film structure, electrical conductivity, adhesion, defect formation depending on the technological process parameters were established. Physical and technological mechanisms determining the observed patterns are considered. The research results are used in the device production technology.
Microsupercapacitors (MSCs) are miniaturized energy storage devices that can be integrated in an on-chip platform as a component of a power supply for Internet of things’ sensors. Integration of these on-chip MSCs require them to be fabricated through CMOS compatible fabrication techniques such as spin coating. One of the biggest challenges in spin coated MSCs is the poor surface adhesion. In this work, we present a CMOS compatible electrode deposition process with enhanced adhesion and retention for reduced graphene oxide (rGO) using spin coating. In order to improve the adhesion and surface uniformity of the deposited electrode material, the surface of Si/SiO2 wafers was subjected to roughening through Fe nanoparticle formation. A 4 nm thick Fe layer deposition substantially magnified the average mean surface roughness of the substrates. In comparison with substrates without the Fe deposition, the treated ones have more than 300% improvement in surface coverage and rGO mass retention after sonication testing. These results suggest that the surface roughening has a positive influence on electrode deposition via a spin-coating method.
The intracellular concentration of calcium ion ([Ca2+]i) is a critical regulator of cell signaling and contractility of vascular smooth muscle cells (VSMCs). In this study, we employed an atomic force microscopy (AFM) nanoindentation-based approach to investigate the role of [Ca2+]i in regulating the cortical elasticity of rat cremaster VSMCs and the ability of rat VSMCs to adhere to fibronectin (Fn) matrix. Elevation of [Ca2+]i by ionomycin treatment increased rat VSMC stiffness and cell adhesion to Fn-biofunctionalized AFM probes, whereas attenuation of [Ca2+]i by 1,2-Bis (2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) treatment decreased the mechanical and matrix adhesive properties of VSMCs. Furthermore, we found that ionomycin/BAPTA-AM treatments altered expression of α5 integrin subunits and α smooth muscle actin in rat VSMCs. These data suggest that [Ca2+]i regulates VSMC elasticity and adhesion to the extracellular matrix by a potential mechanism involving changing dynamics of the integrin–actin cytoskeleton axis.
Evaluation of eleven candidate probiotic Lactobacillus strains isolated from human milk showed that some of the strains were well endowed with desirable cell surface and attachment attributes. The cell surface properties (hydrophobicity, auto-aggregation, attachment to collagen and HT-29 monolayer) of probiotic Lactobacillus species of human milk origin were compared with reference probiotic/ non-probiotic species and pathogenic strains. The bacterial adhesion to hydrocarbons (BATH) was determined using three aliphatic (Chloroform, n-Hexane and n-Octane) and two aromatic (Toluene and Xylene) solvents. Maximum affinity of Lactobacillus strains towards chloroform and toluene indicated the presence of low electron acceptor/ acidic surface components on cell surface of most of the strains. The highest value of per cent hydrophobicity was recorded with chloroform in HM1 (L. casei) (97·10 ± 3·35%) and LGG (98·92 ± 1·24%). A moderate auto-aggregation attribute was observed in all of our Lactobacillus isolates. Only HM10, HM12 and HM13 exhibited comparatively enhanced precipitation rate after 7 h of incubation period. The adhesion potential to collagen matrix was highest in LGG (26·94 ± 5·83%), followed by HM1 (11·07 ± 3·54%) and HM9 (10·85 ± 1·74%) whereas, on HT-29 cells, HM8 (14·99 ± 3·61%), HM3 (13·73 ± 1·14%) and HM1 (11·21 ± 3·18%) could adhere effectively. In this manner, we noticed that although the cell surface properties and adhesion prospective of probiotic bacteria were strain dependent, five of our isolates viz. HM1, HM3, HM8, HM9 and HM10 exhibited promising cell surface properties, which could be further targeted as indigenous probiotic.
The exotic characteristics of nanoscopic metallic materials bestows diverse functionalities that are increasingly being utilized for a broad range of applications. Polymer substrates present robust architectures for nanoparticle anchoring as well as modulating attendant size-induced aggregation. However, in principle, interfacial adhesion of a polymer-metal material system is weak, making the susceptibility to delamination a challenge. We have deposited copper particles on model polymer thin film and fibrous architectures to study adhesion behavior on these distinct geometries. The average sizes of copper nanoparticles deposited on electrospun fibers for metallization times of 3 and 5 minutes were 13 and 10 nm, whereas the metal island sizes under same metallization times on thin films was 79nm and 81nm. Scratch tests using a nanoindentation system were unable to generate macroscopic film delamination, but did exhibit apparent removal of individual particles, with adhesion forces of 14.9μN, 36μN, and 28.8μN obtained for films metallized for 1, 3, and 5 minutes respectively. Macroscopic tensile testing of fiber mats showed the metallization maintains conformity with the polymer ligament, albeit, with intermittent fracture of the conformal metal coating, signifying substantial adhesion exists between the metallic layer and the PAN fiber.
The aim of this research was to investigate the influence of substrate roughness on the adhesion and tribological performance of thin TiN coatings obtained by physical vapor deposition. For that purpose, substrates of AISI H13 steel with surface finishes of 0.06, 0.28 and 0.90 μm in Ra were coated with TiN under the same coating conditions. The chemical composition of the steel, as well as that of the TiN coating, were obtained using EDS analysis. Adhesion tests were carried out following the procedure of BSi 1071-8 standard while hardness was evaluated by ASTM C 1327-03. On the other hand, dry sliding friction tests were conducted with a pin-on-disk tribometer, according to the ASTM G 99-05 standard. This study showed that the roughness of the coating increases as the substrate roughness increases. Regarding adhesion and hardness, all the samples showed an adhesion class 1 according to the standard and a hardness value of 14.51 GPa. Nevertheless, the highest substrate roughness produced the best adhesion. On the other hand, the lowest values for the friction coefficient and wear behavior were obtained by the sample with the lowest substrate roughness of 0.06 µm. In addition, it was found that friction and wear increase when the substrate roughness increases.
In this paper, a multilayer CNx/TiN composite film on high-speed steel substrate was prepared by using a multi-arc assisted DC reactive magnetron sputtering system. The cross-section observations of the fracture surface reveal that the films show a pure cleavage fracture due to its super-high hardness, and the interfacial strength between the film and substrate is associates with the film thickness, i.e., 2μm is a critical thickness for the present deposition. That is to say, there is no disbonding or cracking at the interface when the film thickness is less than 2μm, while the interfacial failure is generated if the film thickness is larger than 2μm. This direct SEM observation of the fracture surface provides a distinct image for evaluating the mechanical property and also analyzing the failure mechanism of the films.