We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Introducing state-of-the art computational methods, this book combines detailed explanations with real-world case studies to give a full grounding in the design of engineering materials. This book presents a wide spectrum of key computational methods, such as CALPHAD-method, first-principles calculations, phase-field simulation and finite element analysis, covering the atomic-meso-macro scale range. The reader will see these methods applied to case studies for steel, light alloys, superalloys, cemented carbides, hard coating and energy materials, demonstrating in detail how real-world materials are designed. Online ancillary material includes input files for computational design software, providing the reader with hands-on design experience. Step-by-step instructions will allow you to perform and repeat the simulations discussed in the book. Aimed at both graduate and undergraduate students as well as non-specialist researchers in materials science and engineering, including ceramics, metallurgy, and chemistry, this is an ideal introductory and reference book.
The association between time-restricted eating (TRE) and the risk of nonalcoholic fatty liver disease (NAFLD) is less studied. Moreover, whether the association is independent of physical exercise or diet quality or quantity is uncertain. In this nationwide cross-sectional study of 3,813 participants, the timing of food intakes was recorded by 24-h recalls; NAFLD was defined through vibration-controlled transient elastography in the absence of other causes of chronic liver disease. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression. Participants with daily eating window of ≤ 8 h had lower odds of NAFLD (OR = 0.70, 95% CI: 0.52-0.93), compared to those with ≥ 10 h window. Early (5am-3pm) and late TRE (11am-9pm) showed inverse associations with NAFLD prevalence without statistical heterogeneity (pheterogeneity = 0.649) with ORs of 0.73 (95% CI: 0.36-1.47) and 0.61 (95% CI: 0.44-0.84), respectively. Such inverse association seemed stronger in participants with lower energy intake (OR = 0.58, 95% CI: 0.38-0.89, pinteraction = 0.020). There are no statistical differences in the TRE-NAFLD associations according to physical activity (pinteraction = 0.390) or diet quality (pinteraction = 0.110). TRE might be associated with lower likelihood of NAFLD. Such inverse association is independent of physical activity and diet quality, and appears stronger in individuals consuming lower energy. Given the potential misclassification of TRE based on one- or two-day recall in the analysis, epidemiological studies with validated methods for measuring the habitual timing of dietary intake are warranted.
The rearrangement of drainage basins provides critical insight into crustal deformation and geodynamic mechanisms. Near the southeastern boundary of the Tibetan Plateau, the Dadu River abruptly shifts from south- to east-flowing, providing important implications for regional tectonogeomorphic development since the mid-Pleistocene. South of the bend, the headwaters of the Anning River occupy an unusually wide valley. Field investigations show that large quantities of fluvial/lacustrine sediments are widespread along the Dadu and Anning rivers and are exposed at their drainage divide. Detrital zircon U-Pb age patterns confirm that these fluvial/lacustrine sediments are the remnants of the paleo-Dadu River, which strongly suggests that the paleo-Dadu River originally flowed southward into the Anning River. The cosmogenic nuclide burial ages of the lacustrine sediments along the Dadu and Anning rivers suggest deposition of these sediments from separate dammed lakes ca. 1.2 Ma ago, ca. 0.6 Ma ago, and ca. 0.9 Ma ago from north to south, respectively. Provenance and burial-age studies indicate that reorganization of the Dadu drainage occurred within the last 0.6 Ma. We propose that this drainage reorganization in southeastern Tibet resulted from progressive convergence between the India and Eurasian plates during the Pleistocene.
This paper presents systematic molecular dynamics modelling of Na-montmorillonite subjected to uniaxial compression and unidirectional shearing. An initial 3D model of a single-cell Na-montmorillonite structure is established using the Build Crystal module. The space group is C2/m, and COMPASS force fields are applied. Hydration analysis of Na-montmorillonite has been performed to validate the simulation procedures, where the number of absorbed water molecules varied with respect to the various lattice parameters. A series of uniaxial compression stress σzz and unidirectional shear stress τxy values are applied to the Na-montmorillonite structure. It is shown that the lattice parameter and hydration degree exhibit significant influence on the stress–strain relationship of Na-montmorillonite. The ultimate strain increases with increases in the lattice parameter but decreases in the number of water molecules. For saturated Na-montmorillonite, more water molecules result in a stiffer clay mineral under uniaxial compression and unidirectional shearing.
Major depressive disorder (MDD) is a common neuropsychiatry disorder with high prevalence and recurrence rate, but the misdiagnosis rate is inevitable due to the shortage of objective laboratory-based diagnostic criteria. This study is focused on the disturbance of lipid metabolism, providing potential biomarkers for diagnosing.
Methods
Lipid metabolism-related molecules in plasma of 42 drug-naïve MDD patients and 49 healthy people were measured by liquid chromatography-mass spectrometry. Further to evaluate the diagnostic values of changed metabolites, these molecules were evaluated by the receiver operating characteristic curve. Based on the significant role of phosphatidylcholine (PC) disturbance in depression, oxidization of PCs, oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC), IL-8 and caspase-3 in hippocampus, and serum of chronic lipopolysaccharide (cLPS) depression mice were detected by ELISA.
Results
Compared with healthy control, MDD patients expressed higher 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (16:0-16:0 PC, DPPC), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (16:0-20:4 PC, PAPC), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (16:0-18:0 PC), glycocholic acid, taurocholic acid, glycoursodeoxycholic acid, and chenodeoxycholic acid glycine conjugate, and lower 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 20:0). The 16:0-20:4 PC showed the great diagnostic value for MDD with an area under the curve (AUC) of 0.9519, and combination of 16:0 PC, 16:0-18:0 PC, and 16:0-20:4 PC exhibited the highest diagnostic value with AUC of 0.9602. OxPAPC was certified increase in hippocampus and serum of cLPS depression mice, which further supported PCs disorder participated in depression.
Conclusion
This research offers 16:0-20:4 PC as the latent diagnostic indicator for MDD and hints the important role of PCs in depression.
The spatial structure and time evolution of tornado-like vortices in a three-dimensional cavity are studied by topological analysis and numerical simulation. The topology theory of the unsteady vortex in the rectangular coordinate system (Zhang, Zhang & Shu, J. Fluid Mech., vol. 639, 2009, pp. 343–372) is generalized to the curvilinear coordinate system. Two functions $\lambda (q_1,t)$ and $q(q_1,t)$ are obtained to determine the topology structure of the sectional streamline pattern in the cross-section perpendicular to the vortex axis and the meridional plane, respectively. The spiral direction of the sectional streamlines in the cross-section perpendicular to the vortex axis depends on the sign of $\lambda (q_1,t)$. The types of critical points in the meridional plane depend on the sign of $q(q_1,t)$. The relation between the critical points of the streamline pattern in the meridional plane and that in the cross-section perpendicular to the vortex axis is set up. The flow in a three-dimensional rectangular cavity is numerically simulated by solving the three-dimensional Navier–Stokes equations using high-order numerical methods. The spatial structures and the time evolutions of the tornado-like vortices in the cavity are analysed with our topology theory. Both the bubble type and spiral type of vortex breakdown are observed. They have a close relationship with the vortex structure in the cross-section perpendicular to the vortex axis. The bubble-type breakdown has a conical core and the core is non-axisymmetric in the sense of topology. A criterion for the bubble type and the spiral type based on the spatial structure characteristic of the two breakdown types is provided.
Many protected areas worldwide have been established to protect the last natural refuges of flagship animal species. However, long-established protected areas do not always match the current distributions of target species under changing environmental conditions. Here we present a case study of the Asian elephant Elephas maximus in Xishuangbanna, south-west China, to evaluate whether the established protected areas match the species’ current distribution and to identify key habitat patches for Asian elephant conservation. Our results show that currently only 24.5% of the predicted Asian elephant distribution in Xishuangbanna is located within Xishuangbanna National Nature Reserve, which was established for elephant conservation. Based on the predicted Asian elephant distribution, we identified the most important habitat patches for elephant conservation in Xishuangbanna. The three most important patches were outside Xishuangbanna National Nature Reserve and together they contained 43.3% of the estimated food resources for Asian elephants in all patches in Xishuangbanna. Thus, we identified a spatial mismatch between immobile protected areas and mobile animals. We recommend the inclusion of the three identified key habitat patches in a new national park currently being planned by the Chinese authorities for the conservation of the Asian elephant.
Whether starchy and non-starchy vegetables have distinct impacts on health remains unknown. We prospectively investigated the intake of starchy and non-starchy vegetables in relation to mortality risk in a nationwide cohort. Diet was assessed using 24-h dietary recalls. Deaths were identified via the record linkage to the National Death Index. Hazard ratios (HR) and 95 % CI were calculated using Cox regression. During a median follow-up of 7·8 years, 4904 deaths were documented among 40 074 participants aged 18 years or older. Compared to those with no consumption, participants with daily consumption of ≥ 1 serving of non-starchy vegetables had a lower risk of mortality (HR = 0·76, 95 % CI 0·66, 0·88, Ptrend = 0·001). Dark-green and deep-yellow vegetables (HR = 0·79, 95 % CI 0·63, 0·99, Ptrend = 0·023) and other non-starchy vegetables (HR = 0·80, 95 % CI 0·70, 0·92, Ptrend = 0·004) showed similar results. Total starchy vegetable intake exhibited a marginally weak inverse association with mortality risk (HR = 0·89, 95 % CI 0·80, 1·00, Ptrend = 0·048), while potatoes showed a null association (HR = 0·93, 95 % CI 0·82, 1·06, Ptrend = 0·186). Restricted cubic spline analysis suggested a linear dose–response relationship between vegetable intake and death risk, with a plateau at over 300 and 200 g/d for total and non-starchy vegetables, respectively. Compared with starchy vegetables, non-starchy vegetables might be more beneficial to health, although both showed a protective association with mortality risk. The risk reduction in mortality plateaued at approximately 200 g/d for non-starchy vegetables and 300 g/d for total vegetables.
Benzodiazepine receptor agonists (BZRAs) are commonly used clinically and data on their hazardous use from large populations of psychiatric patients is limited.
Aims
To assess the current status of hazardous BZRA use and related factors in Chinese out-patient psychiatric settings.
Method
The study included out-patients with at least one BZRA prescription from five psychiatric settings in east, central and west China in 2018. Demographic and prescription information were extracted from the electronic prescription database. We defined the co-occurrence of overdose and long-term use as hazardous use, and patients whose recorded diagnoses did not meet any indications approved by the Chinese Food and Drug Administration as over-indication users. Additionally, 200 hazardous users were randomly selected for follow-up interview to confirm the actual situation.
Results
Among 720 054 out-patients, 164 450 (22.8%) had at least one BZRA prescription; 55.9% of patients were prescribed over-indication and 3% were defined as hazardous users. Multilevel multivariate regression analysis with hospital as a random effect showed that factors associated with hazardous use were older age (18–64 years: β = 0.018; 95% CI 0.013–0.023; >65 years: β = 0.015; 95% CI 0.010–0.021), male (β = 0.005, 95% CI 0.003–0.007), over-indication (β = 0.013, 95% CI 0.012–0.015), more out-patient visits (β = 0.006, 95% CI 0.006–0.006) and more visits to different doctors (β = 0.007, 95% CI 0.007–0.008); 98.5% of hazardous users (197/200) could not be contacted.
Conclusions
BZRAs are commonly used and there is a relatively large proportion of over-indication users among Chinese psychiatric out-patients. However, only a small proportion of hazardous users were detected. The study highlights how to use prescription data to support improvements in clinical practice.
This paper presents a novel method to improve the working bandwidth and radiation intensity of piezoelectric antenna by using external circuit. This method makes the piezoelectric antenna combined with roles of high radiation intensity and multiple resonant frequencies without changing the structural size of the piezoelectric antenna. The experimental results show that, compared with the original piezoelectric antenna, the tuning range of the resonant frequency of the piezoelectric antenna caused by the series capacitance and inductance is +13.6 and −24%, respectively. The series inductance will produce new resonance frequency, which provides a new method for the multi-band operation of the piezoelectric antenna. The LLC (series and parallel circuit) composite circuit can increase the number of resonant frequencies of the piezoelectric antenna from 1 to 3, and the S11 at the resonant frequencies are all lower than −10 dB, and the radiated magnetic field of the piezoelectric antenna is increased by 42.3% at least. This method makes the piezoelectric antenna have the dual functions of high radiation intensity and multi-band, which has great significance for broadening the application field of piezoelectric antenna.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between dietary inflammatory index (DII) and DKD in US adults.
Design:
This is a cross-sectional study.
Setting:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used. DII was calculated from 24-h dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations.
Participants:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used, which can provide the information of participants.
Results:
Four thousand two-hundred and sixty-four participants were included in this study. The adjusted OR of DKD was 1·04 (95 % CI 0·81, 1·36) for quartile 2, 1·24 (95 % CI 0·97, 1·59) for quartile 3 and 1·64 (95 % CI 1·24, 2·17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose–response pattern was observed between DII and DKD (Pnonlinearity = 0·73). In the stratified analyses, the OR for quartile 4 of DII were significant among adults with higher educational level (OR 1·83, 95 % CI 1·26, 2·66) and overweight or obese participants (OR 1·67, 95 % CI 1·23, 2·28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0·05).
Conclusions:
Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
The southern Great Xing’an Range (SGXR), located in the eastern segment of the Central Asian Orogenic Belt (CAOB), is one of the most economically important Cu–Mo–Fe–Sn–Pb–Zn–Ag metallogenic provinces in China. The newly discovered Panjiaduan Cu–Pb–Zn deposit (9.3 Mt; at 1.36% Cu, 2.90% Pb, 3.80% Zn and 38.12 g/t Ag), located in the SE segment of the SGXR, is primarily hosted in fracture zones in volcanic rocks and granodiorite of the Manitu Formation. Four paragenetic stages of metallic mineralization are identified: (I) quartz-pyrite-arsenopyrite; (II) quartz-polymetallic sulphide; (III) quartz-galena-sphalerite-argentite; and (IV) quartz-calcite-minor sulphide. The hydrothermal quartz contains three types of primary fluid inclusion (FIs): vapour-rich two-phase liquid-vapour (LV-type), liquid-rich two-phase liquid-vapour (VL-type) and three-phase liquid-vapour-solid FIs (SL-type). Stages I and II contain all types with homogenization temperatures (Th) of 324–386 °C and 276–334 °C as well as salinities of 0.7–38.0 wt% and 0.9–34.7 wt%, respectively, whereas stage III is composed of VL- and LV-type FIs with Th of 210–269 °C and salinities of 0.5–7.2 wt%. Only VL-type FIs occur in stage IV, with Th of 139–185 °C and salinities of 1.6–4.2 wt%. The δ18OH2O and δD values vary from −15.7 to 2.6‰ and −132.7 to −110.2‰, respectively, indicating predominant meteoric water with an initial magmatic source. The He–Ar isotopic compositions of the pyrite inclusions from the Panjiaduan Cu–Pb–Zn veins suggest that fluids were derived from the crust.
Organisational psychology literature is abounded with empirical evidence of the mitigating effect that social support seeking (SSS) behaviour has on stress. However, it is unclear if this phenomenon is present in a collectivist context where workers might be hesitant to seek social support when under stress. A total of 123 employees from China completed a longitudinal survey over 4 weeks assessing their appraisals of an ongoing work stressor, coping strategies, and stress level. Path-analysis, hierarchical regression and means comparison determined the degree of fit of two theoretical perspectives (stress-buffer and main effects) to Chinese employee's SSS behaviour, and its frequency of use against other coping strategies. Results showed that SSS was not elicited by primary and secondary appraisals, but instead may be better explained by employees' collectivistic aspirations. Implications of the results were addressed in relation to stress management strategies and human resource support initiatives. Future research directions were also discussed.
In this research, the deep-learning optimizers Adagrad, AdaDelta, Adaptive Moment Estimation (Adam), and Stochastic Gradient Descent (SGD) were applied to the deep convolutional neural networks AlexNet, GoogLeNet, VGGNet, and ResNet that were trained to recognize weeds among alfalfa using photographic images taken at 200×200, 400×400, 600×600, and 800×800 pixels. An increase in the image sizes reduced the classification accuracy of all neural networks. The neural networks that were trained with images of 200×200 pixels resulted in better classification accuracy than the other image sizes investigated here. The optimizers AlexNet and GoogLeNet trained with AdaDelta and SGD outperformed the Adagrad and Adam optimizers; VGGNet trained with AdaDelta outperformed Adagrad, Adam, and SGD; and ResNet trained with AdaDelta and Adagrad outperformed the Adam and SGD optimizers. When the neural networks were trained with the best-performing input image size (200×200 pixels) and the best-performing deep learning optimizer, VGGNet was the most effective neural network, with high precision and recall values (≥0.99) when validation and testing datasets were used. Alternatively, ResNet was the least effective neural network in its ability to classify images containing weeds. However, there was no difference among the different neural networks in their ability to differentiate between broadleaf and grass weeds. The neural networks discussed herein may be used for scouting weed infestations in alfalfa and further integrated into the machine vision subsystem of smart sprayers for site-specific weed control.