Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T11:02:56.926Z Has data issue: false hasContentIssue false

The Formation and Transformation of Manganese Oxide Minerals on the Surface of Kaolinite

Published online by Cambridge University Press:  01 January 2024

Fan Zhao
Affiliation:
Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Guangyao Zhang
Affiliation:
Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Yong Jiang
Affiliation:
Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Hui Wang
Affiliation:
Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
Chi Cao
Affiliation:
Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Yongbo Qi
Affiliation:
Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Qingyun Wang
Affiliation:
Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Huaiyan Zhao*
Affiliation:
Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

Abstract

The formation of manganese (Mn) oxides is influenced by environmental conditions and, in some red soils, Mn oxides occur as coatings on the surface of kaolinite particles in the form of colloidal films or fine particles. The present study aimed to explore the types of formation mechanisms of Mn oxide minerals on the surface of kaolinite. Mn oxide minerals synthesized by reducing the Mn in KMnO4 with a divalent Mn salt (MnSO4) were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of various initial molar ratios of Mn2+/Mn7+ (R = 1:0.67, 1:1, 1:2, and 1:4), cationic species (Na+ or Mg2+), synthesis temperatures (30, 60, and 110°C), and amount of added kaolinite (0.25, 0.5, 1.0, 2.0, and 5.0 g) on the formation of Mn oxides were studied. The results showed that Mn oxide mineral types were affected by the initial R value and the background cation. With decreases in the initial R value, the synthesized minerals transformed from cryptomelane to birnessite. The relative mass ratios of kaolinite to Mn oxide were calculated as 1:0.92, 1:0.63, 1:1.15, and 1:1.63. The sodium cation (Na+) had a greater role than Mg2+ in promoting the dissolution–recrystallization of birnessite to cryptomelane. The synthesis temperature had no effect on mineral types, but Mn content increased as temperature increased. When the amount of added kaolinite was increased from 0.25 to 5.0 g, Mn oxide minerals formed gradually and transformed from birnessite to cryptomelane. This work revealed a possible formation process and reaction mechanism on the surface of kaolinite particles in some red soils.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: William F. Jaynes

References

Chen, H. F., Koopal, L. K., Xu, J. L., Wang, M. X., Tan, W. F. Selective adsorption of soil humic acid on binary systems containing kaolinite and goethite: Assessment of sorbent interactions European Journal of Soil Science 2019 70 5 10981107CrossRefGoogle Scholar
Choi, J., Komarneni, S., Park, M. Mn-kaolinite synthesis under low-temperature hydrothermal conditions Applied Clay Science 2009 44 3–4 237241 10.1016/j.clay.2009.02.010CrossRefGoogle Scholar
Cornell, R. M., Giovanoli, R. Transformation of hausmannite into birnessite in alkaline media Clays and Clay Minerals 1988 36 249257 10.1346/CCMN.1988.0360306CrossRefGoogle Scholar
Davies, SHR, Morgan, J. J. Manganese(II) oxidation kinetics on metal oxide surfaces Journal of Colloid and Interface Science 1989 129 1 6377 10.1016/0021-9797(89)90416-5CrossRefGoogle Scholar
Feng, X. H., Liu, F., Tan, W. F., Liu, X. W. Synthesis of birnessite from the oxidation of Mn2+ by O2 in alkali medium: Effects of synthesis conditions Clays and Clay Minerals 2004 52 2 240250 10.1346/CCMN.2004.0520210CrossRefGoogle Scholar
Feng, X. H., Tan, W. F., Liu, F., Huang, Q. Y., Liu, X. W. Pathways of birnessite formation in alkali medium Science China Earth Sciences 2005 48 9 14381451Google Scholar
Frias, D., Nousir, S., Barrio, I., Montes, M., Lopez, T., Centeno, M. A., Odriozola, J. A. Synthesis and characterization of cryptomelane-type and birnessite-type oxides: Precursor effect Materials Characterization 2007 58 8–9 776781 10.1016/j.matchar.2006.11.005CrossRefGoogle Scholar
Handel, M., Rennert, T., Totsche, K. U. Synthesis of cryptomelane-type and birnessite-type manganese oxides at ambient pressure and temperature Journal of Colloid and Interface Science 2013 405 4450 10.1016/j.jcis.2013.05.041CrossRefGoogle ScholarPubMed
Hella, B., Romain, C., Ghouti, M., Christian, R., Latifa, B. Conditions for the formation of pure birnessite during the oxidation of Mn(II) cations in aqueous alkaline medium Journal of Solid State Chemistry 2017 248 1825 10.1016/j.jssc.2017.01.014Google Scholar
Hong, H. L., Gu, Y. S., Yin, K., Zhang, K. X., Li, Z. H. Red soils with white net-like veins and their climate significance in south China Geoderma 2010 160 2 197207 10.1016/j.geoderma.2010.09.019CrossRefGoogle Scholar
Huang, L., Hong, J., Tan, W. F., Hu, H. Q., Liu, F., Wang, M. K. Characteristics of micromorphology and element distribution of iron-manganese cutans in typical soils of subtropical China Geoderma 2008 146 1–2 4047 10.1016/j.geoderma.2008.05.007CrossRefGoogle Scholar
Huang, L., Tan, W. F., Liu, F., Hu, H. Q., Wang, M. K. Characteristics of iron-manganese cutans and matrices in Alfisols and Ultisols of subtropical China Soil Science 2009 174 238246 10.1097/SS.0b013e31819f5fffCrossRefGoogle Scholar
Huang, C. Q., Zhao, W., Liu, F., Tan, W. F., Koopal, L. K. Environmental significance of mineral weathering and pedogenesis of loess on the southernmost Loess Plateau China. Geoderma 2011 163 3–4 219226 10.1016/j.geoderma.2011.04.018CrossRefGoogle Scholar
Inoue, S., Yasuhara, A., Ai, H., Hochella, M. F., & Murayama, M. (2019). Mn(II) oxidation catalyzed by nanohematite surfaces and manganite/hausmannite core-shell nanowire formation by self-catalytic reaction. Geochimica et Cosmochimica Acta, 258, 7996.CrossRefGoogle Scholar
Jung, H., Taillefert, M., Sun, J., Wang, Q., Borkiewicz, O. J., Liu, P., Yang, L. F., Chen, S., Chen, H. L., Tang, Y. Z. Redox cycling driven transformation of layered manganese oxides to tunnel structures Journal of the American Chemical Society. 2020 142 25062513 10.1021/jacs.9b12266CrossRefGoogle ScholarPubMed
Jung, H., Xu, X. M., Wan, B., Wang, Q., Borkiewicz, O. J., Li, Y., Chen, H. L., Lu, A. H., & Tang, Y. Z. (2021). Photocatalytic oxidation of dissolved Mn(II) on natural iron oxide minerals. Geochimica et Cosmochimica Acta, 312, 343356.CrossRefGoogle Scholar
Khan, T. A., Khan, E. A., Shahjahan, Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: Non-linear isotherm and kinetics modeling Applied Clay Science 2015 107 7077 10.1016/j.clay.2015.01.005CrossRefGoogle Scholar
Kijima, N., Yasuda, H., Sato, T., Yoshimura, Y. Preparation and characterization of open tunnel oxide α-MnO2 precipitated by ozone oxidation Journal of Solid State Chemistry 2001 159 94102 10.1006/jssc.2001.9136CrossRefGoogle Scholar
Krishnamurti, GSR, Huang, P. M. Influence of manganese oxide minerals on the formation of iron oxides Clays and Clay Minerals 1988 36 467475 10.1346/CCMN.1988.0360513CrossRefGoogle Scholar
Kuma, K., Usui, A., Paplawsky, W., Gedulin, B., Arrhenius, G. Crystal structures of synthetic 7 angstrom and 10 angstrom manganates substituted by mono- and divalent cations Mineralogical Magazine 1994 58 4 425447 10.1180/minmag.1994.058.392.08CrossRefGoogle ScholarPubMed
Lan, S., Wang, X. M., Xiang, Q. J., Yin, H., Tan, W. F., Qiu, G. H., Zhang, J., & Feng, X. H. (2017). Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides. Geochimica et Cosmochimica Acta., 211, 7996.CrossRefGoogle Scholar
Learman, D. R., Voelker, B. M., Rodriguez, VAI, Hansel, C. M. Formation of manganese oxides by bacterially generated superoxide Nature Geoscience 2011 4 2 9598 10.1038/ngeo1055CrossRefGoogle Scholar
Lefkowitz, J. P., Rouff, A. A., Elzinga, J. E. Influence of pH on the reductive transformation of birnessite by aqueous Mn(II) Environmental Science & Technology 2013 47 18 1036410371 10.1021/es402108dCrossRefGoogle ScholarPubMed
Liang, X. R., Post, J. E., Lanson, B., Wang, X. M., Zhu, M. Q., Liu, F., Tan, W. F., Feng, X. H., Zhu, G. M., Zhang, X., De Yoreo, J. J. Coupled morphological and structural evolution of δ-MnO2 to α-MnO2 through multistage oriented assembly processes: The role of Mn(III) Environmental Science: Nano 2020 7 238249Google Scholar
Liu, J., Zhang, Y. X., Gu, Q., Sheng, A. X., Zhang, B. G. Tunable Mn oxidation state and redox potential of birnessite coexisting with aqueous Mn(II) in mildly acidic environments Minerals 2020 10 8 690 10.3390/min10080690CrossRefGoogle Scholar
Liu, J., Sayako, I., Zhu, R. L., He, H. P., Hochella, M. F. Jr Facet-specific oxidation of Mn (II) and heterogeneous growth of manganese (oxyhydr) oxides on hematite nanoparticles Geochimica Et Cosmochimica Acta 2021 307 151167 10.1016/j.gca.2021.05.043CrossRefGoogle Scholar
Liu, J., Chen, Q., Yang, Y., Wei, H., Laipan, M., Zhu, R., He, H. P., Hochella, M. F. Coupled redox cycling of Fe and Mn in the environment: The complex interplay of solution species with Fe- and Mn-(oxyhydr)oxide crystallization and transformation Earth-Science Reviews 2022 232 104105 10.1016/j.earscirev.2022.104105CrossRefGoogle Scholar
Luo, J., Steven, L., Suib, Preparative parameters, magnesium effects, and anion effects in the crystallization of birnessites Journal of Physical Chemistry B 1997 101 1040310413 10.1021/jp9720449CrossRefGoogle Scholar
Luo, Y., Ding, J., Shen, Y., Tan, W. F., Qiu, G., Liu, F. Symbiosis mechanism of iron and manganese oxides in oxic aqueous systems Chemical Geology 2018 488 162170 10.1016/j.chemgeo.2018.04.030CrossRefGoogle Scholar
Ma, G., Liu, F., Huang, L., Sun, M. M. The process and influence factors of the synthesis of manganese minerals by the reactions between KMnO4 and bivalent manganese salts Acta Petrologica Et Mineralogica 2013 32 03 393400 10.3969/j.issn.1000-6524.2013.03.011Google Scholar
McKenzie, R. M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese Mineralogical Magazine 1971 38 493502 10.1180/minmag.1971.038.296.12CrossRefGoogle Scholar
McKenzie, R. M. The manganese oxides in soils—a review Journal of Plant Nutrition and Soil Science 1972 131 3 221242 10.1002/jpln.19721310302CrossRefGoogle Scholar
Morgan, J. J. (2005). Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochimica et Cosmochimica Acta, 69(1), 3548.CrossRefGoogle Scholar
Namgung, S., Chon, C. M., Lee, G. Formation of diverse Mn oxides: A review of bio-geochemical processes of Mn oxidation Geosciences Journal 2018 22 2 373381 10.1007/s12303-018-0002-7CrossRefGoogle Scholar
Neaman, A., Waller, B., Mouele, F., Trolard, F., Bourrie, G. Improved methods for selective dissolution of manganese oxides from soils and rocks European Journal of Soil Science 2004 55 1 4754 10.1046/j.1351-0754.2003.0545.xCrossRefGoogle Scholar
Portehault, D., Cassaignon, S., Baudrin, E., Jolivet, J. P. Morphology control of cryptomelane type MnO2 nanowires by soft chemistry, growth mechanisms in aqueous medium Chemistry of Materials 2007 19 22 54105417 10.1021/cm071654aCrossRefGoogle Scholar
Post, J. E. Manganese oxide minerals: Crystal structures and economic and environmental significance Proceedings of the National Academy of Sciences of the United States of America 1999 96 7 34473454 10.1073/pnas.96.7.3447CrossRefGoogle ScholarPubMed
Tu, S., Racz, G. J., Goth, T. B. Transformations of synthetic birnessite as affected by pH and manganese concentration Clays and Clay Minerals 1994 42 321330 10.1346/CCMN.1994.0420310CrossRefGoogle Scholar
Villalobos, M., Toner, B., Bargar, J., Sposito, G. Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1 Geochimica Et Cosmochimica Acta 2003 67 14 26492662 10.1016/S0016-7037(03)00217-5CrossRefGoogle Scholar
Wei, S. Y., Liu, F., Feng, X. H., Tan, W. F., Koopal, L. K. Formation and transformation of iron oxide-kaolinite associations in the presence of iron(II) Soil Science Society of America Journal 2011 75 1 4555 10.2136/sssaj2010.0175CrossRefGoogle Scholar
Won, J., Jeong, B., Lee, J., Dai, S., Burns, S. E. Facilitation of microbially induced calcite precipitation with kaolinite nucleation Geotechnique 2020 71 8 728734 10.1680/jgeot.19.P.324CrossRefGoogle Scholar
Yan, C. L., Liu, S., Min, H., Li, C., Zhu, Z. X., Lu, C. S., Gao, Q. Optimization and evaluation of the method for the determination of the manganese content in manganese ores and concentrates as described in ISO 4298:1984 Analytical and Bioanalytical Chemistry 2020 412 25 68236831 10.1007/s00216-020-02805-3CrossRefGoogle ScholarPubMed
Yang, D. S., Wang, M. K. Syntheses and characterization of birnessite by oxidizing pyrochroite in alkaline conditions Clays and Clay Minerals 2002 50 1 6369 10.1346/000986002761002685CrossRefGoogle Scholar
Yin, H., Wang, X., Qin, Z., Vogel, M. G., Zhang, S., Jiang, S., Liu, F., Li, S., Zhang, J., Wang, Y. Coordination geometry of Zn2+ on hexagonal turbostratic birnessites with different Mn average oxidation states and its stability under acid dissolution Journal of Environmental Sciences 2018 65 282292 10.1016/j.jes.2017.02.017CrossRefGoogle ScholarPubMed
Zhang, Q., Xiao, Z. D., Feng, X. H., Tan, W. F., Qiu, G. H., Liu, F. Alpha-MnO2 nanowires transformed from precursor delta-MnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism Materials Chemistry and Physics 2011 125 3 678685 10.1016/j.matchemphys.2010.09.073CrossRefGoogle Scholar
Zhang, Q., Chen, X. D., Qiu, G. H., Liu, F., Feng, X. H. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids Solid State Sciences 2016 55 152158 10.1016/j.solidstatesciences.2016.03.003CrossRefGoogle Scholar
Zhang, T. F., Liu, L. H., Tan, W. F., Suib, S. L., Qiu, G. H., Liu, F. Photochemical formation and transformation of birnessite: Effects of cations on micromorphology and crystal structure Environmental Science & Technology 2018 52 12 68646871 10.1021/acs.est.7b06592CrossRefGoogle ScholarPubMed
Zhao, H. Y., Liang, X. R., Yin, H., Liu, F., Tan, W. F., Qiu, G. H., Feng, X. H. Formation of todorokite from “c-disordered” H+-birnessites: The roles of average manganese oxidation state and interlayer cations Geochemical Transactions 2015 16 8 10.1186/s12932-015-0023-3CrossRefGoogle ScholarPubMed
Zhao, H. Y., Zhu, M. Q., Li, W., Elzinga, E. J., Villalobos, M., Liu, F., Zhang, J., Feng, X. H., Sparks, D. L. Redox reactions between Mn(II) and hexagonal birnessite change its layer symmetry Environmental Science & Technology 2016 50 17501758 10.1021/acs.est.5b04436CrossRefGoogle ScholarPubMed
Zhao, F. F., He, M. C., Wang, Y. T., Tao, Z. G., Li, C. Eco-geological environment quality assessment based on multi-source data of the mining city in red soil hilly region China. Journal of Mountain Science 2022 19 1 253275 10.1007/s11629-021-6860-xCrossRefGoogle Scholar
Zhu, M. Q., Vogel, M. G., Parikh, S. J., Feng, X. H., Sparks, D. L. Cation effects on the layer structure of biogenic Mn-oxides Environmental Science & Technology 2010 44 44654471 10.1021/es1009955CrossRefGoogle ScholarPubMed
Zhu, B. L., Qi, C. L., Zhang, Y. H., Teresa, B., Xu, Z. H., Fan, Y. G., Sun, Z. X. Synthesis, characterization and acid-base properties of kaolinite and metal (Fe, Mn, Co) doped kaolinite Applied Clay Science 2019 179 105138 10.1016/j.clay.2019.105138CrossRefGoogle Scholar
Supplementary material: File

Zhao et al. supplementary material
Download undefined(File)
File 99.8 KB