We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the era of Unmanned Aerial Systems (UAS), an onboard autopilot occupies a prominent place and is inevitable for many of their modern applications. The efficacy of autopilot heavily relies upon the accuracy of the sensors employed and the capability of the onboard flight controller. In general, aerodynamic behaviour and flight dynamic capabilities of Unmanned Aerial Vehicles (UAVs) govern the selection and the design of flight controllers. Precise modeling of linear aerodynamic characteristics from flight data can be achieved using many of the existing classical parameter estimation techniques such as Output Error Method (OEM), Equation Error Method (EEM), and Filter Error Method (FEM). However, all the classical methods may not be readily applicable for aerodynamic modeling in nonlinear flight envelopes. The current manuscript is an attempt to exploit the capabilities of the Artificial Intelligence (AI) technique, named Particle Swarm Optimisation (PSO), in combination with Least Squares (LS) cost function to perform linear as well as nonlinear aerodynamic parameter estimation. The aforementioned task is accomplished by considering flight data from manoeuvers pertaining to linear angles of attack, moderate and near stall flight envelopes of two different UAVs with cropped delta planform geometry. Parameters estimated using the proposed LS-PSO method are consistent with minimum standard deviation and are on a par with OEM estimates. The proposed LS-PSO method enhances the capabilities of LS-based EEM while estimating stall characteristic parameters, which was not possible with LS alone. The longitudinal and lateral-directional static parameters estimated from the full-scale wind tunnel testing of the two UAVs were also used to corroborate the results obtained from the flight data using the LS-PSO method.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
Acute facial palsy is a consequence of various diseases, with the number of patients increasing with advancing age. This study aimed to analyse the clinical characteristics of acute peripheral facial palsy in older adults.
Methods
A total of 30 patients with a mean age of 68.4 ± 9.1 years were included in the study. All patients received a standardised investigation and follow up. The hospital charts of the patients with acute facial palsy were reviewed retrospectively.
Results
The predominant causes of acute facial palsy in older adults were: Bell's palsy, Ramsay Hunt syndrome, trauma, otitis media and malignancy. At baseline, complete and incomplete facial palsies were seen in 26.7 per cent and 73.3 per cent of patients, respectively. The overall rates of good recovery, partial recovery and no recovery were 66.7 per cent, 10 per cent and 23.3 per cent, respectively. Increased age led to a significantly lower level of recovery in older adults.
Conclusion
Bell's palsy and Ramsay Hunt syndrome were the most common aetiologies of acute facial palsy in older adults, and such patients are likely to have incomplete recovery. Active early treatment is necessary for achieving good outcomes in older adults.
In this era of spatially resolved observations of planet-forming disks with Atacama Large Millimeter Array (ALMA) and large ground-based telescopes such as the Very Large Telescope (VLT), Keck, and Subaru, we still lack statistically relevant information on the quantity and composition of the material that is building the planets, such as the total disk gas mass, the ice content of dust, and the state of water in planetesimals. SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is an infrared space mission concept developed jointly by Japan Aerospace Exploration Agency (JAXA) and European Space Agency (ESA) to address these questions. The key unique capabilities of SPICA that enable this research are (1) the wide spectral coverage
$10{-}220\,\mu\mathrm{m}$
, (2) the high line detection sensitivity of
$(1{-}2) \times 10^{-19}\,\mathrm{W\,m}^{-2}$
with
$R \sim 2\,000{-}5\,000$
in the far-IR (SAFARI), and
$10^{-20}\,\mathrm{W\,m}^{-2}$
with
$R \sim 29\,000$
in the mid-IR (SPICA Mid-infrared Instrument (SMI), spectrally resolving line profiles), (3) the high far-IR continuum sensitivity of 0.45 mJy (SAFARI), and (4) the observing efficiency for point source surveys. This paper details how mid- to far-IR infrared spectra will be unique in measuring the gas masses and water/ice content of disks and how these quantities evolve during the planet-forming period. These observations will clarify the crucial transition when disks exhaust their primordial gas and further planet formation requires secondary gas produced from planetesimals. The high spectral resolution mid-IR is also unique for determining the location of the snowline dividing the rocky and icy mass reservoirs within the disk and how the divide evolves during the build-up of planetary systems. Infrared spectroscopy (mid- to far-IR) of key solid-state bands is crucial for assessing whether extensive radial mixing, which is part of our Solar System history, is a general process occurring in most planetary systems and whether extrasolar planetesimals are similar to our Solar System comets/asteroids. We demonstrate that the SPICA mission concept would allow us to achieve the above ambitious science goals through large surveys of several hundred disks within
$\sim\!2.5$
months of observing time.
The Suyanggae archeological complex is located in Aegok-li, Danyang County, Chungbuk Province, Korea (128°20'00"E, 365˚7'15"N, elevation 132 m). We investigated two Suyanggae Paleolithic localities (1 and 6). A total of 31 samples (18 localities) were analyzed for radiocarbon (14C) ages in three paleolithic cultural horizons of Suyanggae Locality 6 (SYG-6). The purpose of this paper is to report all dating results of SYG-6. It was found that ranges of 14C ages (BP) of cultural layers of SYG-6 are known to be 17,550 ± 80 ∼ 20,470 ± 70, 30,360 ± 350 ∼ 44,100 ± 1900, and 34,870 ± 540 ∼ 46,360 ± 510 BP for cultural layers 2, 3, and 4, respectively. We compared these age data with those of the previous study associated with Gunang Cave near Suyanggae Locality 1 (SYG-1). Based on the chronological information of the three archaeological sites, early humans lived in a rather cold environment from approximately 30,000 to 46,000 BP and disappeared between 30,000 ∼ 20,000 BP and then settled again in SYG-6 site during LGM period. This study demonstrates that archaeological study is important not only for understanding human occupations with their cultural development but also establishing climatic signals to which they have been adapted as a part of the human evolutional process.
Since the turn of the millennium a number of novels that look back to the Korean War have appeared in English including Ha Jin’s War Trash, Hwang Sok-yong’s The Guest, Chang-rae Lee’s The Surrendered and Jayne Anne Phillips’s Lark and Termite. These works issue address a location, the Korean peninsula, that interrupts putatively global frameworks for understanding the contemporary. Korea’s postcoloniality remains suspended as it has manifested in two still divided nation-state and its ongoing civil war testifies to the fact that the Cold War’s putative end is not an entirely global phenomenon. Moreover, these works illuminate how the “contact nebulae” (to use Karen Thornber’s phrase) that define East Asia—the formations of transculturation indigenous to that region—are not only shot through by complex asymmetries of power but also intertwined with more global histories of war and empire. As such, the network of literary examined in this essay contribute to a theorizing of the contemporary and of world literature that is attuned tracking the dynamic interaction of the multiple temporal and spatial registers—global, regional and national—in which various modalities of worlding take place.
While coronavirus disease 2019 (COVID-19) spreads across the globe, many countries have closed schools to ensure physical distancing to slow transmission and ease the burden on health systems. Concerns regarding Coronavirus Disease 2019 (COVID-19) school closures often increase stress levels in parents.
Objectives
This study examined whether higher levels of parental concerns were associated with children’s problematic behaviors and other factors during COVID-19-related primary school closures.
Methods
Participants were 217 parents who responded to a web-based questionnaire covering parental concerns, subjective stress, and depression; children’s sleep patterns, behavioral problems, and changes in activity level after COVID-19; previously received mental health services; and media usage during the online-only class period from community center in Suwon city.
Results
The number of parental concerns was associated with children’s behavioral problem index (BPI) score (Pearson correlation 0.211, p < 0.01), sleep problems (0.183, p < 0.01), increased smartphone usage (0.166, p < 0.05), increased TV usage (0.187, p < 0.01), parents’ subjective stress levels (0.168, p < 0.05), and parental depression (0.200, p < 0.01). In families with children who previously received mental health services, the children reportedly suffered from more sleep and behavioral problems but not increased media usage, and parents noted more stress and depression. Parental concerns are related to family factors such as change of caregiver, no available caregiver, decreased household income, and recent adverse life events.
Conclusions
Ongoing monitoring of mental health at risky group and multiple support systems should be considered for parents having difficulty in caring their children.
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
The Patient Registry for Adolescents and Adults with Stable Fontan Circulation aims to describe a contemporary cohort of Fontan patients who could be eligible for a clinical trial investigating macitentan, an endothelin receptor antagonist. This international, non-interventional, multicentre, cross-sectional, observational registry enrolled patients with “stable” Fontan circulation ≥10 years following extra-cardiac conduit or lateral tunnel procedure. Main exclusion criteria were NYHA functional class IV, reoperation of Fontan circulation, or signs of disease worsening. Patient characteristics at enrolment are described; available data were collected during a single registration visit. Of the 266 screened patients, 254 were included in this analysis. At enrolment, median (interquartile range) age was 24 (20;30) years, 37%/63% of patients were from the USA/Europe, 54% were male, 54%/47% had undergone extra-cardiac conduit/lateral tunnel procedures, and 95% were in NYHA functional class I or II. History of arrhythmia was more common in older patients and patients with lateral tunnel; overall prevalence was 19%. Most laboratory values were within the normal range but mean creatinine clearance was abnormally low (87.7 ml/min). Angiotensin-converting enzyme inhibitors were used by 48% of patients and their use was associated with creatinine clearance <90 ml/min (p = 0.007), as was Fontan completion at an older age (p = 0.007). 53.4% of patients had clinical characteristics that could potentially meet an endothelin receptor antagonist trial’s eligibility criteria. The PREpArE-Fontan registry describes a cohort of patients who could potentially participate in an endothelin receptor antagonist trial and identified early subtle signs of Fontan failure, even in “stable” patients.
The vitamin B group, including riboflavin, plays paramount roles in one-carbon metabolism (OCM), and disorders related to this pathway have been linked to cancer development. The variants of genes encoding OCM enzymes and the insufficiency of B vitamins could contribute to carcinogenesis. Very few observational studies have revealed a relationship between riboflavin and gastric cancer (GC), especially under conditions of modified genetic factors. We carried out a study examining the association of riboflavin intake and its interaction with MTRR (rs1532268) genetic variants with GC risk among 756 controls and 377 cases. The OR and 95 % CI were evaluated using unconditional logistic regression models. We observed protective effects of riboflavin intake against GC, particularly in the female subgroup (OR = 0·52, 95 % CI 0·28, 0·97, Ptrend = 0·031). In the MTRR (rs1532268) genotypes analysis, the dominant model showed that the effects of riboflavin differed between the CC and CT + TT genotypes. Compared with CC carriers, low riboflavin intake in T+ carriers was significantly associated with a 93 % higher GC risk (OR = 1·93, 95 % CI 1·09, 3·42, Pinteraction = 0·037). In general, higher riboflavin intake might help reduce the risk of GC in both CC and TC + TT carriers, particularly the T+ carriers, with marginal significance (OR = 0·54, 95 % CI 0·28, 1·02, Pinteraction = 0·037). Our study indicates a protective effect of riboflavin intake against GC. Those who carry at least one minor allele and have low riboflavin intake could modify this association to increase GC risk in the Korean population.