We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Seeman, Morris, and Summers misrepresent or misunderstand the arguments we have made, as well as their own previous work. Here, we correct these inaccuracies. We also reiterate our support for hypothesis-driven and evidence-based research.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers
$270 \,\mathrm{deg}^2$
of an area covered by the Dark Energy Survey, reaching a depth of 25–30
$\mu\mathrm{Jy\ beam}^{-1}$
rms at a spatial resolution of
$\sim$
11–18 arcsec, resulting in a catalogue of
$\sim$
220 000 sources, of which
$\sim$
180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The role of fire in the management of degraded areas remains strongly debated. Here we experimentally compare removal and infestation of popcorn kernels (Zea mays L. – Poaceae) and açaí fruits (Euterpe oleracea Mart. – Arecaceae) in one burned and two unburned savanna habitats in the eastern Brazilian Amazon. In each habitat, a total of ten experimental units (five per seed type) were installed, each with three treatments: (1) open access, (2) vertebrate access, and (3) invertebrate access. Generalized linear models showed significant differences in both seed removal (P < 0.0001) and infestation (P < 0.0001) among seed type, habitats and access treatments. Burned savanna had the highest overall seed infestation rate (24.3%) and invertebrate access increased açaí seed infestation levels to 100% in the burned savanna. Increased levels of invertebrate seed infestation in burned savanna suggest that preparation burning may be of limited use for the management and restoration of such habitats in tropical regions.
Understanding the impact of the COVID-19 pandemic on paediatric non-COVID-19-related care, as well as patient and caregiver concerns and stressors, is critical for informing healthcare delivery. It was hypothesised that high care disruptions and psychological stress would be observed among paediatric and adult CHD patients in the early phase of the pandemic.
Methods:
A cross-sectional, international, electronic survey study was completed. Eligible participants included parents of children with acquired or CHD, adults with CHD, or caregivers of adults with CHD.
Results:
A total of 1220 participants from 25 countries completed the survey from 16 April to 4 May, 2020. Cardiac care disruption was significant with 38% reporting delays in pre-pandemic scheduled cardiac surgeries and 46% experiencing postponed cardiac clinic visits. The majority of respondents (75%) endorsed moderate to high concern about the patient with heart disease becoming ill from COVID-19. Worry about returning for in-person care was significantly greater than worry of harm to patient due to postponed care. Clinically significant psychological stress was high across the sample including children (50%), adults with CHD (42%), and caregivers (42%).
Conclusions:
The early phase of the COVID-19 pandemic contributed to considerable disruptions in cardiac care for patients with paediatric and adult CHD. COVID-19-related fears are notable with potential to impact willingness to return to in-person care. Psychological stress is also very high necessitating intervention. Further study of the impact of delays in care on clinical outcomes is warranted.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
We present a detailed analysis of the radio galaxy PKS
$2250{-}351$
, a giant of 1.2 Mpc projected size, its host galaxy, and its environment. We use radio data from the Murchison Widefield Array, the upgraded Giant Metre-wavelength Radio Telescope, the Australian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to model the jet power and age. Optical and IR data come from the Galaxy And Mass Assembly (GAMA) survey and provide information on the host galaxy and environment. GAMA spectroscopy confirms that PKS
$2250{-}351$
lies at
$z=0.2115$
in the irregular, and likely unrelaxed, cluster Abell 3936. We find its host is a massive, ‘red and dead’ elliptical galaxy with negligible star formation but with a highly obscured active galactic nucleus dominating the mid-IR emission. Assuming it lies on the local M–
$\sigma$
relation, it has an Eddington accretion rate of
$\lambda_{\rm EDD}\sim 0.014$
. We find that the lobe-derived jet power (a time-averaged measure) is an order of magnitude greater than the hotspot-derived jet power (an instantaneous measure). We propose that over the lifetime of the observed radio emission (
${\sim} 300\,$
Myr), the accretion has switched from an inefficient advection-dominated mode to a thin disc efficient mode, consistent with the decrease in jet power. We also suggest that the asymmetric radio morphology is due to its environment, with the host of PKS
$2250{-}351$
lying to the west of the densest concentration of galaxies in Abell 3936.
Associations between different forms of malnutrition and environmental conditions, including water, sanitation and hygiene (WASH), may contribute towards persistently poor child health, growth and cognitive development. Experiencing poor nutrition in utero or during early childhood is furthermore associated with chronic diseases later in life. The primary responsibility for provision of water and sanitation, as a basic service and human right, lies with the State; however, a number of stakeholders are involved. The situation is most critical in sub-Saharan Africa (SSA), where, in 2015, 311 million people lacked a safe water source, and >70% of SSA populations were living without adequate sanitation. The aim of this paper was to conduct a systematic review to investigate the state of literature concerned with WASH and its association with nutritional status, and governance in children from birth to 5 years of age in SSA. Articles were sourced from PubMed Central, Science Direct and ProQuest Social Science databases published between 1990 and 2017. The PRISMA Statement was utilised and this systematic review is registered with PROSPERO (CRD42017071700). The search terms returned 15,351 articles for screening, with 46 articles included. This is indicative of a limited body of knowledge; however, the number of publications on this topic has been increasing, suggesting burgeoning field of interest. Targeted research on the governance of WASH through the identification of the various role players and stakeholders at various levels, while understanding the policy environment in relation to particular health-related outcomes is imperative to address the burden of child undernutrition.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
A new era in radio astronomy will begin with the upcoming large-scale surveys planned at the Australian Square Kilometre Array Pathfinder (ASKAP). ASKAP started its Early Science programme in October 2017 and several target fields were observed during the array commissioning phase. The Scorpio field was the first observed in the Galactic Plane in Band 1 (792–1 032 MHz) using 15 commissioned antennas. The achieved sensitivity and large field of view already allow to discover new sources and survey thousands of existing ones with improved precision with respect to previous surveys. Data analysis is currently ongoing to deliver the first source catalogue. Given the increased scale of the data, source extraction and characterisation, even in this Early Science phase, have to be carried out in a mostly automated way. This process presents significant challenges due to the presence of extended objects and diffuse emission close to the Galactic Plane.
In this context, we have extended and optimised a novel source finding tool, named Caesar, to allow extraction of both compact and extended sources from radio maps. A number of developments have been done driven by the analysis of the Scorpio map and in view of the future ASKAP Galactic Plane survey. The main goals are the improvement of algorithm performances and scalability as well as of software maintainability and usability within the radio community. In this paper, we present the current status of Caesar and report a first systematic characterisation of its performance for both compact and extended sources using simulated maps. Future prospects are discussed in the light of the obtained results.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
Depression and anxiety in the antenatal period are of public health concern given potential adverse effects for both mother and infant. Both are under-researched in the first trimester of pregnancy, especially in Africa. We examine the prevalence of first trimester antenatal depression and anxiety in a cohort of South African women and investigate associated risk factors. Data were collected from 946 women (2014–2016) in the Soweto First 1000 Days Cohort, a prospective pregnancy cohort in Soweto, South Africa. Antenatal depression was assessed using the Edinburgh Postnatal Depression Scale with a score of ⩾13 indicating probable depression. Anxiety was assessed using the short form of the State-Trait Anxiety Index with a score ⩾12 indicating probable anxiety. Prevalence of antenatal depression was 27% [95% confidence interval (CI) 24.2–29.8] and anxiety 15.2% (95% CI 12.9–17.5). Factors associated with antenatal depression and anxiety were predominantly relationship- and family-centred. Women who perceived that their partner made life harder for them had three-fold increased odds for depression [(odds ratio (OR) 3.33 [2.28–4.85] P<0.001], whereas those with family stressors had almost double the odds for depression (OR 1.78 [1.22–2.59] P=0.003) and anxiety (OR 1.75 [1.44–2.69] P=0.0011). Antenatal depression and anxiety are common in the first trimester of pregnancy, and partner and family relationship stressors are central. Longitudinal analysis is needed to determine if this is a phase of adjustment to pregnancy or onset of persistent symptomology. Early intervention may have secondary preventative effects and should involve the partner and family.
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
The theory of influence and sharp threshold is a key tool in probability and probabilistic combinatorics, with numerous applications. One significant aspect of the theory is directed at identifying the level of generality of the product probability space that accommodates the event under study. We derive the influence inequality for a completely general product space, by establishing a relationship to the Lebesgue cube studied by Bourgain, Kahn, Kalai, Katznelson and Linial (BKKKL) in 1992. This resolves one of the assertions of BKKKL. Our conclusion is valid also in the setting of the generalized influences of Keller.
We report the development of a radio-linked interferometer which uses the 64-m telescope at Parkes, NSW, and one of the NASA antennas (64-m or 34-m) at Tidbinbilla, ACT. With a baseline of approximately 275 km, this is the world’s longest real-time interferometer; it will be usable at frequencies of 1.6, 2.3, 8.4, and 22 GHz to give angular resolutions of 0.13, 0.09, 0.03, and 0.01 arcsec respectively. The interferometer has already operated successfully in a limited mode and is expected to become fully operational in its initial configuration by September 1985. Operation at a range of frequencies and with progressive enhancements is planned up to the commissioning of the Australia Telescope in 1988.
A sensitive search has been made for OH maser emission from a sample of 16 symbiotic stars. This sample has been selected on the basis of infrared optical depth and variability, so that the stars within it have circumstellar shells similar to those seen in the well-known OH/IR and OH/Mira stars. There were no significant detections, except for one unassociated background source, and we conclude that the presence of a hot binary companion inhibits any possible OH maser action.
We have successfully demonstrated optical aperture synthesis at the 4-m Anglo-Australian Telescope. By using a multi-hole mask over the (re-imaged) primary mirror and recording the resulting fringe patterns with high time resolution, diffraction-limited images of sufficiently bright objects can be reconstructed. The data processing uses closure phases to overcome the effects of atmospheric turbulence. We show an image of the double star η Oph, with component separation 0″.45.