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Abstract
We present source detection and catalogue construction pipelines to build the first catalogue of radio galaxies from the 270 deg2 pilot survey
of the Evolutionary Map of the Universe (EMU-PS) conducted with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope.
The detection pipeline uses Gal-DINO computer vision networks (Gupta et al. 2024, PASA, 41, e001) to predict the categories of radio
morphology and bounding boxes for radio sources, as well as their potential infrared host positions. The Gal-DINO network is trained and
evaluated on approximately 5 000 visually inspected radio galaxies and their infrared hosts, encompassing both compact and extended radio
morphologies. We find that the Intersection over Union (IoU) for the predicted and ground-truth bounding boxes is larger than 0.5 for
99% of the radio sources, and 98% of predicted host positions are within 3′′ of the ground-truth infrared host in the evaluation set. The
catalogue construction pipeline uses the predictions of the trained network on the radio and infrared image cutouts based on the catalogue
of radio components identified using the Selavy source finder algorithm. Confidence scores of the predictions are then used to prioritise
Selavy components with higher scores and incorporate them first into the catalogue. This results in identifications for a total of 211 625
radio sources, with 201 211 classified as compact and unresolved. The remaining 10 414 are categorised as extended radio morphologies,
including 582 FR-I, 5 602 FR-II, 1 494 FR-x (uncertain whether FR-I or FR-II), 2 375 R (single-peak resolved) radio galaxies, and 361 with
peculiar and other rare morphologies. Each source in the catalogue includes a confidence score. We cross-match the radio sources in the
catalogue with the infrared and optical catalogues, finding infrared cross-matches for 73% and photometric redshifts for 36% of the radio
galaxies. The EMU-PS catalogue and the detection pipelines presented here will be used towards constructing catalogues for the main EMU
survey covering the full southern sky.
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1. Introduction

Radio galaxies remain enigmatic subjects in the realm of astron-
omy, with much still to be uncovered. The majority of radio
galaxies host Active Galactic Nuclei (AGN), which commonly
emit more energy in the radio part of the electromagnetic spec-
trum than in other wavelengths, such as optical or infrared. While
progress has been made in understanding some aspects, there are
key questions that elude us. For instance, the precise triggers that
activate their powerful radio emission or jets, their interplay with
the intergalactic medium, their magnetic field structure, as well
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as how they influence the broader cosmic environment, remain
unresolved. While in the majority of previous radio surveys, the
sources appear as unresolved, with better angular resolution and
sensitivity of radio telescopes leads to the detection of a greater
number of radio galaxies characterised by intricate, extended
structures (see e.g. Norris 2017). These structures often consist of
multiple components, each displaying distinctive peaks in radio
emission. The morphologies of equatorially symmetrical extended
radio emission from galaxies are broadly classified into two cat-
egories: Fanaroff–Riley Class I (FR-I)- and Class II (FR-II)-type
radio galaxies (Fanaroff & Riley 1974). These radio galaxies pro-
duce highly collimated jets emerging in opposite directions from
AGN at the centre of the host galaxy. As the distance from the
host galaxy increases, the surface brightness of FR-I radio galax-
ies decreases. In contrast, FRII radio galaxies typically feature
linear jets terminating in high-brightness hotspots of large radio
lobes. In some instances, a bipolar jet from an FR-II-type radio
galaxy may transition into two distinct radio lobes unconnected
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by radio emission to the host galaxy. Consequently, FR-I and FR-
II radio galaxies are commonly referred to as edge-darkened and
edge-brightened AGN, respectively.

The emergence of new technologies such as phased array feed
receivers (PAF; Hay et al. 2006) has enabled swift scanning of
extensive portions of the sky, facilitating rapid surveys of large sky
areas at radio wavelengths. Such advancements have opened up
new avenues for detecting millions of radio galaxies. For example,
the ongoing Evolutionary Map of the Universe (EMU; Norris et al.
2021a) survey, conducted with the Australian Square Kilometre
Array Pathfinder (ASKAP; Johnston et al. 2007; DeBoer et al. 2009;
Hotan et al. 2021) telescope, aims to discover over 40 million com-
pact and extended radio sources within five years (Norris et al.
2021a). Similarly, the omnidirectional dipole antennas employed
in the Low-Frequency Array (LOFAR; van Haarlem et al. 2013)
survey, which spans the entire northern sky, are expected to detect
over 15 million radio sources. Additional cutting-edge radio sur-
vey telescopes include MurchisonWidefield Array (MWA;Wayth
et al. 2018), MeerKAT (Jonas & MeerKAT Team 2016), and the
Karl G. Jansky Very Large Array (JVLA Perley et al. 2011). The
Very Large Array Sky Survey (VLASS; Lacy et al. 2020) conducted
by JVLA is expected to detect around 5 million radio galaxies.
The forthcoming Square Kilometre Array (SKAa) radio telescope
is expected to further escalate the number of galaxy detections,
potentially reaching hundreds of millions. Such a vast dataset will
significantly impact our understanding of the physics underly-
ing galaxy evolution. In essence, the detection of radio galaxies
at various stages of their existence holds immense potential for
uncovering concealed dimensions of their behaviour, leading to
new insights into their evolutionary processes. To fully harness
the potential of these radio surveys, it is necessary to redesign the
techniques employed in constructing catalogues of radio galaxies.

Grouping the associated components of extended radio galax-
ies is a necessary step in creating catalogues of radio galaxies.
This is essential for estimating the actual number density and
total integrated flux density of radio galaxies. Incorrectly group-
ing associated components or erroneously grouping unassociated
components can lead to the misestimation of number density and
total flux density, resulting in inaccurate models. While some ana-
lytical approaches are being developed (e.g. Gordon et al. 2023),
currently, the cross-identification of associated radio galaxy com-
ponents primarily relies on visual inspections (e.g. Banfield et al.
2015). The widely used source extraction algorithms, such as
Selavy (Whiting & Humphreys 2012) and AEGEAN (Hancock
et al. 2018), are prone to potential confusion when dealing with
detached lobes of extended radio galaxies, as well as neighbouring
unassociated compact radio galaxies. However, visual inspections
are time-consuming, require scientific expertise, and are not scal-
able to the millions of radio galaxies expected to be discovered in
the next few years.

This underscores the vital need to develop computer vision
methods for grouping associated radio galaxy components. The
nature of available data typically determines the trajectory of com-
puter vision tasks, categorising them into four primary methods:
self-supervised, semi-supervised, weakly supervised and super-
vised. Self-supervised learning involves the utilisation of unsuper-
vised techniques to train models on the underlying data structure,
thereby eliminating the necessity for explicit annotations. This

ahttps://www.skatelescope.org/the-ska-project/.

has proven effective in discovering new radio morphologies in
radio surveys (e.g. Galvin et al. 2020; Mostert et al. 2021; Gupta
et al. 2022). Semi-supervised learning combines labelled and unla-
belled data during the training process, as demonstrated in the
classification of radio galaxies (Slijepcevic et al. 2022). In weakly
supervised learning, indirect labels are leveraged for the entire
training dataset, serving as a supervisory signal. This specific
approach has found utility in the classification and detection of
extended radio galaxies (Gupta et al. 2023). In supervised learn-
ing, the model undergoes training using image-label pairs, where
these labels provide complete information required for the model
to make specific predictions. Recently, machine learning (ML)
techniques, as exemplified by studies, such as Lukic et al. (2018),
Alger et al. (2018), Wu et al. (2019), Bowles et al. (2020), Maslej-
Krešňáková et al. (2021), Becker et al. (2021), Brand et al. (2023),
Riggi et al. (2023), Sortino et al. (2023), Lao et al. (2023), and
Gupta et al. (2024), have found application in the morphological
classification and detection of radio galaxies.

This paper builds upon the RadioGalaxyNET dataset (Gupta
et al. 2023b) and computer vision algorithms (Gupta et al. 2023a)
designed to address the challenge of associating radio galaxy
components (Gupta et al. 2024). The RadioGalaxyNET dataset
was curated by professional astronomers through multiple visual
inspections and includes multimodal images of the radio and
infrared sky, along with pixel-level labels on associated compo-
nents of extended radio galaxies and their infrared hosts. In addi-
tion to the 2 800 extended radio galaxies in RadioGalaxyNET, we
visually inspected and labelled approximately 2 100 compact radio
galaxies and 99 sources with peculiar and other rare morphologies
in the present work. The annotations comprise class informa-
tion on the radio-morphological class for these radio galaxies,
bounding box information to capture associated components of
each radio galaxy, segmentation masks for radio emission, and
positions of their host galaxies in infrared images. Using this com-
prehensive dataset of extended and compact radio galaxies and
their infrared hosts, we train the Gal-DINO multimodal model
(Gupta et al. 2024) to simultaneously predict bounding boxes for
radio galaxies and potential keypoint positions of their infrared
hosts, where a keypoint in ML refers to a specific point or land-
mark in images. These detections are subsequently employed to
generate the first catalogue of compact and extended radio galax-
ies observed in the first EMU pilot survey (EMU-PS) conducted
with the ASKAP telescope.

The structure of the paper is outlined as follows. In Section 2,
we explain the radio and infrared observations, image charac-
teristics, and the labels utilised for training and assessing the
computer vision networks. Section 3 presents the Gal-DINO
network, encompassing training and evaluation specifics, along
with the outcomes of network evaluation. Details about the cat-
alogue construction pipeline are presented in Section 4. Section 5
provides detailed information regarding the catalogue. We sum-
marise our findings in Section 6 and provide directions for future
work.

2. Data

In this section, we describe the radio and infrared observations,
as well as the annotations developed and used for training the
computer vision model to construct a consolidated catalogue.
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2.1. ASKAP observations

ASKAP, situated at Inyarrimahnha Ilgari Bundara, the Murchison
Radio-astronomy Observatory (MRO), is a radio telescope
equipped with PAF technology, enabling high survey speed
through its wide instantaneous field of view. Comprising 36 anten-
nas with various baselines, the majority are concentrated within a
2.3 km diameter region, while the outer six extend the baselines
up to 6.4 km (Hotan et al. 2021). Recently, ASKAP concluded the
first all-sky Rapid ASKAPContinuum Survey (RACS) (McConnell
et al. 2020), covering the entire sky south of Declination+41◦ with
a median RMS of about 250 μJy/beam. This has paved the way for
subsequent deeper surveys using ASKAP.

The EMU, designed to observe the entire Southern Sky and
potentially catalogue up to 40 million radio sources, is under-
way (EMU; Norris 2011). A significant step in this direction was
the completion of the first EMU-PS (Norris et al. 2021a) in late
2019. Covering 270 square degrees of the sky within 301◦ < RA<

336◦ and −63◦ <Dec< −48◦, EMU-PS employed 10 tiles, each
observed for approximately 10 hours. Achieving an RMS sensi-
tivity between 25− 35~μJy/beam and a beamwidth of 13′′ × 11′′
FWHM, the survey operated in the frequency range of 800–1 088
MHz, centred at 944 MHz.

The raw data from EMU-PS underwent processing using the
ASKAPsoft pipeline (Whiting et al. 2017; Norris et al. 2021a). Since
the survey comprised ten overlapping tiles, additional steps were
taken for value-added processing to create a unified image and
source catalogue. This involved merging the tiles by performing a
weighted average of overlapping data regions and convolving the
unified image to a standardised restoring beam size of 18′′ FWHM
to address variations in the point spread function (PSF) from beam
to beam (Norris et al. 2021a). The creation of a catalogue of islands
and components was accomplished using the Selavy source finder
(Whiting & Humphreys 2012) applied to the convolved image,
resulting in a compilation of 198 216 islands with 220 102 compo-
nents, of which 90.3% are single-component islands and the rest
are multiple component islands. Note that the Selavy catalogues
are not designed to provide radio galaxy catalogues. Selavy ini-
tially detects pixels above a certain threshold, then groups those
pixels into islands. Subsequently, components are fitted to each
island, resulting in the creation of the component catalogue. Note
that throughout this work, we use unconvolved images with native
resolution for tiles. The convolved image was only employed to
generate the Selavy catalogue (see Norris et al. 2021a, for details).

2.2. Infrared observations

For the EMU-PS, we obtain infrared images from the AllWISE
observations of the Wide-field Infrared Survey Explorer (WISE)
(Wright et al. 2010; Cutri et al. 2013). WISE conducted an all-
sky infrared survey in the W1, W2, W3, and W4 bands, corre-
sponding to wavelengths of 3.4, 4.6, 12, and 22 μm. Our study
focuses on utilising the W1 band from AllWISE, which has a
5σ point source detection limit of 28 μJy and angular resolution
of 8.5′′. In addition to images, we utilise the CatWISE catalogue
(Marocco et al. 2021) of infrared sources to cross-match with
the predicted infrared positions for constructing the consolidated
catalogue. The CatWISE catalogue is constructed from unWISE
coadds (Lang 2014), which have an angular resolution of 6.1′′. The
CatWISE Catalogue surpasses AllWISE by using six times as many
exposures, resulting in approximately twice as many sources.

Furthermore, CatWISE exhibits enhanced precision, especially for
faint sources, resulting in a 12-fold improvement over AllWISE.

2.3. Radio and infrared images

The RadioGalaxyNET dataset (Gupta et al. 2024) comprises 2 800
extended radio galaxies and their infrared host galaxies identi-
fied in the EMU-PS and CatWISE through independent visual
inspections, as detailed in Gupta et al. (2024) and Yew et al. (in
preparation). In addition to these extended radio galaxies, we
incorporate compact ones into the dataset. Compact radio galax-
ies refer to unresolved radio sources that do not show extended
emission. We begin by initially selecting sources randomly from
the Selavy catalogue, wherein the algorithm identifies only one
component corresponding to an island. Subsequently, we utilise
the CARTA visualisation tool (Comrie et al. 2021) to validate their
compact nature and identify their respective infrared hosts in the
EMU-PS and AllWISE images, respectively. These infrared hosts
are determined as the nearest galaxies to the radio peaks identified
during visual inspections.

A visual inspection of 2 700 single-component radio sources
in Selavy reveals that 146 of them are associated with extended
radio sources, suggesting that approximately 95% of these single-
component radio sources identified by Selavy are genuinely com-
pact. Furthermore, we refine this dataset of compact radio sources
by crossmatching it with the CatWISE catalogue to confirm the
visual identifications of infrared hosts. In line with the method-
ology proposed by Norris et al. (2021a), we employ a maxi-
mum cross-matching separation of 3′′ between visually identified
infrared positions and CatWISE positions to ensure that the false
identification rate remains below 8%. Our ultimate dataset of com-
pact radio galaxies includes 2 090 verified infrared host galaxies.
In the present study, we exclusively utilise these compact radio
galaxies to train and test the deep learning computer vision model,
excluding compact sources with unconfirmed infrared hosts. It is
important to note that the Selavy catalogue of EMU-PS includes
approximately 180 000 sources with single components. However,
a small randomly selected subset is included here to maintain the
balance between other categories.

In addition to the compact radio galaxies, we also introduce
peculiar and other rare radio morphologies into the dataset.
Instances of these morphologies, as illustrated in Gupta et al.
(2022), encompass peculiar-shaped extended emission, diffuse
emission from galaxy clusters, very nearby, thus large and resolved
star-forming galaxies, and peculiars like Odd Radio Circles
(ORCs; Norris et al. 2021b). Initially, we seek out these sources
in the EMU-PS image to identify any similar morphologies.
Subsequently, our exploration extends to identify othermorpholo-
gies that significantly deviate from the common types. Examples of
these include oddly bent extended radio galaxies and neighbour-
ing extended radio galaxies with merging emissions, presenting
challenges in classification within conventional radio morpholo-
gies. Our investigation yields a total of 99 such peculiar and other
rare morphologies, all integrated into the training and evaluation
dataset. Note that not all of these morphologies are radio galax-
ies; some of them form a group with multiple hosts. Therefore,
for simplicity, we utilise the terms ‘galaxy’ or ‘morphology’ inter-
changeably for all these sources. Additionally, while some of these
morphologies, such as ORCs, fall under the category of pecu-
liar sources, others like resolved star-forming, oddly bent galaxies,
etc., are rare but not considered peculiar. However, for brevity,
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we use the abbreviation ‘Pec’ for all of these 100 morpholo-
gies. With a composition of 2 800 extended radio galaxies in
RadioGalaxyNET, along with 2 090 compact radio galaxies and
100 sources with peculiar and other raremorphologies, our dataset
comprises approximately 5 000 radio galaxies, forming a com-
prehensive set for training and testing our object detection deep
learning model.

We create image cutouts with dimensions of 8′ × 8′ in the sky,
resulting in images of 240× 240 pixels, where each pixel corre-
sponds to 2′′× 2′′. Examples of these radio images are illustrated in
the left panels of Fig. 1. It is important to note that the cutouts of
radio images in RadioGalaxyNET are initially 15′ × 15′, designed
to detect several distinct instances of these multi-component radio
galaxies in the same image. However, for our current objective of
grouping multiple components of central galaxies to construct the
catalogue, we reduce the cutout size, as detailed in Section 4. This
is motivated by the fact that only 10 out of the 5 000 extended radio
galaxies in our dataset have a total extension larger than 7′. Future
work should incorporate these very large extended radio galaxies
into the dataset as we identify more such galaxies in the ongo-
ing main EMU survey. However, for our current study, we have
not included them in the training. In contrast to RadioGalaxyNET
images, we refrain from preprocessing our radio maps in this
study. Instead, the network is adapted to handle FITS files for radio
images, as explained in Section 3. At the identical sky locations of
radio images, we acquire infrared images from AllWISE, sourced
from theWISEW1 band.We create cutouts of the same size as the
radio images and then reproject the infrared images onto the radio
images using the world coordinate system. In contrast to radio
images, infrared images undergo noise reduction processing using
themethod detailed in Gupta et al. (2023, 2024). Examples of these
processed infrared images are showcased in the right columns of
Fig. 1.

2.4. Radio and infrared annotations

Annotations for 2 800 extended radio galaxies and their
corresponding infrared hosts are already present in the
RadioGalaxyNET dataset (Gupta et al. 2024). These annotations
encompass radio galaxy categories, bounding boxes encapsulating
all radio components of each radio galaxy, pixel-level segmenta-
tion masks, and the keypoint locations of corresponding infrared
hosts that are cross-matched with the CatWISE catalogue. The
identification of these extended radio galaxies and their infrared
hosts is independently achieved through visual inspections, where
the infrared host for each radio galaxy is identified in the infrared
image Yew et al. (in prep.). The dataset is categorised into FR-I,
FR-II, FR-x, and R galaxies based on measurements of their total
extent and the distance between peak positions. This classification
follows the criteria set by Fanaroff & Riley (1974), where the
ratio between the peak distance and total extent is employed to
differentiate between FR-I and FR-II galaxies. Specifically, the
ratio is below 0.45 for FR-I and above 0.55 for FR-II. Owing to
image resolution limitations, some galaxies cannot be conclusively
classified as either FR-I or FR-II, leading to their categorisation
as FR-x galaxies, with the ratio between peak distance and total
extent falling between 0.45 and 0.55. Note that, in this work,
certain subtypes of morphologies, which are commonly associated
with FR-I-type radio galaxies, such as bent-tailed, narrow, and
wide-angled-tailed sources (Miley 1980), are not differentiated.
The R category (radio galaxies with resolved radio emission)

pertains to those galaxies where only one central peak is visible,
resulting in a ratio set to zero.

For compact radio galaxies, denoted by ‘C’, we initially apply
the island segmentation method (e.g. Gupta et al. 2022) to mask
pixels exceeding 3σ for compact radio galaxies. Subsequently,
we generate bounding boxes for these galaxies. The positions
of infrared hosts for these compact radio galaxies are identified
through visual inspections and included in the dataset as key-
points. Note that R and C radio galaxies used for model training
and evaluation are visually distinguished in this work and do
not rely on the peak-to-total flux criterion (e.g. Condon et al.
1998). In the case of peculiar and other rare radio morpholo-
gies, denoted as ‘Pec’, we employ CARTA to obtain bounding
boxes and subsequently generate segmentation masks for all pix-
els larger than 3σ within these bounding boxes. Due to the diffuse
nature of radio emission in these Pec morphologies, the hosts for
these sources cannot be identified unambiguously with a unique
infrared object, sometimes involvingmultiple potential host galax-
ies. Consequently, we select one of these infrared galaxies, closest
to the bounding box centroid, as the host for the Pec radio mor-
phologies. Future work, incorporating a larger sample of Pec radio
morphologies, should include all such infrared galaxies to enable
multiple host galaxy detection for these sources. Fig. 1 provides
examples of FR-I, FR-II, FR-x, R, and C radio galaxies and Pec
morphologies. It is worth noting that the FR-I radio galaxies
depicted in the middle left and bottom right panels may indeed
be FR-II-type radio galaxies at higher resolution. Nevertheless, we
adhere to the mechanism described above and classify them based
on the present image resolution. Following the RadioGalaxyNET
dataset structure, we furnish annotations for the radio images,
encompassing ‘categories’, ‘bbox’, and ‘segmentation’, along with
‘keypoints’ for the infrared. All annotations adhere to the COCO
dataset format (Lin et al. 2014a), simplifying the streamlined
evaluation of object detection methods.

2.5. Radio source statistics

Our dataset encompasses approximately 5 000 radio galaxies and
their corresponding infrared hosts.We generate 5 000 cutouts cen-
tred at each radio galaxy, each with a size of 8′ × 8′, and store
them in FITS image format with sky information in the headers.
Similarly, for infrared host galaxies, we generate cutouts of the
same size and process them following the methodology outlined
in Section 2.3. As other radio galaxies are present close to the cen-
tral radio galaxy within an 8′ × 8′ cutout (e.g. top right panel of
Fig. 1), there are a total of 6 080 instances of radio galaxies in these
5 000 cutouts. The dataset comprises 371 FR-I, 1 331 FR-II, 401 FR-
x, 698 R, and 2 090 compact radio galaxies as well as 99 other rare
and peculiar morphologies. Adhering to the commonly used strat-
egy in ML, we randomly split our dataset into train, validation,
and test sets in the ratio of 0.9:0.05:0.05 for the object detection
modelling.

The specific counts of radio galaxies within each radio-
morphological category, along with the split ratios, are illustrated
in Fig. 2 and detailed in the table below the figure. The left panel
of the figure showcases the number of 8′ × 8′ cutouts with radio
galaxy instances ranging from single to three radio galaxies, indi-
cating that the majority of our cutouts feature either single or
double instances of radio galaxies. Note that while these cutouts
with multiple instances are utilised for training and testing the
network, catalogue construction is based solely on central radio
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Figure 1. Examples of the radio (left panels) and corresponding infrared (right panels) images, as described by the column titles. Each of these images has a frame size of 8′ × 8′

in the sky (240× 240 pixels). In the radio images, we display classes and bounding boxes for radio galaxies encapsulating all their components. Here, the ‘FR-X’ type is positioned
between the FR-I and FR-II categories, ‘R’ denotes resolved radio sources with one visible peak, ‘C’ represents compact unresolved radio sources, and ‘Pec’ refers to peculiar or
other rare radio morphologies (see Section 2.4 for details). On the infrared images, circles indicate the positions of host galaxies.
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Figure 2. Shown are the dataset split distributions, depicting the distributions of extended radio galaxies in a single cutout (left), their respective categories (middle), and the
occupied area per radio galaxy (A; right). The tables below the figures provide detailed counts of radio morphologies in the training, validation, and test sets. See Section 2.5 for
more details. Note that each radio morphology has a corresponding infrared host, so the counts here also represent the number of corresponding infrared hosts.

galaxies and their infrared host galaxies, as discussed in Section 4.
The middle panel of the figure presents the number of radio galax-
ies within the six categories, with the corresponding counts for
the split sets displayed in the table below. Lastly, the third panel
reveals the number of radio galaxies categorised by bounding box
area in pixels, highlighting that the majority of our radio galax-
ies are small-scale structures, with bounding box area below 482
pixels.

3. Detection pipeline for radio galaxies

The radio images exhibit distinct features for extended radio
galaxies compared to their counterparts in infrared images, where
the latter predominantly resemble point sources (with a few excep-
tions, such as resolved star-forming galaxies). Examples of these
disparities are illustrated in Fig. 1. A multimodal approach, intro-
duced by Gupta et al. (2024), facilitates the detection of both radio
sources and their potential infrared host positions. This approach
incorporates models like Gal-DETR, Gal-Deformable DETR, and
Gal-DINO, all capable of concurrently identifying radio galaxies
and their potential infrared hosts. These models employ two fun-
damental detection schemes: the base networks handle class and
bounding box predictions for radio galaxies, while the keypoint
detection module is utilised for predicting potential infrared host
positions. Table 2 in Gupta et al. (2024) demonstrates that the Gal-
DINOb model, outperforms other networks in our context of small
object detection in radio and infrared images. For a comprehen-
sive understanding of the modelling strategy, we direct readers
to Gupta et al. (2024); here, we provide a brief overview of the
Gal-DINO model.

The Gal-DINOmodel is based on the DEtection TRansformers
(DETR) (Carion et al. 2020), which adopts the Transformer
architecture (Vaswani et al. 2017). Initially designed for natu-
ral language processing, this architecture is utilised to address
the intricate task of object detection in images. In contrast to

bhttps://github.com/Nikhel1/Gal-DINO.

conventional methods relying on region proposal networks (e.g.
Faster RCNN; Ren et al. 2015), DETR introduces an end-to-end
approach to object detection using Transformers. The DETR with
Improved deNoising anchOr boxes (DINO; Zhang et al. 2023)
incorporates enhanced anchor boxes, predefined boxes crucial for
object detection. DINO introduces refined strategies for selecting
and placing these anchor boxes, improving the model’s capability
to detect objects of varying sizes and aspect ratios. During train-
ing, DINO employs an improved mechanism for matching anchor
boxes to ground-truth objects, enhancing accuracy in localisation
and classification. Additionally, DINO utilises adaptive convolu-
tional features, enabling the model to concentrate on informative
regions of the image, thereby enhancing both efficiency and accu-
racy. Gal-DINO (Gupta et al. 2024) integrates keypoint detection
into the DINO algorithm, which already features improved de-
noising anchor boxes. By mitigating the impact of noise and
outliers, Gal-DINO yields more resilient and precise bounding
box predictions. This results in improved localisation of extended
radio galaxies and their corresponding infrared hosts within these
bounding boxes.

3.1. Radio galaxy class and bounding box predictions

The Gal-DINO model utilises the DINO architecture, integrating
a ResNet-50 (He et al. 2015) Convolutional Neural Network back-
bone to process input images and extract feature maps. Positional
encodings are introduced to incorporate spatial information into
the Transformer architecture, enhancing the model’s ability to
understand relative object positions. DINO uses learned object
queries, departing from fixed anchor boxes (e.g. Tian et al. 2019),
to represent classes of objects and are refined during training.
The model’s decoder produces two output heads for class and
bounding box predictions, facilitating simultaneous processing of
the entire image and capturing contextual relationships between
regions. Each head refers to a specific sub-network for a particu-
lar aspect of the overall task. This approach results in robust and
precise bounding box predictions, improving the localisation of
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extended radio galaxies. DINO adopts the Hungarian loss func-
tion to establish associations between predicted and ground-truth
bounding boxes, ensuring a one-to-one mapping. The compre-
hensive loss function for DINO integrates the cross-entropy loss
for class predictions Lc and the smooth L1 loss for bounding box
predictions Lb. This loss function is expressed as the sum of the
classification and bounding box losses, contributing to the overall
training objective of the model.

LDINO =Lc +Lb. (1)

The L1 loss, used for bounding box regression, measures the
absolute difference between predicted and true bounding box
coordinates, penalising the model for deviations and promoting
accurate localisation.

3.2. Infrared host galaxy keypoint prediction

Gal-DINO introduces keypoint detection techniques as a com-
plement to the bounding box-based object detection method for
identifying extended radio galaxies and their potential infrared
hosts. Keypoints, representing distinctive features within images,
offer precise spatial information for accurately locating the host
galaxy. Unlike bounding boxes, keypoints allow for fine-grained
localisation, particularly beneficial for complex radio emission
morphologies. The keypoint detection in Gal-DINO, leveraging
the transformer-based architecture to capture global and local
details. It utilises self-attention mechanisms to localise and asso-
ciate keypoints for infrared host galaxies. The loss function for
Gal-DINO combines DINO loss for class and bounding box pre-
dictions with keypoint detection loss, expressed as

LGal−DINO =LDINO +Lk (2)

where Lk is the L1 loss for keypoint detection, calculating the
absolute difference between predicted and ground-truth keypoint
coordinates, such as the x and y position of the host.

3.3. Network training

The dataset is split into training, validation, and test sets as
illustrated in Fig. 2 and explained in Section 2.5. The training
set is utilised to train the networks, while the validation and
test sets function as inference datasets during and after training,
respectively. As mentioned in Section 2.3, the Gal-DINO network
employed in the present work, processes radio images in FITS
format and infrared images in PNG format, diverging from the
RadioGalaxyNET dataset where 3-channel radio-radio-infrared
PNG format files are used for both training and inference. In the
present approach, 8-channel images are generated, comprising 7
channels from the radio FITS file and 1 channel representing the
processed infrared sky. Each radio channel encompasses clipped
data from FITS files, where clipping is done between the 50th
percentile level and 7 distinct maximum levels. These maxima
correspond to the 95th, 99th, 99.2nd, 99.5th, 99.7th, 99.9th, and
99.99th percentile levels. This methodology utilises radio images
in FITS format directly, eliminating the need for preprocessing
and conversion to PNG files. Furthermore, it imparts informa-
tion to the computer vision model in a manner akin to the visual
inspection performed by expert astronomers for the classification
and grouping of multi-component radio galaxies. Future work
should explore alternative scaling approaches and, if necessary,
fine-tune the number of channels while taking into account poten-
tial GPU memory constraints. An illustrative example of an FR-II

Figure 3. Shown is an example of an 8-channel image used for the training and evalua-
tion of the Gal-DINO network. The first 7 channels contain data from the radio FITS file,
representing the extended radio galaxy with clipping between the 50th percentile level
and 7 specific maxima, corresponding to the 95th, 99th, 99.2th, 99.5th, 99.7th, 99.9th,
and 99.99th percentile levels. The 8th channel, in the bottom right, displays the corre-
sponding pre-processed infrared image. The bounding box and keypoint annotations
are not depicted here for brevity; examples of these annotations are shown in Fig. 1 on
the radio (with maxima at the 95th percentile level) and infrared images, respectively.

radio galaxy, featuring 7 channels and its corresponding infrared
channel, is presented in Fig. 3.

In line with the training methodology of Gal-DINO in Gupta
et al. (2024), the training dataset undergoes diverse random aug-
mentations during each epoch, where an epoch corresponds to a
single pass through the entire dataset in the model’s training pro-
cess. These augmentations encompass horizontal flipping, random
rotations (–180 to 180 degrees), random resizing within 400×
400 to 1 300× 1 300 pixels, and random cropping of a randomly
selected set of 8-channel training images. Horizontal flipping and
rotations ensure varied orientations, crucial for handling radio
galaxies with diverse sky orientations while resizing and cropping
introduce scale and spatial variety. These augmentations, consis-
tently applied, bolster the model’s ability to generalise effectively
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and excel on unseen data. Gal-DINO, with a parameter count
of 47 million, underwent a training duration of approximately
35 hours using a single Nvidia Tesla P100 GPU for 100 epochs.
We utilise the original hyperparameters from Gal-DINO with
specific adjustments. These hyperparameters, set before train-
ing, encompass critical aspects such as learning rate, batch size,
architecture details, dropout rate, activation functions, and opti-
miser. Although a comprehensive list of hyperparameters for each
network is not provided here for brevity, detailed network archi-
tecture, including hyperparameters, is available in the associated
repositories for reference.

3.4. Evaluationmetrics

The evaluation metrics, based on Lin et al. (2014b), employ the
Intersection over Union (IoU) to assess algorithm performance on
the test dataset. IoU is calculated as the ratio of the overlap area
between predicted (BP) and ground-truth (BGT) bounding boxes
to their union area.

IoU(BP|BGT)= Overlap between BP and BGT

Union between BP and BGT
, (3)

In bounding box prediction, each predicted box is categorised as
true positive (TP), false positive (FP), or false negative (FN) based
on its area compared to the ground-truth box. A TP bounding
box accurately identifies an object with high IoU overlap, while an
FP bounding box fails to correspond to any ground-truth object.
An FN bounding box occurs when an object in the ground-truth
data is not successfully detected by the algorithm, representing a
missed opportunity to identify a genuine object. To detect key-
points, we use the Object Keypoint Similarity (OKS) metric, which
gauges the similarity between predicted and ground-truth key-
points. OKS computes the Euclidean distance for each predicted
keypoint relative to its corresponding ground-truth keypoint, nor-
malising it based on the size of the object instance. The Euclidean
distance (Ed) between the ground-truth and predicted keypoints
is subjected to a Gaussian function, defined as follows:

OKS= exp
(

− Ed2

2l2c2

)
, (4)

where l represents the ratio of the bounding box’s area to the image
cutout area, and c is a keypoint constant set to 0.107. This adjust-
ment differs from the 10 values used in Lin et al. (2014b), as each
bounding box in our case corresponds to a single infrared host.
The resulting OKS score falls within the range of 0 to 1, with 1
signifying perfect keypoint localisation.

We evaluate the network’s performance using the average pre-
cision metric, a widely used standard in object detection model
assessment (Lin et al. 2014b). Precision, the ratio of TPs to the total
number of objects identified as positive, measures detection and
classification precision. Recall, the ratio of TPs to the total number
of objects with ground-truth labels, assesses the model’s ability to
identify all relevant objects. The precision-recall curve illustrates
the trade-off between precision and recall across varying detec-
tion thresholds. The area under the curve (AUC) is calculated,
representing the average AUC value across all classes or objects.
Higher values of average precision, which ranges from 0 to 1, sig-
nify superior model performance. We compute average precision
using standard IoU and OKS thresholds for bounding boxes and
keypoints. IoU and OKS thresholds determine the correctness of
predictions based on overlap and similarity scores, respectively.
We calculate average precision at IoU (or OKS) thresholds from

Table 1. Results for bounding box and keypoint detection using the trained
Gal-DINO network are presented on a combination of the test and validation
datasetswith 8-channel images (see Fig. 3). The columns, from left to right, show-
case various metric types: average precision for IoU (or OKS) thresholds ranging
from 0.50 to 0.95 (AP), a specific IoU (or OKS) threshold of 0.5 (AP50), IoU (or OKS)
threshold of 0.75 (AP75), and average precision for small-sized (APS), medium-
sized (APM), and large-sized (APL) radio galaxies. Further details on the training
and evaluation can be found in Sections 3.3 and 3.4, respectively.

Metric AP AP50 AP75 APS APM APL
type (%) (%) (%) (%) (%) (%)

Bbox 65.1 73.2 70.0 69.5 65.4 66.9

Keypoint 69.3 71.7 70.0 55.5 93.8 97.2

0.50 to 0.95 (AP), as well as specific thresholds of 0.50 (AP50)
and 0.75 (AP75) for radio galaxies of all sizes. Additionally, we
assess performance across different structure scales by comput-
ing Average Precision for small (APS), medium (APM), and large
(APL) area ranges defined by pixel areas A< 242, 242 <A< 482,
and A> 482, as shown in the right panel of Fig. 2.

3.5. Model evaluation results

We assess the performance of the Gal-DINO model using 8-
channel radio and infrared images that were not part of the train-
ing dataset. The model is designed to predict the categories (FR-I,
FR-II, FR-x, R, Pec, and C) of these galaxies, generate bounding
boxes to capture their extended emission structures, and identify
their corresponding infrared host galaxies. Details about the radio
and infrared images, annotations, and data statistics can be found
in Sections 2.3, 2.4, and 2.5, respectively. The model’s training and
evaluation strategy is explained in Sections 3.3 and 3.4, respec-
tively. Evaluation is performed on a combined dataset of validation
and test sets. This combined evaluation is justified by the need
for larger sample sizes; for example, the test set only contains
2 Pec morphologies, but combining the validation set increases
this count to 10. It is important to note that the validation set
plays no role in training the network; it is solely utilised for eval-
uating the model at each epoch without model back-propagation
applied using the epoch’s validation results. Thus, it is appropriate
to merge both the validation and test sets for the evaluation of the
trained model.

Table 1 presents the outcomes obtained from the combined
validation and test dataset for both bounding box and keypoint
detections. The Gal-DINO model, after training, attains an AP
of 65.1% for bounding boxes associated with radio galaxies. Its
effectiveness extends across various IoU thresholds, achieving an
AP50 of 73.2% and an AP75 of 70.0%, demonstrating robustness in
detecting radio galaxies at different IoU thresholds. Furthermore,
the model consistently performs well for radio galaxies of small,
medium, and large sizes (APS, APM, and AP L). In keypoint detec-
tion as well, our trained model demonstrates strong performance,
attaining an AP of 69.3% and an AP50 of 71.7%. These results
substantiate the model’s efficacy in predicting bounding boxes
and keypoints for both radio galaxies and their corresponding
infrared hosts, showcasing strong performance across diverse IoU
thresholds and bounding box areas.

Fig. 4 presents the confusion matrices for the combined vali-
dation and test set, computed based on IoU for bounding boxes
(and OKS for keypoints) at confidence thresholds of 0.5 and
0.25, respectively. It is crucial to highlight the distinction between
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Figure 4. Presented is the normalised confusion matrix for the Gal-DINO detection
model. Each matrix is normalised based on the total number of galaxies within its
corresponding class. The diagonal entries denote true positive (TP) instances, rep-
resenting objects correctly detected with an IoU and OKS threshold surpassing 0.5
compared to the ground-truth instances, and a confidence threshold of 0.25. False
positive (FP) instances correspond tomodel detections lacking corresponding ground-
truth instances, while false negative (FN) instances signify objects that themodel failed
to detect at the same IoU and OKS thresholds, along with a confidence threshold of
0.25.

confusion matrices used in object detection and classification.
Object detection involves the possibility of multiple instances of
the same or different classes within an image, resulting in several
TP, FP, and FN values for each class. In contrast, classification usu-
ally assumes only one label per image, yielding a confusion matrix
with a single TP, FP, and FN value for each image.

Precision in object detection depends on precise localisation
and accurate detection of object boundaries, evaluated using an
IoU (and OKS) threshold of 0.5. The confusion matrix contains
TP, FP, and FN values, offering insights into the model’s perfor-
mance. For the FR-II class, the model achieved a TP value of
0.79, indicating correct detection of 79% of FR-II galaxy instances.
However, there were significant false positives (FP= 0.40), where
the model predicted 40% of instances as FR-II when they did not
correspond to FR-II instances in the ground truth. Additionally,
a moderate number of false negatives (FN= 0.07) suggests that
the model missed or failed to detect 7% of actual FR-II instances.
Similar patterns are observed for the FR-I, FR-x, and Pec classes.
For the FR-I class, the detected source extent depends on sensitiv-
ity to diffuse extended structure (e.g. see Figure 14 in Turner et al.
2018), and hence, some FR-I sources may be classified as FR-IIs
due to limited surface brightness sensitivity.

Peculiar and other rare morphologies exhibit around 40% mis-
classification as FR-II galaxies, primarily due to similarities in
some rare morphologies to FR galaxies but with unique diffuse
emission or wide-angled-tailed characteristics. It is important to
highlight that although this percentage may seem high, it corre-
sponds to only four Pec morphologies. Compact radio galaxies
achieve a high TP rate of 85%, with a fewmisclassified as R galaxies
due to only slight differences. Although the FN rates in the detec-
tions are not optimal, it is important to emphasise that these result
from the application of a confidence threshold of 0.25. Lowering
this threshold, eliminates FN rates for all categories, indicating the
detection of all radio galaxies in the ground truth. Nonetheless,
this leads to higher FP rates, a topic that will be revisited in
Section 4 for catalogue construction.

Table 2. The bounding box and keypoint detection results achieved through the
Gal-DINO network on amerged dataset comprising both test and validation sets.
The columns correspond to those outlined in Table 1. The PNG results reflect
outcomes obtained from 3-channel images, while the All-10% results signify a
scenario where 10% of the entire training dataset is intentionally corrupted,
aiming to assess the model’s robustness to potential noisy labels. The Ext-10%
results specifically involve introducing 10% noise in annotations exclusively for
extended radio galaxies within the training dataset (see Section 3 for details).

Metric AP AP50 AP75 APS APM APL
type (%) (%) (%) (%) (%) (%)

PN
G Bbox 63.8 69.4 69.3 68.5 58.9 45.0

Keypoint 65.6 67.5 66.5 51.5 93.6 97.0

Al
l-1
0%

Bbox 63.4 71.9 68.7 66.8 65.4 65.7

(std) ±2.5 ±3.1 ±2.5 ±3.1 ±4.2 ±14.8
Keypoint 67.7 70.5 68.5 54.2 93.9 96.7

(std) ±2.1 ±2.0 ±2.2 ±2.3 ±4.4 ±1.9

Ex
t-1
0%

Bbox 64.9 73.0 70.1 68.2 62.2 66.6

(std) ±2.1 ±3.4 ±2.8 ±3.3 ±3.8 ±15.5
Keypoint 68.7 71.5 69.1 53.7 89.9 96.4

(std) ±2.3 ±1.6 ±2.4 ±2.4 ±4.1 ±2.4

As outlined in Section 2.3, the images utilised in Gupta et al.
(2024) for both training andmodel evaluation consist of 3-channel
PNG images with dimensions of 450× 450 pixels (15′ × 15′).
These images involve two pre-processed radio channels, con-
taining 0–8 and 8–16 bit information, and one corresponding
pre-processed infrared channel, with 8-16 bit information. In this
work, we diverge from this approach by training the network
with 8-channel images sized at 240× 240 pixels (8′ × 8′), as illus-
trated in Fig. 3 and detailed in Section 3.3. In Table 2 of Gupta
et al. (2024), it is evident that the AP50 for bounding boxes is
60.2%, whereas in our current work, the AP50 attains 73.2%, as
demonstrated in Table 1. To understand this difference, we con-
duct an experiment where the Gal-DINO model is trained using
our dataset (Section 2.5) and the same set of hyperparameters for
100 epochs. However, in this case, the network is trained with
3-channel PNG images containing radio-radio-infrared channels,
mirroring the approach in Gupta et al. (2024). The evaluation
results using these PNG images are presented in Table 2. When
considering the combined validation and test sets, the AP50 is
measured as 69.4% for bounding boxes. This comparison shows
that employing 8-channel images in our current work marginally
improves model performance in comparison to the utilisation of
3-channel PNG images, as indicated by the evaluation results.
Additionally, it reaffirms the anticipated outcome that reduc-
ing image dimensions from 450× 450 pixels to 240× 240 pixels
significantly contributes to improved model performance when
compared with the findings in Gupta et al. (2024).

Given that visual inspections are employed for annotating the
dataset used in training the network, we assess the model’s robust-
ness to possible errors introduced during the manual labelling
process. To achieve this, we undertake an experiment wherein
the model is trained on noisy labels that are intentionally cor-
rupted with noise. In this experiment, we introduce noise by
randomly altering the bounding boxes for 10% of the training set.
Specifically, we modify the bounding box positions by displacing
them away from the full extent of the radio galaxy. This ensures
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Figure 5. An overview of the catalogue construction pipeline. The process initiates with obtaining predictions from the Gal-DINOmodel for all radio and infrared cutouts centred
at the components in the Selavy catalogue. Subsequently, a dictionary of predictions is generated for the central sources within these cutouts. The consolidated catalogue is
then formed by calibrating the confidence scores in the dictionary, organising them in descending order, and systematically consolidating and removing entries from the Selavy
catalogue based on decreasing score values. We refer the readers to Section 4 for further details.

that these noisy bounding boxes and keypoints neither coincide
with the galaxy nor maintain a consistent placement in the image;
instead, they are randomly positioned elsewhere within the image.
This process is repeated ten times, each time selecting different
galaxies at random. The model is trained in the same manner and
for the same number of epochs as before, with five distinct training
datasets, each with 10% randomly selected galaxies carrying noisy
labels. Note that this noise is only applied to the training dataset,
keeping the validation and test datasets unchanged for a direct
comparison with our main results outlined in Table 1. Table 2
presents the outcomes when the entire training set is employed to
randomise the bounding boxes, denoted as All-10%. The median
AP50 for the five models trained with random noisy data at a 10%
level is 71.9± 3.1 for bounding box detections. Here, the error is
computed as the standard deviation across the results of fivemodel
evaluations on the validation and test datasets. This observation
suggests that the model remains unaffected even when 10% of
the annotations in the training dataset are erroneous. Comparable
results are observed for AP, AP75, APS, APM , and APL metrics. It’s
worth noting that the larger error bars in APL may be attributed
to the smaller validation and test sample size, as illustrated in the
right panel of Fig. 2.

In another analogous experiment, we again altered the posi-
tions of the bounding boxes and keypoints by randomly selecting
10% of the extended radio galaxies. This selection encompasses all
five categories of radio galaxies, excluding compact radio galax-
ies this time. This is conducted to assess the model’s robustness

to possible noise in annotations related to extended radio galax-
ies. In this procedure, we randomly select 10% of these extended
radio galaxies and proceed to randomly displace their bounding
boxes and keypoint positions, following the same methodology as
before. Over five such iterations, the model is trained in a man-
ner consistent with the previous experiment. The outcomes for
these models, denoted as Ext-10%, utilising noisy annotations for
extended radio galaxies during model training, are presented in
Table 2. Notably, the results for both bounding boxes and key-
points consistently align with the primary evaluation findings
reported in Table 1. This demonstrates the model’s robustness
against potential manual errors in the annotation process, such as
incorrect radio morphology, radio bounding boxes, and infrared
host galaxies.

4. Catalogue construction pipeline

The Gal-DINOmodel, once trained, is employed to generate a cat-
alogue of radio galaxies within the EMU-PS. Fig. 5 provides an
overview of this process. This section will delve into the specifics
of the catalogue construction pipeline. Note that, unless the exis-
tence of confirmed infrared or optical counterparts is established,
these entities are generally referred to as radio sources rather than
AGN or radio galaxies. However, as our pipeline identifies poten-
tial hosts for all radio sources, we use the term ‘radio galaxies’ for
brevity. The cross-matching process of counterpart identification
is elaborated in Section 5.3.
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4.1. Images for catalogue construction

We employ the Selavy catalogue of the EMU-PS to extract cutouts,
which, in conjunction with the trained Gal-DINO model, provide
radio galaxy and its potential infrared host predictions. As out-
lined in Section 2.1, the primary purpose of Selavy catalogues is
not to generate radio galaxy catalogues; rather, their design only
focuses on grouping pixels into islands and fitting components
to each island. Utilising the Selavy source finder on the EMU-
PS image resulted in identifying 220 102 components. We create
cutouts, sized at 8′ × 8′, at the positions of these components,
where radio cutouts are saved as FITS files, and corresponding pre-
processed infrared cutouts are saved as PNG files. These cutouts
are saved in a directory and then processed by the trained Gal-
DINOmodel to obtain predictions for each cutout. It is important
to note that components in the Selavy catalogue can appear inmul-
tiple images due to their proximity. Consequently, the Gal-DINO
model may generate multiple predictions for each component
across different cutouts. As detailed in Section 4.3, only central
radio source instances in each image are utilised for catalogue
construction. Since each image has a unique Selavy catalogue com-
ponent at its centre, this allows us to make predictions for each
source individually.

4.2. Model predictions for images

The directory containing 220K radio and infrared image cutouts
is input into the trained Gal-DINOmodel through its data loader.
The model then provides predictions for each detected radio
source, including a category assignment, a bounding box encom-
passing any extended emission ormultiple components, and a pre-
diction score or confidence level. Additionally, the model predicts
potential infrared hosts for all identified radio sources within the
provided cutouts. For 220K cutouts, the model requires approxi-
mately 10 hours for these predictions, when running on a single
Nvidia Tesla P100 GPU. While the network produces several FP
predictions, many of these predictions possess very low detec-
tion scores. To filter out less reliable predictions, we establish a
detection score threshold, only retaining predictions with a score
greater than 0.05. While this choice reduces the FP detection rate,
it also maintains the FN rate at a minimal level. Employing this
score threshold yields a maximum of 30 predictions per image.
Out of 220K image cutouts, only 39 have no radio morphology
detections above this score.

4.3. Predictions for central sources in images

As we acquire predictions for all 220K cutouts centred on the posi-
tions of the Selavy catalogue components, we selectively utilise
predictions from central sources in cutouts to compile the consol-
idated catalogue. For each image, we initially generate a dictionary
for every cutout, containing prediction details such as radio cat-
egories, bounding boxes, keypoints, and scores for all detected
instances. Subsequently, we identify predictions where bounding
boxes with the highest scores overlap with the centre of each
cutout. Remarkably, only 1.1% of cutouts lack predicted bounding
boxes at the centre, totalling approximately 2 336 cutouts without
central predictions. A visual examination of 200 of these cutouts
reveals that they all feature a faint compact radio galaxy at the
centre, resulting in confidence scores below our 0.05 threshold.
Utilising the prediction dictionary from the remaining 98.9% of

central predictions, we proceed to update the consolidated cata-
logue, a process detailed in the subsequent sections. As outlined
in Table 1, the AP50 for the combined validation and test sets
stands at 73.2%, taking into account multiple predictions within
an image. Nonetheless, upon examining these images, we observe
that 99% of central radio galaxies exhibit an IoU greater than 0.5,
and 97.2% of central radio galaxies boast an IoU exceeding 0.7.
Additionally, in terms of keypoint detections, we observe that 98%
of central radio galaxies have a keypoint position within < 3′′ of
the CatWISE host in the evaluation set, and 77% of keypoints are
< 1′′ away from the CatWISE host location. This indicates that,
for the majority of central radio galaxies, the predicted bounding
boxes and keypoint positions align well with the ground truth.

4.4. Cataloguing galaxies based on detection scores

The prediction dictionary encompasses categories, bounding
boxes, keypoints, and scores for central sources. These galaxies
are incorporated into the consolidated catalogue based on their
detection scores, with higher-scoring galaxies being added first. To
achieve this, we initiate the process by calibrating the scores for all
central sources in the dictionary. Calibration ensures that the pre-
dicted probabilities represent reliable estimates of the true proba-
bilities. Following themethodology outlined in Gupta et al. (2021),
we employ a spline-based calibration approach. This approach
introduces a binning-free calibration measure inspired by the
comparison of cumulative probability distributions in the classical
Kolmogorov–Smirnov (KS) statistical test. Unlike traditional bin-
ning, it approximates the empirical cumulative distribution using
a differentiable function achieved through splines. The calibra-
tion process involves finding a mapping γ : [0, 1]→ [0, 1] such
that γ(fk(x)) is calibrated. This mapping is established through a
direct correlation from the score fk(x) to P(k|fk(x)) for all classes k.
We refer the readers to Gupta et al. (2021) for more details. The
spline fitting is executed using a held-out calibration set, and the
resulting calibration function is evaluated on an unseen test set.

We utilise scores and class predictions extracted from the
training dataset for establishing a calibration function. The effec-
tiveness of this calibration function is then assessed using scores
and classes from the combined validation and test sets. The graphs
depicting uncalibrated and calibrated scores are illustrated in
Fig. 6. Here, (a) presents a plot depicting the cumulative score and
probability against the fractile of the test set. In (b), the same infor-
mation is displayed, but the horizontal axis is distorted, resulting
in a cumulative score graph that forms a straight line. This is visu-
alised through scatter plots of cumulative (score, score) in blue and
(score, probability) in orange. In the case of a perfectly calibrated
network, the probability line will align as a straight line coinciding
with the (score, score) line. In (c) and (d), plots of non-cumulative
scores and probabilities are presented against the fractile or score.
The upper panel illustrates that the network is substantially over-
estimating the probability of the detection based on the score. The
bottom panel displays the outcomes of the calibration, revealing
a notable improvement compared to the upper panel. This is evi-
dent from the lower KS error of 4.2%, in contrast to 7.3%. It is also
important to highlight that the enhanced calibration is achieved
without compromising accuracy (or probability).

We employ the calibration function on the scores of cen-
tral sources within the prediction dictionary. Subsequently, we
arrange the scores and their associated category, bounding box,
and keypoint predictions in descending order. The bounding box
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(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 6. Uncalibrated and calibrated scores for combined validation and test sets: (a) depicts the cumulative score andprobabilitywith the fractile. In (b), the samedata is shown,
but with a distorted horizontal axis, resulting in a cumulative score graph forming a straight line. This is visualised through scatter plots of cumulative (score, score) in blue and
(score, probability) in orange. In the case of a perfectly calibrated network, the probability line will coincide as a straight line with the (score, score) line. (c) and (d) showcase plots
of non-cumulative scores and probabilities against the fractile or score. The upper panel demonstrates that the network significantly overestimates the probability of detection
based on the score with a KS error of 7.3%. The calibration reduces the KS error to 4.2%. See Section 4.4 for more details.

predictions are then utilised in a descending order of scores to
group all Selavy catalogue components within each box and col-
lectively add them to the consolidated catalogue. Simultaneously,
we remove the corresponding rows of these components from the
Selavy catalogue. Since boxes with higher scores are prioritised,
the components already removed from the Selavy catalogue do not
duplicate in the consolidated catalogue. This process is iterated for
all central source predictions in the dictionary. Ultimately, when
no components remain in the Selavy catalogue, the cataloguing
process concludes.

4.5. Predictions for large extended radio galaxies

In a few cases, there are compact radio galaxies in the proxim-
ity of a large extended radio galaxy. The Gal-DINO model would
generally predict a large bounding box encompassing all the com-
ponents of the extended radio galaxy, but would also predict
bounding boxes for the neighbouring radio galaxies. In such a sce-
nario, the cataloguing process explained in the previous sections
will tend to automatically add components with higher confidence
scores to the consolidated catalogue but as it also removes those
from the Selavy catalogue, this leads to separating the neighbour-
ing radio galaxies from the large extended radio galaxy. As an

example, Fig. 7 shows such a possible scenario, where an extended
radio galaxy has two compact radio galaxies in its proximity. All
Selavy catalogue components in the figure are represented by blue
circles. The confidence score for the extended radio galaxy is 0.5
(with the biggest bounding box), however, as the two compact
radio galaxies have higher scores, the galaxy with a score of 0.8 is
consolidated first and removed from the Selavy catalogue. This is
followed by the second compact radio galaxy with a score of 0.6. As
both compact radio galaxies are consolidated and removed from
Selavy catalogue, only the three remaining components are con-
solidated for the extended radio galaxy with the biggest box with a
score of 0.5 encompassing them. Thus the consolidated catalogue
records three radio galaxies in this scenario.

Note that the predictions with scores 0.2 and 0.15 do notmatter
here as these components are already consolidated and removed
from the Selavy catalogue due to their presence in the bigger box
with a higher score of 0.5. A visual inspection of several such
extended radio galaxies shows that this process works for most
of the extended radio galaxies with neighbouring compact radio
galaxies. However, for a handful of extended radio galaxies, the
neighbouring compact radio galaxy gets consolidated due to its
lower score as compared to the bigger box’s score that encloses
both extended and compact radio galaxies. Future work with the
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Figure 7. Shown is a potential scenario in which an extended radio galaxy is accom-
panied by two adjacent compact radio galaxies. Blue circles represent all Selavy
catalogue components. The extended radio galaxy has a confidence score of 0.5, but
the two compact radio galaxies with higher scores (0.8 and 0.6) are consolidated first,
removing them from the Selavy catalogue. Subsequently, only the three remaining
components of the extended radio galaxy, encompassed by the biggest bounding box
with a score of 0.5, are consolidated. As a result, the consolidated catalogue registers
three radio galaxies in this particular case.

EMU main survey should revisit this issue using a larger sample
size, which can be addressed separately with a different computer
vision strategy. Additionally, addressing the issue posed by very
large extended radio galaxies with extensions surpassing 8′ should
be a focus of future work with the EMUmain survey. These galax-
ies, characterised by their limited representation in the present
work due to their scarcity in the EMU-PS, were not incorporated
into the training of the Gal-DINO model.

5. Catalogue descprition

The final catalogue comprises 211 625 radio galaxies, and 73% of
these have a counterpart in the CatWISE infrared catalogue within
3′′. Additionally, cross-matched counterparts from the optical
surveys have been incorporated into the catalogue. Table 3 pro-
vides detailed descriptions of the catalogue columns. This section
elaborates on the specifics of the catalogue.

5.1. Consolidated catalogue

The upper panel in Fig. 9 displays a histogram depicting the pre-
diction confidence scores for all radio galaxies. Out of the 211 625
radio galaxies in the catalogue, 91.1% of them exhibit a confidence
score of 1, and 99.1% are identified with a score greater than 0.5.
As detailed in Section 4.3, there are 2 336 cutouts without cen-
tral source predictions surpassing the confidence score of 0.05.
Among these, 262 are incorporated through consolidation. As all
the remaining 2 074 correspond to single-component islands in
the Selavy catalogue as well, we include them as compact radio
galaxies at the end of the consolidated catalogue. The catalogue
comprises 201 211 compact radio galaxies and 10 414 extended
radio galaxies. Among the extended radio galaxies, there are 582

Table 3. Description of columns in the catalogue (best viewed in a PDF reader).

Column Description

EMU_PS_source_name Name of the EMU-PS radio galaxy

EMU_PS_ra_deg Right Ascension of the EMU-PS galaxy
(degrees)

EMU_PS_dec_deg Declination of the EMU-PS galaxy
(degrees)

EMU_PS_flux_peak Peak flux density of the EMU-PS radio
galaxy (mJy/beam)

EMU_PS_flux_int Integrated flux density of the EMU-PS
radio galaxy (mJy)

EMU_PS_img_id Image identifier of the EMU-PS galaxy

EMU_PS_filename Filename associated with the EMU-PS
galaxy

EMU_PS_radio_bbox Bounding box of the EMU-PS radio galaxy
(pixels)

EMU_PS_ra_cen_bbox Right Ascension centre of the EMU-PS
bounding box (degrees)

EMU_PS_dec_cen_bbox Declination centre of the EMU-PS
bounding box (degrees)

EMU_PS_type Type classification of the EMU-PS galaxy

EMU_PS_score Classification score of the EMU-PS galaxy

EMU_PS_n_selavy_components Number of Selavy components for the
galaxy

selavy_island_id Identifier for Selavy island

selavy_component_id Identifier for Selavy component

selavy_component_name Name of Selavy component

selavy_ra_hms_cont Right Ascension of Selavy component
(HMS)

selavy_dec_hms_cont Declination of Selavy component (DMS)

selavy_ra_deg_cont Right Ascension of Selavy component
(degrees)

selavy_dec_deg_cont Declination of Selavy component
(degrees)

selavy_ra_err Right Ascension error of Selavy
component (arcsec)

selavy_dec_err Declination error of Selavy component
(arcsec)

selavy_flux_peak Peak flux density of Selavy component
(mJy/beam)

selavy_flux_peak_err Error in peak flux density of Selavy
component (mJy/beam)

selavy_flux_int Integrated flux density of Selavy
component (mJy)

selavy_flux_int_err Error in integrated flux density of Selavy
component (mJy)

selavy_spectral_index Spectral index of Selavy component

catwise_source_id Identifier for CatWISE source

catwise_source_name Name of CatWISE source

catwise_ra Right Ascension of CatWISE source
(degrees)

catwise_dec Declination of CatWISE source (degrees)

w1mag CatWISE W1magnitude

w1sigm CatWISE W1magnitude error

w2mag CatWISE W2magnitude

w2sigm CatWISE W2magnitude error
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Table 3. Continued

Column Description

catwise_separation Separation between the radio galaxy and
CatWISE source (arcsecond)

des_coadd_object_id DES coadd object identifier

des_ra Right Ascension of DES source (degrees)

des_dec Declination of DES source (degrees)

des_mag_auto_g DESmagnitude in the g-band

des_magerr_auto_g Error in DESmagnitude in the g-band

des_mag_auto_r DESmagnitude in the r-band

des_magerr_auto_r Error in DESmagnitude in the r-band

des_mag_auto_i DESmagnitude in the i-band

des_magerr_auto_i Error in DESmagnitude in the i-band

des_mag_auto_z DESmagnitude in the z-band

des_magerr_auto_z Error in DESmagnitude in the z-band

des_mag_auto_y DESmagnitude in the y-band

des_magerr_auto_y Error in DESmagnitude in the y-band

des_separation Separation between the CatWISE source
and DES source (arcsecond)

scosID SuperCosmos identifier

scos_htmID SuperCosmos HTM identifier

scos_ra Right Ascension of SuperCosmos source
(degrees)

scos_dec Declination of SuperCosmos source
(degrees)

scos_zPhoto_ANN SuperCosmos redshift from ANN

scos_zPhoto_Corr Corrected SuperCosmos redshift

scos_separation Separation between the CatWISE source
and SuperCosmos source (arcsecond)

desi_ID DESI identifier

desi_RA Right Ascension of DESI source (degrees)

desi_DEC Declination of DESI source (degrees)

desi_TYPE Type classification of DESI source

desi_photo_z Photometric redshift of DESI source

desi_photo_zerr Error in photometric redshift of DESI
source

desi_spec_z Spectroscopic redshift of DESI source

desi_separation Separation between the CatWISE source
and DESI (arcsecond)

FR-I, 5 602 FR-II, 1 494 FR-X, and 2 375 R radio galaxies as well as
361 Pec morphologies. Among the 0.9% (1 877) of galaxies with
confidence scores below 0.5, the majority are associated with C
(898) and FR-II (838) galaxies, as depicted in the lower panel of
Fig. 9. This corresponds to only 0.05% of the total compact radio
galaxies and 15% of the total FR-II galaxy predictions below a
score of 0.5. Future investigations should focus on a more detailed
examination of these FR-II galaxies with scores below 0.5. In our
visual examinations of 100 systems classified as FR-II with scores
below 0.5, we noted that, in several cases, their extensive bound-
ing boxes encapsulate multiple compact radio galaxies, each with
a higher score than the score assigned to the larger bounding box.
As described in Section 4.5 and illustrated in Fig. 7, galaxies with
higher scores are prioritised for consolidation in the catalogue.We

Figure 8. An example where the larger box prediction, scoring 0.48, is deemed redun-
dant. The existence of smaller boxes within implies that these contain three compact
radio galaxies, each with higher scores, rather than a single, bent FR-II radio galaxy
within the larger bounding box.

observe that several bounding boxes classified as FR-II encom-
pass adjacent compact radio galaxies rather than genuine FR-II
galaxies; however, 30 out of 100 are indeed real FR-II galaxies.
In Fig. 8, an instance of this situation is demonstrated, where the
larger box prediction, with a score of 0.48, proves to be redun-
dant. The presence of smaller boxes within suggests that these
encompass three compact radio galaxies, each with higher scores,
rather than indicating a single FR-II galaxy. Also after examin-
ing 100 randomly chosen predictions corresponding to 85% of
FR-II classifications with scores above 0.5, we found that 90 of
them are indeed authentic FR-II galaxies. However, 9 are FR-I
or FR-X and one bounding box encompasses multiple compact
radio sources. This indicates that the classification of FR-II galaxies
can be relied upon for specific tasks, with more reliable classi-
fications having scores above 0.5. It is crucial to emphasise that
this does not impact the overall catalogue, as bounding boxes for
low-scoring FR-II galaxies often have high-scoring compact radio
galaxies, and these are already accounted for in the consolidated
catalogue (as explained in Section 4.5). The lower panel of Fig. 9
illustrates the distribution of galaxies across the six prediction class
types. Following this, we identify 200 313 compact radio galax-
ies, 576 FR-I galaxies, 4,764 FR-II galaxies, 1 425 FR-x galaxies, 2
335 R galaxies, and 335 Pec morphologies with model confidence
scores above 0.5. Note that the accuracy of predictions relies on the
appropriate selection of the confidence score, which should align
with the specific requirements of the scientific case.

The consolidated catalogue includes the following columns:
EMU_PS_source_name (e.g. EMU PS J203428.9-583922c where
‘P’ stands for pilot survey and ‘S’ stands for source), derived

cNomenclature criterion details: https://cdsarc.cds.unistra.fr/viz-bin/Dic?/4848739.
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Figure 9. The top panel depicts the distributions of all radio galaxies (solid bars) and
subsets categorised by classification types (coloured contours) based on prediction
confidence scores. The bottom panel displays the distribution across different types
as predicted by the Gal-DINO model above and below scores of 0.5. Approximately
99.1% of the radio galaxies in our consolidated catalogue have a score larger than
0.5. Notably, among the galaxy types, FR-II exhibits the largest fraction of galaxies with
scores below 0.5; for further insights, refer to Section 5.1.

from the RA and Dec of the consolidated radio galaxies. The
RA (EMU_PS_ra_deg) and Dec (EMU_PS_dec_deg) represent
the detected keypoint positions. It is important to note that we
use keypoint positions for RA and Dec, rather than the posi-
tion of the peak radio emission inside the predicted bounding
box encompassing extended radio galaxies. This choice is made
to avoid using the positions of radio lobes for RA and Dec,
as they can have higher flux compared to the central radio
source. As keypoint detection is performed on cutouts with 7
radio and 1 infrared channels, as done for locating bounding
boxes. Consequently, the keypoints denote positions where dis-
tinctive features in both radio and infrared images contribute to
their predictive capabilities. While keypoints in the training data

correspond to known CatWISE sources, typically situated near the
central core or the ridge of collimated radio emission connecting
the lobes, the model predictions rely on features extracted from
both radio and infrared images. In scenarios where no infrared
emission is present near the radio components, the model tends
to predict a keypoint near the central radio peak or the ridge,
rather than artificially placing it randomly in the infrared image.
Therefore, we utilise keypoint positions for RA and Dec instead
of radio peak positions for extended radio galaxies. Despite there
being only one radio peak for compact radio galaxies, for consis-
tency, we use keypoint positions for both extended and compact
radio galaxies.

The flux density columns, EMU_PS_flux_peak and EMU_PS_
flux_int, are sourced from the Selavy catalogue, where a signal-
to-noise ratio of ≥ 5 is applied to select radio sources. The peak
flux density is obtained from the maximum flux density of consol-
idated components, while the integrated flux density is the sum
of these components. EMU_PS_img_id and EMU_PS_filename
serve as identifiers and names for the cutouts from which the
galaxy was consolidated into our catalogue. These identifiers cor-
respond to component IDs in the Selavy catalogue, facilitating
the viewing of consolidated galaxy cutouts. EMU_PS_radio_bbox
provides the dimensions of the detected bounding box for the
radio galaxy in pixels, including information about the mini-
mum x and y coordinates, height, and width. The height and
width, measured in pixels and parallel to RA and Dec, can be
used to determine the total extent of the radio galaxies, with
each pixel equivalent to 2′′. Above an integrated flux of 10
mJy for extended radio galaxies, we measure the largest angu-
lar size (LAS) using the height and width, yielding a median
LAS of 93.6′′ with a standard deviation of 50.4′′. This is con-
sistent with Williams et al. (2019), where employing the same
flux threshold at 944 MHz (assuming a spectral index of -0.7)
and selecting radio sources featuring multiple components, we
find a median LAS of 99.6′′ with a standard deviation of 74.9′′.
EMU_PS_ra_cen_bbox and EMU_PS_dec_cen_bbox denote the
box centroids in RA and Dec, serving as box positions for specific
tests. EMU_PS_type and EMU_PS_score indicate the predicted
classification types and confidence scores, respectively. Fig. 10
illustrates examples from the consolidated catalogue overlaid on
EMU-PS radio images. It showcases RA and Dec positions with
blue circles, extended radio galaxy bounding boxes with blue
rectangles, and classification types with confidence scores for dif-
ferent radio galaxies exhibiting various extents. The last column,
EMU_PS_n_selavy_components, provides information about the
number of Selavy components for each consolidated radio galaxy.
Table A1 displays the initial 60 rows of the catalogue, showcasing
the EMU-PS fields.

5.2. Comparison to Selavy

The compilation of the consolidated catalogue relies on the
sources identified by Selavy. As mentioned in Section 2.1, the
purpose of the Selavy algorithm is not to generate radio galaxy
catalogues. In the Selavy process, pixels above a specific bright-
ness threshold are initially detected and grouped into islands.
Following this, components are fitted to each island, ultimately
forming the component catalogue. Out of 198 216 Selavy islands,
178 921 are single-component ones, and the remaining 19 295
are multi-component with a total of 41 181 components. We
record the selavy_island_id and selavy_component_id for each
galaxy in the consolidated catalogue. As detailed in Section 5.1,
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Figure 10. Examples of the catalogue galaxies overlaid on radio images, showcasing their host positions, bounding boxes, and classifications derived from both the Gal-DINO
and catalogue construction pipelines. Blue rectangles and accompanying text denote the bounding boxes and classification types with confidence scores for the extended radio
galaxies. The positions of these extended radio galaxies are marked by blue circles. For brevity, we omit the presentation of bounding boxes for compact radio galaxies, which are
solely indicated by blue circles.

the consolidated catalogue comprises 211 625 radio galaxies, rep-
resenting an increase of 13 409 radio galaxies compared to the 198
216 islands in Selavy. Among these, the selavy_island_id in our
consolidated catalogue consists of 204 533 single-component and
7 092 multi-component Selavy island IDs. This indicates the pres-
ence of 204 533 distinct islands, compared to the 178 921 islands
with a single component in the consolidated catalogue. In essence,
Selavy seems to underestimate the number of single-component

islands by 12.5%. Regarding the 7 092 multi-component island
IDs, 6 901 share the same set of 15 161 components as identi-
fied by Selavy, indicating correct associations for these islands.
The remaining 191 multi-component island IDs have 407 com-
ponents all from different Selavy islands. Overall, Selavy correctly
associates multiple components for 6 901 out of 19 295 islands,
with a correct association rate of 35.7% for the multi-component
islands.
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Figure 11. Displayed are the numbers of DES, DESI, and SCos counterparts within 2′′

of the CatWISE position (top panel). The photometric redshift distributions are based
on the DESI legacy surveys for compact and extended radio galaxy counterparts (bot-
tompanel). Both these plots include galaxies with a Gal-DINO confidence score greater
than 0.5.

Furthermore, we incorporate additional attributes about the
Selavy catalogue. Each Selavy component is uniquely identified
by its assigned name, denoted as selavy_component_name.
The celestial coordinates, namely Right Ascension (RA)
and Declination (Dec), are encapsulated in the fields
selavy_ra_deg_cont and selavy_dec_deg_cont, respectively.
Information regarding the peak and integrated flux density of the
radio signal emitted by these Selavy components can be found in
selavy_flux_peak and selavy_flux_int. Additionally, the spectral
index, characterising the frequency dependence of the radio
emission, is detailed in selavy_spectral_index (see Figure 11 in
Norris et al. 2021a also).

5.3. Multiwavelength counterparts

We cross-identify radio galaxies in the consolidated catalogue with
the infrared and optical catalogues. To do this, we first cross-
match the EMU_PS_ra_deg and EMU_PS_dec_deg coordinates
with the CatWISE catalogue. As explained in Section 5.1, these
coordinates originate from the keypoint positions, and we do not

utilise radio peak flux or bounding box centroids for this cross-
identification. We use a 3′′ search radius around radio galaxies to
identify counterparts. At this 3′′ search radius, the false identifi-
cation rate is expected to be around 8% (see Figure 12 in Norris
et al. 2021a). Table 4 displays the number of radio galaxies within
this search radius. We find that 73% of radio galaxies (includ-
ing the 8% with possible false identifications) have counterparts
in the CatWISE catalogue. Consequently, the consolidated cata-
logue lacks multiwavelength information for the remaining 27%
of radio sources. Among the radio galaxies classified by the Gal-
DINO model as compact and all extended, we find cross-matches
for 74% and 44%, respectively. Future work should investigate
whether a larger search radius could be more optimal for identi-
fying counterparts for extended radio galaxies, aiming to increase
completeness while keeping the false identification rate low. In
another scenario, when looking only for counterparts of galax-
ies with a GalDINO confidence score greater than 0.5, we find
similar percentages of cross-matches when applying a minimum
score threshold of 0.33. Note that we have chosen this straightfor-
ward approach to identify radio galaxy counterparts, which yields
acceptable false identification rates. Subsequent research should
explore the cross-matching of radio galaxies by leveraging photo-
metric properties, such as utilising stellar mass estimates for the
matching process (see, e.g. Gupta et al. 2020), employing other
likelihood ratio-based methods (e.g. McAlpine et al. 2012; Weston
et al. 2018; Williams et al. 2019; Gordon et al. 2023), filtering out
contaminating stars using WISE colours or proper motion data
and understanding the contamination in identification caused by
gravitational lensing.

Next, we cross-match CatWISE sources that are within a 3′′
radius of the radio galaxies with the optical catalogues. We use
photometric catalogues from theDark Energy SurveyData Release
2 (DES DR2 Abbott et al. 2021), the Dark Energy Spectroscopic
Instrument Legacy Survey catalogue from Data Release 8 (DESI
DR8 Zou et al. 2019), and the WISE x SuperCOSMOS photomet-
ric catalogue (SCos Bilicki et al. 2016) to cross-match CatWISE
sources. Following (Figure 13 in Norris et al. 2021a), we search
for counterparts in these optical catalogues within a 2′′ radius of
CatWISE, where the false identification rate is approximately 7%.
Table 4 and the top panel of Fig. 11 show the number of CatWISE
counterparts in DES, DESI, and SCos. The median separation dis-
tance for these galaxies with the CatWISE sources is found to be
0.34′′, 0.27′′, and 0.3′′ for DES, DESI, and SCos catalogues. We find
that 65%, 36%, and 11% of CatWISE sources within a 3′′ radius
of radio galaxies have counterparts in DES, DESI, and SCos cata-
logues, respectively. The same percentage of counterparts is found
when a confidence score limit of 0.5 is applied. The bottom panel
of Fig. 11 shows the number of compact (grey) and extended radio
galaxy (green) counterparts with a score larger than 0.5 as a func-
tion of photometric redshift from the DESI legacy survey. The
median redshift (z) for compact and extended radio galaxy coun-
terparts is 0.46 and 0.53, respectively, with a maximum redshift of
1.79± 0.28 for compact and 1.26± 0.22 for extended. We find 4
525 compacts and 82 extended radio galaxy counterparts above a
redshift of 1.

The three panels in Fig. 12 depict the relationships between
compact (brown contours) and extended radio galaxies (blue
contours) and their counterparts in infrared and optical, with Gal-
DINO confidence scores larger than 0.5. In the top panel, radio
luminosity contours are displayed at 5, 25, 50, 75, and 95 per-
centile levels relative to the CatWISE W1 magnitude. Extended
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Figure 12. The distributions of multiwavelength counterparts for compact and
extended radio galaxies, as well as FR-I- and FR-II-type radio galaxies, are shown
in three panels. The top panel displays contours for radio luminosity and CatWISE
magnitudes, the middle panel illustrates the infrared colour-colour plot for AllWISE
counterparts, emphasising the dominance of AGN above an integrated radio flux of
5 mJy. The bottom panel exhibits the colour-colour plot for DES radio galaxy counter-
parts. All plots include galaxies with a Gal-DINO confidence score greater than 0.5, and
contours describe 5, 25, 50, 75, and 95 percentile levels. Further details and discussion
can be found in Section 5.3.

Table 4. Number of CatWISE, DES, DESI and SCos counterparts for radio galax-
ies. The cross-matching process involves CatWISE sources matched with radio
galaxies within a 3′′ search radius while cross-matchingwith DES, DESI, and SCos
catalogues utilises these CatWISE sources within a 2′′ radius. The upper and
lower section of the table presents the number of galaxies and the percentage
of cross-matches with confidence scores exceeding 0.33 and 0.5, respectively.
The numbers and percentages refer to the sources remaining after applying all
of the previous criteria. The columns display these statistics for all, compact, and
extended radio galaxies.

Criterion # All (%) # Compact (%) # Extended (%)

EMU PS (score>0.33) 211 625 (100%) 201 211 (100%) 10,414 (100%)

EMU PS-CatWISE (<3′′) 154 320 (73%) 149 789 (74%) 4 531 (44%)

CatWISE-DES (<2′′) 135 266 (64%) 131 464 (65%) 3 802 (37%)

CatWISE-DESI (<2′′) 75 904 (36%) 73 812 (37%) 2 092 (20%)

CatWISE-SCos (<2′′) 22 242 (11%) 21 822 (11%) 420 (4%)

EMU PS (score>0.5) 207 674 (100%) 198 239 (100%) 9 435 (100%)

EMU PS-CatWISE (<3′′) 152 775 (74%) 148 593 (75%) 4 182 (44%)

CatWISE-DES (<2′′) 133 964 (65%) 130 445 (66%) 3 519 (37%)

CatWISE-DESI (<2′′) 75 216 (36%) 73 268 (37%) 1 948 (21%)

CatWISE-SCos (<2′′) 22 122 (11%) 21 732 (11%) 390 (4%)

radio galaxies exhibit higher radio luminosities, with a median of
1024.6~WHz−1, compared to compact radio galaxies, which have a
median of 1023.4~WHz−1. This observation aligns with the find-
ings in Figure 21 of Gordon et al. (2023), indicating higher 3 GHz
luminosities for extended sources compared to single-component
ones. The CatWISE W1 magnitudes are similar, with median
values of 15.2 and 15.4 for extended and compact radio galax-
ies, respectively. For a random sample of CatWISE sources, the
median W1 magnitude is 16.8, underscoring that the infrared
counterparts of radio galaxies are brighter than other infrared
sources. Additionally, data points for FR-I- and FR-II-type radio
galaxies are plotted, revealing overlap between the two populations
in luminosity, consistent with the findings in Mingo et al. (2019).
The median luminosities for FR-I- and FR-II-type radio galaxies
are 1024.6 and 1024.3~WHz−1, respectively, while the median W1
magnitudes are both 15.2.

The middle panel of Fig. 12 shows contours on the AllWISE
W1-W2 and W2-W3 colour-colour diagram for compact and
extended radio galaxies. The AllWISE counterparts are selected as
the closest CatWISE counterparts of radio galaxies with a max-
imum separation of 1′′. The plot displays contours at 5, 25, 50,
75, and 95 percentile levels for compact and extended radio galaxy
counterparts. Following the criteria outlined inMingo et al. (2016)
for identifying infrared host galaxies, we find a 63% and 58%
AGN population (W1-W2>0.5) when a radio galaxy flux limit
of 5 mJy is applied and AllWISE magnitudes above a signal-
to-ratio larger than 3 are chosen. Applying the same flux and
magnitude cuts, passive elliptical galaxies (W1-W2<0.5 and W2-
W3<1.6) serve as hosts for 5% and 16% of compact and extended
radio galaxies, respectively. Star-forming galaxies (W1-W2<0.5
and 1.6<W2-W3<3.4) host 10% and 12% of compact and extended
radio galaxies, respectively. Ultra-luminous infrared galaxies are
hosts to 14% and 22% of compact and extended radio galaxies.
These proportions align with Gordon et al. (2023), who find a
majority of AGN hosts for compact and extended radio galaxies in
the 3 GHz VLASS survey. Additionally, data points for FR-I- and
FR-II-type radio galaxies are shown, indicating substantial overlap
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between the two categories, consistent with the findings of Mingo
et al. (2019).

The bottom panel of Fig. 12 illustrates the colour-colour dia-
gram (g-r) versus (r-i) for DES counterparts. The plot depicts
distributions for compact and extended radio galaxy counterparts
with contours at 5, 25, 50, 75, and 95 percentile levels. The hosts
exhibit consistent colours, with median values for (g-r, r-i) of
(0.94, 0.74) and (1.2, 0.8) for compact and extended radio galax-
ies, respectively. For a random sample of DES sources, the median
(g-r, r-i) colours are 3.7 and 1, indicating that optical hosts for
radio galaxies have distinct colours compared to other optical
sources. As before, we also plot data points for FR-I- and FR-
II-type radio galaxies, revealing significant overlap in their host
galaxy colours.

6. Summary

With ongoing and upcoming experiments poised to identify tens
of millions of radio galaxies, it becomes crucial to develop more
efficient pipelines for constructing radio galaxy catalogues. This
is essential to fully harness the potential insights offered by these
observations and reduce the considerable human effort currently
required. In this study, we introduce a comprehensive detec-
tion pipeline designed to build radio galaxy catalogues through
the application of cutting-edge computer vision algorithms. The
pipeline employs a two-step process: initially detecting compact
and extended radio galaxies along with their potential host galaxies
in both radio and infrared images using computer vision net-
works, and subsequently utilising the network predictions in the
second stage to construct a catalogue. Leveraging this detection
and catalogue construction pipeline, we create the first catalogue
of radio galaxies for the pilot survey of the Evolutionary Map of
the Universe (EMU-PS), conducted with the Australian Square
Kilometer Array Pathfinder (ASKAP) telescope.

In developing the detection pipeline, we build upon the
GalDINO network initially introduced in RadioGalaxyNET by
Gupta et al. (2024) for radio galaxy detection. Expanding on the
2 800 FR-I, FR-II, FR-x, and R-type radio galaxies present in
RadioGalaxyNET, we conduct visual inspections and label 2 090
compact radio galaxies and 99 sources with peculiar and other rare
radio galaxies. This results in a dataset comprising approximately
5 000 radio galaxies, along with their corresponding infrared coun-
terparts, utilised for training and evaluating the network. The
network is specifically trained to predict both the categories and
bounding boxes for the radio galaxies, as well as the keypoint posi-
tions of their potential infrared host galaxies. Evaluation metrics
are based on the Average Precision (AP) at a specified IoU con-
cerning the ground truth. We achieve an AP50 of 73.2% for the
radio galaxy bounding box predictions and 71.7% for the infrared
host keypoint positions when considering the combined valida-
tion and test datasets. These results encompass predictions for all
radio galaxy instances in each image. However, focusing solely on
the radio galaxy located in the central part of the image reveals
that 99% of the central radio galaxy predictions exhibit an IoU
above 0.5 with respect to the ground-truth bounding box in the
evaluation set. For keypoint detection in the evaluation set, we
observe that 98% of keypoint locations have < 3′′ separation from
the ground-truth CatWISE infrared galaxy. This observation sug-
gests a strong alignment between the predicted bounding boxes
and keypoints with the ground truth for the majority of the radio
galaxies.

The pipeline for constructing the catalogue utilises predictions
from the Gal-DINO model for radio and infrared cutouts gener-
ated using the Selvay-based components catalogue. This process
results in 220 102 cutouts, for which bounding box, category,
and keypoint predictions for the central source in the image
are employed to assemble the consolidated catalogue. Catalogue
construction relies on the prediction confidence scores from the
GalDINO network. For the 220 102 cutouts, the central source
with the highest score is added to the consolidated catalogue first
and is subsequently removed from the Selavy catalogue. In the case
of an extended radio galaxy, multiple components are grouped and
added to the consolidated catalogue, while for a compact radio
galaxy, one component is added. The final catalogue comprises a
total of 211 625 radio galaxies, including 201 211 compact radio
galaxies and 10 414 extended radio galaxies. Among the extended
radio galaxies, 582 are classified as FR-I, 5 602 as FR-II, 1 494 as
FR-x, and 2 375 as R radio galaxies and 361 as Pec morphologies.
Along with the GalDINO predictions, encompassing RA, DEC,
peak flux density, integrated flux density, galaxy category, confi-
dence score, etc., we also include corresponding Selavy component
identifiers in the catalogue.

Subsequently, a cross-matching process is employed to match
radio galaxies with infrared (CatWISE) and optical catalogues
(DES DR2, DESI Legacy Surveys DR8 and SuperCosmos) to iden-
tify their multi-wavelength counterparts. We observe that 75%
of the radio galaxies have counterparts in the CatWISE cata-
logue within a 3′′ search radius. Further cross-matching of these
CatWISE counterparts with optical catalogues, using a 2′′ search
radius, reveals that 64%, 37%, and 11% of radio galaxies are
matched with DES, DESI, and SCos catalogues, respectively. The
photometric redshifts obtained from the DESI legacy survey indi-
cate a median redshift of 0.46 and 0.53 for compact and extended
radio galaxies with a confidence score above 0.5. The farthest
compact and extended radio galaxies are found at redshifts of
1.79 and 1.26, respectively. Future research should concentrate
on devising improved cross-matching methodologies to identify
infrared and optical counterparts for the potential host positions
detected by the computer vision pipeline. Subsequent research
efforts should leverage the EMU-PS catalogue and the computer
visionmethodologies developed for cataloguing radio galaxies and
their potential infrared hosts in ongoing and future radio surveys.
The existence of this catalogue will enable the advancement of
more sophisticated ML techniques tailored for the detection of
radio galaxies in the next generation of radio surveys, including
the EMU main survey. To augment the variety of training data
across the entirety of the southern sky, future studies should inves-
tigate the potential integration of active learning with a human-
in-the-loop approach for the EMU main survey. This exploration
should aim to enhance the diversity and quality of training data,
contributing to the improvement of applied ML methodologies.
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Appendix

Table A1. First few rows of the consolidated catalogue, excluding the remaining columns described in Table 3 for brevity.

EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_

source_name ra_deg dec_deg flux_peak flux_int img_id filename radio_bbox ra_cen_bbox dec_cen_bbox type score

EMU PS J203428.9-583922 308.620463 -58.656133 0.111 0.406 20636.0 J203428-583922 [114.95496082305908, 112.12438583374023, 18.077. . . 308.625802 -58.660541 FR-II 0.336232

EMU PS J210450.0-544653 316.208180 -54.781628 0.520 1.759 44380.0 J210449-544651 [110.23069763183594, 116.73151588439941, 33.701. . . 316.215076 -54.782720 FR-II 0.875851

EMU PS J202025.6-604829 305.106650 -60.808259 6.873 7.117 61989.0 J202025-604829 [117.83510208129883, 117.61597347259521, 18.211. . . 305.109103 -60.809591 C 1.000000

EMU PS J201051.4-604911 302.714042 -60.819875 1.659 2.803 51669.0 J201051-604912 [117.64610290527344, 117.49090385437012, 18.175. . . 302.717080 -60.821620 R 0.926810

EMU PS J221710.3-591718 334.293056 -59.288429 0.207 0.230 213454.0 J221710-591718 [119.02629280090332, 118.01558828353882, 6.9277. . . 334.294158 -59.289623 C 1.000000

EMU PS J211549.3-530854 318.955541 -53.148382 0.233 0.353 122337.0 J211549-530854 [118.35806655883789, 117.77958583831787, 10.778. . . 318.957050 -53.149657 C 1.000000

EMU PS J203404.9-622459 308.520235 -62.416623 0.188 0.175 22786.0 J203404-622500 [118.08712196350098, 118.56851553916931, 6.6860. . . 308.522591 -62.417530 C 1.000000

EMU PS J220545.6-502550 331.440087 -50.430620 0.246 0.213 204217.0 J220545-502550 [117.54639053344727, 118.05950021743774, 10.523. . . 331.442380 -50.431656 C 1.000000

EMU PS J220957.8-493722 332.490818 -49.622996 0.276 0.584 204538.0 J220957-493722 [115.81414604187012, 117.93211603164673, 16.619. . . 332.494258 -49.624156 C 1.000000

EMU PS J215754.2-561007 329.476005 -56.168620 0.167 0.328 195570.0 J215754-561007 [118.29372668266296, 118.14089679718018, 7.9866. . . 329.477719 -56.169769 C 1.000000

EMU PS J203010.8-513900 307.544833 -51.650116 0.217 0.191 70334.0 J203010-513900 [117.80530834197998, 117.97474813461304, 8.0542. . . 307.546795 -51.651312 C 1.000000

EMU PS J215126.8-541420 327.861737 -54.238876 0.268 0.223 174533.0 J215126-541420 [118.01795673370361, 117.92996311187744, 8.1026. . . 327.863568 -54.240122 C 1.000000

EMU PS J214906.1-583402 327.275246 -58.567375 0.209 0.190 182097.0 J214906-583402 [118.46185970306396, 117.84657740592957, 7.7932. . . 327.276874 -58.568656 C 1.000000

EMU PS J211916.8-544326 319.819851 -54.723969 0.183 0.157 130359.0 J211916-544326 [117.97065353393555, 117.73301839828491, 8.4903. . . 319.821789 -54.725227 C 1.000000

EMU PS J205252.6-621232 313.219070 -62.208944 1.161 1.222 94012.0 J205252-621232 [117.86422109603882, 117.90887069702148, 12.471. . . 313.221675 -62.210137 C 1.000000

EMU PS J210642.5-583558 316.676931 -58.599705 0.165 0.152 12070.0 J210644-583606 [126.19098091125488, 124.15613746643066, 6.5276. . . 316.677563 -58.599466 C 1.000000

EMU PS J221750.1-581022 334.458688 -58.172931 3.741 4.288 216888.0 J221750-581022 [118.70282363891602, 117.93883609771729, 18.323. . . 334.459988 -58.174079 C 1.000000

EMU PS J215806.8-562514 329.528227 -56.420644 0.231 0.199 21105.0 J215806-562514 [117.8923499584198, 117.71990990638733, 7.67678. . . 329.530333 -56.421999 C 1.000000

EMU PS J221455.8-552441 333.732565 -55.411415 0.413 0.430 210451.0 J221455-552441 [118.31830191612244, 118.4164228439331, 7.40387. . . 333.734221 -55.412391 C 1.000000

EMU PS J212155.8-575239 320.482449 -57.877519 0.288 0.281 141724.0 J212155-575239 [117.8070297241211, 117.78631591796875, 9.70790. . . 320.484654 -57.878780 C 1.000000

EMU PS J203015.8-591222 307.565981 -59.206349 0.234 0.258 71133.0 J203015-591223 [118.66507339477539, 117.88196110725403, 10.023. . . 307.567424 -59.207586 C 1.000000

EMU PS J211618.0-512748 319.075069 -51.463386 0.330 0.364 131778.0 J211618-512747 [115.11660957336426, 118.06864356994629, 18.079. . . 319.079284 -51.464402 C 1.000000

EMU PS J211259.1-600829 318.246210 -60.141563 0.243 0.217 123736.0 J211259-600829 [118.15774059295654, 117.77396488189697, 8.5382. . . 318.248207 -60.142844 C 1.000000

EMU PS J202826.1-604529 307.108867 -60.758282 0.205 0.289 62377.0 J202826-604530 [116.72769498825073, 118.83250427246094, 12.089. . . 307.112608 -60.759018 C 1.000000

EMU PS J221430.0-514836 333.625206 -51.810203 0.218 0.204 212263.0 J221430-514837 [117.8178162574768, 118.24855709075928, 9.61719. . . 333.627162 -51.811290 C 1.000000

EMU PS J210804.4-505451 317.018247 -50.914193 13.437 14.509 117896.0 J210804-505451 [117.99701309204102, 118.04446601867676, 20.253. . . 317.020049 -50.915451 C 1.000000

EMU PS J211409.8-515337 318.540776 -51.893874 0.179 0.164 132740.0 J211409-515338 [117.68650841712952, 118.54129004478455, 7.7397. . . 318.542935 -51.894744 C 1.000000

EMU PS J200756.5-530904 301.985462 -53.151168 8.076 8.143 9767.0 J200756-530904 [118.41742849349976, 117.75225353240967, 14.678. . . 301.986993 -53.152482 C 1.000000
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Table A1. Continued.

EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_ EMU_PS_

source_name ra_deg dec_deg flux_peak flux_int img_id filename radio_bbox ra_cen_bbox dec_cen_bbox type score

EMU PS J212726.1-504105 321.858769 -50.684715 0.187 0.189 152584.0 J212726-504104 [118.18173289299011, 117.69401121139526, 7.6252. . . 321.860455 -50.685835 C 1.000000

EMU PS J212137.0-573451 320.404374 -57.580932 0.153 0.155 142384.0 J212137-573451 [118.03919696807861, 117.52001810073853, 6.4959. . . 320.406315 -57.582319 C 1.000000

EMU PS J204815.5-513212 312.064480 -51.536927 2.612 2.710 92882.0 J204815-513212 [118.11067390441895, 117.90410423278809, 16.658. . . 312.066284 -51.538101 C 1.000000

EMU PS J210744.8-592847 316.936852 -59.479934 0.248 0.325 116473.0 J210744-592847 [118.10080814361572, 117.07810974121094, 9.4212. . . 316.938872 -59.481599 C 1.000000

EMU PS J201956.0-514134 304.983519 -51.692972 0.162 0.228 5371.0 J201956-514135 [117.88599300384521, 118.1196858882904, 7.00655. . . 304.985467 -51.694169 C 1.000000

EMU PS J221338.0-485036 333.408215 -48.843387 0.327 0.294 208109.0 J221338-485036 [118.82139110565186, 117.69000482559204, 10.722. . . 333.409257 -48.844799 C 1.000000

EMU PS J203815.3-562656 309.563721 -56.449092 0.133 0.107 21307.0 J203815-562657 [117.93629121780396, 118.3635094165802, 6.70931. . . 309.565979 -56.450335 C 1.000000

EMU PS J204010.6-550441 310.044114 -55.078117 0.171 0.132 2265.0 J204010-550441 [118.27358317375183, 118.30192565917969, 6.6099. . . 310.045782 -55.079108 C 1.000000

EMU PS J215753.6-572734 329.473450 -57.459568 0.188 0.157 188677.0 J215753-572734 [117.75442290306091, 118.10854291915894, 6.8046. . . 329.475758 -57.460705 C 1.000000

EMU PS J214544.6-532821 326.435674 -53.472672 0.277 0.234 167981.0 J214544-532821 [117.7500581741333, 118.28327894210815, 9.50040. . . 326.437763 -53.473692 C 1.000000

EMU PS J213251.6-614021 323.214937 -61.672620 0.371 0.414 147109.0 J213251-614021 [117.76328086853027, 117.79255771636963, 11.658. . . 323.217479 -61.673850 C 1.000000

EMU PS J211247.9-512452 318.199647 -51.414506 1.210 1.201 41271.0 J211247-512452 [118.4541368484497, 117.79197216033936, 13.1691. . . 318.201103 -51.415671 C 1.000000

EMU PS J220711.3-531742 331.797066 -53.295085 0.537 0.571 43772.0 J220711-531742 [118.22983360290527, 117.41423892974854, 12.602. . . 331.798815 -53.296713 C 1.000000

EMU PS J211025.2-583054 317.604824 -58.515047 0.479 0.564 116187.0 J211025-583054 [118.09213209152222, 117.34321403503418, 11.870. . . 317.607034 -58.516747 C 1.000000

EMU PS J205246.0-492527 313.191794 -49.424331 0.190 0.190 3244.0 J205246-492527 [118.0800838470459, 117.6152024269104, 9.001293. . . 313.193433 -49.425608 C 1.000000

EMU PS J215141.8-630058 327.924269 -63.016353 1.248 1.251 35709.0 J215141-630100 [118.23075866699219, 117.89554595947266, 11.326. . . 327.926391 -63.017563 C 1.000000

EMU PS J202618.9-495342 306.578549 -49.895248 0.303 0.307 65982.0 J202618-495343 [118.34949398040771, 117.99264478683472, 9.5052. . . 306.579963 -49.896406 C 1.000000

EMU PS J220537.1-562103 331.404684 -56.350946 0.169 0.198 196222.0 J220537-562103 [118.79777383804321, 118.27504134178162, 6.5261. . . 331.405883 -56.352003 C 1.000000

EMU PS J201136.4-511906 302.901827 -51.318543 0.250 0.249 42964.0 J201136-511906 [118.1784029006958, 117.36068391799927, 9.32610. . . 302.903384 -51.320053 C 1.000000

EMU PS J212505.1-512441 321.271076 -51.411403 0.247 0.226 145450.0 J212505-512441 [117.92004442214966, 117.99269580841064, 8.7904. . . 321.272916 -51.412606 C 1.000000

EMU PS J201310.7-595507 303.294705 -59.918609 0.574 0.630 52248.0 J201310-595507 [118.01626682281494, 117.97951889038086, 9.3812. . . 303.296935 -59.919799 C 1.000000

EMU PS J204920.5-505059 312.335252 -50.849959 0.252 0.254 39567.0 J204920-505100 [118.33566617965698, 117.80205202102661, 8.3895. . . 312.336741 -50.851282 C 1.000000

EMU PS J220721.9-520613 331.841331 -52.103756 0.160 0.133 199684.0 J220721-520613 [117.89800643920898, 118.20407342910767, 7.6273. . . 331.843171 -52.104831 C 1.000000

EMU PS J215029.7-544432 327.623697 -54.742377 0.256 0.260 175175.0 J215029-544433 [117.90699768066406, 118.04502010345459, 8.7571. . . 327.625727 -54.743608 C 1.000000

EMU PS J202631.0-511808 306.629325 -51.302330 0.639 0.764 70396.0 J202631-511808 [117.53812599182129, 117.94629383087158, 13.716. . . 306.631512 -51.303570 C 1.000000

EMU PS J214245.0-612951 325.687476 -61.497549 0.305 0.268 165197.0 J214245-612951 [117.88447761535645, 118.0237307548523, 9.01193. . . 325.689855 -61.498711 C 1.000000

EMU PS J210052.2-531754 315.217477 -53.298329 9.277 10.543 109040.0 J210052-531753 [120.71579837799072, 119.96245193481445, 29.086. . . 315.216803 -53.298217 C 1.000000

EMU PS J205751.9-585021 314.466389 -58.839298 0.305 0.296 25499.0 J205751-585022 [118.21373271942139, 118.11100578308105, 8.5130. . . 314.468352 -58.840508 C 0.997752

EMU PS J212126.7-603944 320.361152 -60.662476 0.584 0.565 140359.0 J212126-603945 [118.39134216308594, 117.9210376739502, 11.2748. . . 320.363006 -60.663717 C 1.000000

EMU PS J202534.8-495354 306.395133 -49.898501 0.187 0.169 65537.0 J202534-495354 [118.53793358802795, 118.03246450424194, 6.5903. . . 306.396378 -49.899671 C 1.000000

EMU PS J210955.7-503036 317.481980 -50.510250 0.425 0.372 125640.0 J210955-503036 [117.95140361785889, 118.1082592010498, 10.1012. . . 317.483723 -50.511327 C 1.000000

EMU PS J215707.8-513635 329.282643 -51.609875 0.212 0.199 185881.0 J215707-513636 [118.18254566192627, 118.08116340637207, 8.1607. . . 329.284381 -51.611101 C 1.000000
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