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Abstract
With the advent of deep, all-sky radio surveys, the need for ancillary data to make the most of the new, high-quality radio data from
surveys like the Evolutionary Map of the Universe (EMU), GaLactic and Extragalactic All-sky MurchisonWidefield Array survey eXtended,
Very Large Array Sky Survey, and LOFAR Two-metre Sky Survey is growing rapidly. Radio surveys produce significant numbers of Active
Galactic Nuclei (AGNs) and have a significantly higher average redshift when compared with optical and infrared all-sky surveys. Thus,
traditional methods of estimating redshift are challenged, with spectroscopic surveys not reaching the redshift depth of radio surveys, and
AGNs making it difficult for template fitting methods to accurately model the source. Machine Learning (ML) methods have been used,
but efforts have typically been directed towards optically selected samples, or samples at significantly lower redshift than expected from
upcoming radio surveys. This work compiles and homogenises a radio-selected dataset from both the northern hemisphere (making use
of Sloan Digital Sky Survey optical photometry) and southern hemisphere (making use of Dark Energy Survey optical photometry). We
then test commonly used ML algorithms such as k-Nearest Neighbours (kNN), Random Forest, ANNz, and GPz on this monolithic radio-
selected sample. We show that kNN has the lowest percentage of catastrophic outliers, providing the best match for the majority of science
cases in the EMU survey. We note that the wider redshift range of the combined dataset used allows for estimation of sources up to z = 3
before random scatter begins to dominate. When binning the data into redshift bins and treating the problem as a classification problem, we
are able to correctly identify ≈76% of the highest redshift sources—sources at redshift z > 2.51—as being in either the highest bin (z > 2.51)
or second highest (z = 2.25).
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1. Introduction

Radio astronomy is at a cross-roads. With large survey telescopes
like the Australian Square Kilometre Array Pathfinder (ASKAP,
Hotan et al. 2021), Murchison Widefield Array (MWA, Tingay
et al. 2013), LOw Frequency ARray (LOFAR, van Haarlem et al.
2013), and upgrades to the Very Large Array (VLA, Thompson
et al. 1980) producing catalogues of up to tens of millions of new
radio sources, traditional methods of producing science are strug-
gling to keep up. New methods need to be developed to pick up
the shortfall.

One of the most essential pieces of knowledge about an astro-
nomical object is its redshift. From this measurement, the object’s
age and distance can be gleaned, and its redshift used in combina-
tion with photometric measurements to estimate amyriad of other
features.

Traditionally, redshift has been measured spectroscopically.
However, even with modern Multi-Object Spectroscopy (MOS)
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instrumentation, the tens of millions of radio galaxies expected
to be discovered in the coming years will by far outstrip the
world’s spectroscopic capacity. For example, the 17th data release
of the Sloan Digital Sky Survey (SDSS, Abdurro’uf et al. 2022)a is
currently the largest source of spectroscopic redshifts, with ≈4.8
million redshifts measured—significantly less than the tens of mil-
lions of sources the Evolutionary Map of the Universe (EMU,
Norris et al. 2011), GaLactic and Extragalactic All-sky Murchison
Widefield Array survey eXtended (GLEAM-X, Hurley-Walker
et al. 2022), LOFAR Two-metre Sky Survey (LOTSS, Shimwell
et al. 2017), and Very Large Array Sky Survey (VLASS, Murphy
& Vlass Survey Science Group 2015) is expected to deliver,
even if all redshifts measured were focused exclusively on radio
galaxies. Future spectroscopic surveys like the Wide Area Vista
Extragalactic Survey (WAVES, Driver et al. 2016) are expected
to increase the number of spectroscopically known redshifts by
another ∼2.5 million sources, but this will still not be enough.

Alternatively, photometric template fitting (Baum 1957; Loh
& Spillar 1986) has been highly effective at estimating the redshift
of sources for many years and is able to achieve accuracies

ahttps://www.sdss.org/dr17/scope/.
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approaching those of spectroscopically measured redshifts (Ilbert
et al. 2009). However, the breadth and depth of measured
photometric bands required for this level of accuracy are unavail-
able for the majority of sources detected by radio surveys like
the EMU, GLEAM-X, LOTSS, and VLASS surveys. Additionally,
radio galaxies in particular suffer in the photometric template
fitting regimes, partly due to a lack of specialised templates, and
partly due to the difficulty of separating out the star formation
emission from the black hole emission (Salvato, Ilbert, & Hoyle
2018; Norris et al. 2019).

Finally, like most problems, Machine Learning (ML) tech-
niques have been applied to the problem of estimating redshift.
From the simple algorithms like the k-Nearest Neighbours (kNN,
Cover & Hart 1967) in Ball et al. (2007, 2008), Oyaizu et al. (2008),
Zhang et al. (2013), Kügler, Polsterer, & Hoecker (2015), Cavuoti
et al. (2017), Luken, Norris, & Park (2019), and Luken, Padhy, &
Wang (2021) and Random Forest (RF, Ho 1995; Breiman 2001)
in Cavuoti et al. (2012, 2015), Hoyle (2016), Sadeh, Abdalla, &
Lahav (2016), Cavuoti et al. (2017), Carvajal et al. (2021) and
Pasquet-Itam & Pasquet (2018), to more complex algorithms like
Neural Networks (NNs) in Firth, Lahav, & Somerville (2003),
Tagliaferri et al. (2003), Collister & Lahav (2004), Brodwin et al.
(2006), Oyaizu et al. (2008), Hoyle (2016), Sadeh et al. (2016),
Curran (2020), Curran, Moss, & Perrott (2021), Curran (2022),
and Curran,Moss, & Perrott (2022), andGaussian Processes (GPs)
in Duncan et al. (2018a,b), and (2021), using the GPz software.
Some studies—for example Pasquet-Itam & Pasquet (2018) and
D’Isanto & Polsterer (2018)—make use of the images themselves,
rather than photometry measured from the images. Typically
though, ML algorithms are not tested in a manner suitable for
large-scale radio surveys—ML algorithms are generally evalu-
ated using data from fields like the COSMic evOlution Survey
(COSMOS), where there are many (up to 31) different photomet-
ric bands measured for each source—far beyond what is available
to all-sky surveys, or on data from the SDSS, where either the
Galaxy sample is used, containing millions of galaxies with opti-
cal photometry and a spectroscopically measured redshift (but
restricted to z� 0.8), or the Quasi-Stellar Object (QSO) sample
is used, containing quasars out to a significantly higher redshift, at
the cost of lower source count.

As noted by Salvato et al. (2018), ML-basedmethods frequently
perform better then traditional template fitting methods when
the density of observed filters is lacking, or when the sample
being estimated contain rarer sub-types like radio or x-ray Active
Galactic Nucleus (AGN). The drawback, however, is that ML
methods still require a representative sample of these galaxies to be
able to model the features well enough to acceptably predict their
redshift. One of the biggest issues with any ML algorithm is find-
ing a representative sample to train the model with. For redshift
estimation, this generally requires having spectroscopic surveys
containing sources to a similar depth as the sources being pre-
dicted (or reliably photometrically estimated redshift—see Speagle
et al. 2019 for an in-depth investigation).

An example of the expected redshift distribution of the EMU
survey, compared with the SDSS Galaxy and QSO samples, is
presented in Fig. 1, demonstrating the differences in redshift
distributions—one reason why radio samples are typically more
difficult to estimate than optically selected samples. Training
samples are often not entirely representative of the data being
predicted.

Further, Duncan (2022) compares their results with Duncan
et al. (2019), showing that for most populations of galaxies, taking

Figure 1. Histogram showing the density of sources at different redshifts in the SDSS
Galaxy Sample (blue), SDSS QSO Sample (green), and the Square Kilometre Array
Design Survey (SKADS, Levrier et al. 2009) simulation trimmed to expected EMU depth
(Norris et al. 2011).

the additional step of training a Gaussian Mixture Model (GMM)
to split optically selected datasets intomore representative samples
improves estimates across all measured error metrics. However,
Duncan (2022) notes that redshift estimates for optically lumi-
nous QSO have lower error estimates when training exclusively
on representative data as in Duncan et al. (2019), compared with
using the GMM prior to estimation. Two reasons are postulated
for this—one being the addition of the i and y bands used by
Duncan et al. (2019), with the additional reason being the specific
training on the representative sample, rather than a generalised
approach.

Finally, when ML models have been trained on radio selected
samples, they have typically been focused on achieving the best
possible accuracy, with model parameters optimised based on
the average accuracy. While this approach is entirely appropri-
ate for other use cases, the preferred parameter to optimise in
this work is the Outlier Rate—the percentage of sources where
the estimated redshift is determined to have catastrophically failed
(further details in Section 3.1).

This subtle change optimises the results for key science goals of
surveys such as EMU in which the number of catastrophic outliers
is more important than the accuracy of each redshift estimate. For
example, constraining non-Gaussianity (Raccanelli et al. 2017), or
measuring the evolution of the cosmic star formation rate over
cosmic time (Hopkins & Beacom 2006), do not require accurate
estimates of redshift, but suffer greatly if redshifts are significantly
incorrect.

In light of these struggles using optically selected samples to
estimate the redshift of radio-selected samples, we create a new
radio-selected training sample, taken from the northern hemi-
sphere (selected from the Faint Images of the Radio Sky at
Twenty-Centimeters (FIRST) Becker, White, & Helfand 1995 and
NRAO VLA Sky Survey (NVSS), Condon et al. 1998 using SDSS
spectroscopy and photometry, and combining it with southern
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hemisphere data (selected from the Australia Telescope Large
Area Survey (ATLAS, Norris et al. 2006; Franzen et al. 2015)
and Stripe82 (Hodge et al. 2011; Prescott et al. 2018), where the
ATLAS data contains Dark Energy Survey (DES, Collaboration
et al. 2016) photometry, and the Stripe82 field contains both
SDSS and DES photometry. All fields contain AllWISE infrared
photometry.

With this large radio-selected dataset, we compare four com-
monly used ML algorithms and softwares—kNN, RF, GPz, and
ANNz. Where possible, we compare these methods using both a
regression and classification mode, as discussed in Luken et al.
(2021, 2022). In order to better cater to the EMU science goals,b
instead of comparing the overall accuracies of each method, we
compare the outlier rates—the percentage of sources that have
catastrophically failed.

In this work, we pose the research question: Given the upcom-
ing radio surveys (specifically the EMU survey), which ML algo-
rithm provides the best performance for the estimation of radio
galaxy’s redshift, where best performance is measured by the
outlier rate.

1.1. Overall contributions of this study

Overall, our contributions for this study include

• An in-depth investigation of the DES and SDSS optical pho-
tometry, and its compatibility, specifically examining the mod-
ifications needed to use both surveys for the estimation of
redshift using Machine Learning.

• The construction of a representative and homogenous (where
possible) training set, available to be used for the estimation of
redshift for radio-selected samples.

• The comparison of multiple widely used ML algorithms, pro-
viding a like-for-like comparison on the same dataset.

• The comparison of classification- and regression-based meth-
ods where possible.

1.2. Knowledge gap

• Current Template Fitting methods require better photomet-
ric coverage than is typical for all-sky radio surveys and are
based on a set of templates that are not well-matched to those
of galaxies that host radio sources.

• Current ML techniques are typically trained and tested on
wide, shallow surveys, limited to z < 0.7, or specific, optically
selected samples.Where they are not trained on restricted sam-
ples, they are typically optimised for best accuracy, rather than
minimising the number of catastrophic failures.

• We are looking at a combination of datasets in order to better
match the expected density of sources, as well as comparing
against current methods used in literature in order to best
prepare for the next generation of radio surveys.

2. Data

In this section, we outline the photometry used and sources of
data (Section 2.1), the steps taken to homogenise the northern sky

bhttp://askap.pbworks.com/w/page/88123540/KeyProjects.

Figure 2. Cross-match completed between the NVSS Radio sample and the AllWISE
Infrared sample. The blue line represents the straight nearest-neighbour cross-match
between the twodatasets, and the orange line represents the nearest-neighbour cross-
match where 1′ has been added to the declination of every radio source. The vertical
black line denotes the chosen cutoff.

SDSS and southern sky DES optical photometry (Section 2.2), and
the process of binning the data in redshift space in order to test
classification modes of the different algorithms (Section 2.3).

2.1. Data description

As noted in Section 1, most ML-based techniques are typically
focused on optically selected datasets, primarily based around the
SDSS datasets, providing high source counts of stars, galaxies, and
QSO with photometry (generally) in u, g, r, i, and z bands, with
a spectroscopically measured redshift—generally using the SDSS
Galaxy or QSO datasets, shown in Fig. 1. In this work, the data
are selected specifically to better represent the data expected from
the upcoming EMU Survey (Norris et al. 2011) and Evolutionary
Map of the Universe–Pilot Survey 1 (EMU-PS, Norris et al. 2021).
Towards this end, we only accept SDSS objects with a counterpart
in the NRAOVLA Sky Survey (NVSS) or Faint Images of the Radio
Sky at Twenty-Centimeters (FIRST) radio surveys.

This work compiles three datasets, each containing multiple
features for comparison:

1. Northern Sky—Radio Galaxy Zoo (RGZ) and NVSS

(a) Our Northern Sky dataset contains two radio samples—
the NVSS sample and the RGZ FIRST-based sample
(where the RGZ sample has been cross-matched with the
AllWISE sample, explained in Banfield et al. 2015 and
Wong et al. in preparation).

(b) The NVSS sample was cross-matched with AllWISE
at 4′′, providing 564799 radio sources—approximately
32% of the NVSS sample—with an infrared counterpart.
The NVSS/AllWISE cross-match has an estimated 7%—
123484 sources—misclassification rate, where the misclas-
sification rate is quantified by shifting the declination of
all sources in the NVSS catalogue by 1′ and re-cross-
matching based on the new declination, following the
process described in Norris et al. (2021). Fig. 2 shows
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Table 1. The source count in each sample
compiled in Section 2.

Dataset Source count

Northern Sky 55452

Southern Sky 1156

Equatorial (Stripe82) 3030

Total 59638

Figure 3. Similar to Fig. 2, cross-matching the Northern Sky sample based on the NVSS
and RGZ radio catalogues and AllWISE Infrared, with SDSS optical photometry and
spectroscopic redshift. Note the different scale of the right-side y-axis.

the classification/misclassification rates as a function of
angular separation and is used to determine the optimum
cross-match radius.

(c) The NVSS and RGZ samples were then combined, remov-
ing duplicates based on the AllWISE unique identifier,
providing 613551 radio sources with AllWISE detections.

(d) The northern sky radio/infrared catalogue was then cross-
matched against the SDSS catalogue (providing both
optical photometry and spectroscopic redshifts) based
on the infrared source locations—a radio-infrared cross-
match tends to be more reliable, when compared with
the radio-optical cross-match (Swan 2018)—at 4′′, provid-
ing a classification/misclassification rate of 9.33%/0.06%
(55716/348 sources) (Fig. 3).

(e) Finally, all sources from the Stripe82 Equatorial region
were removed (sources with an RA between 9◦ and 36◦ or
330◦ and 350◦ and DEC between −1.5◦ and 1.5◦).

(f) The final Northern Sky Sample contains 55452 radio-
selected sources with a spectroscopically measured red-
shift, SDSS g, r, i, and z magnitudes measured using
Model/PSF/Fibre systems, and AllWISEW1,W2,W3, and
W4 infrared magnitudes, shown in Table 1.

2. Southern Sky—ATLAS

(a) Beginning with the ATLAS dataset—described in Luken
et al. (2022)—we cross-match the SpitzerWide-Area
Infrared Extragalactic Survey (SWIRE) infrared positions
with AllWISE in order to gain the same infrared bands as
the Northern Sky dataset. Cross-matching at 1′′ produces

Figure 4. Similar to Fig. 2, cross-matching the southern sky ATLAS sample with the
AllWISE catalogue, matching the SWIRE positions with the AllWISE positions.

Figure 5. Similar to Fig. 2, cross-matching the DES optical photometry with the SDSS
optical photometry and spectroscopic redshift catalogues.

a 100%/0.34% classification/misclassification rate (1156/4
sources) (Fig. 4), and a final source count of 1156 sources,
all with g, r, i, and z optical magnitudes in Auto, 2′′, 3′′, 4′′,
5′′, 6′′, and 7′′ apertures, as well as the W1, W2, W3, and
W4 infrared magnitudes.

3. Equatorial—Stripe82

(a) Along the equatorial plane, the Stripe82 field has been
extensively studied by both northern- and southern-
hemisphere telescopes, providing a field that contains
both SDSS, and DES photometry. Cross-matching the
DES catalogue with the SDSS catalogue (where both cat-
alogues were restricted to the Stripe82 field) at 1′′ pro-
duces a 98.4%/3.36% (170622/5831 sources) classifica-
tion/misclassification rate (Fig. 5).

(b) The optical catalogues were then cross-matched
against the AllWISE catalogues at 1.25′′ producing
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Figure 6. Similar to Fig. 2, cross-matching the DES positions with the AllWISE Infrared
catalogue. Note the different scale of the right-side y-axis.

Figure 7. Similar to Fig. 2, cross-matching the AllWISE positions with the Hodge et al.
(2011) Radio catalogue. Note the different scale of the right-side y-axis.

a 84.09%/ 0.60% (129837/932 sources) classification/
misclassification rate (Fig. 6).

(c) Finally, cross-matching the AllWISE Infrared catalogue
against the Hodge et al. (2011) (at 4′′; see Fig. 7) and
Prescott et al. (2018) (at 4′′; see Fig. 8) gives us a 21.96%/
0.42% (3946/75 sources) and 45.46%/0.54% (2180/26
sources) classification/misclassification rates, respectively.

(d) After combination of the Stripe82 Radio datasets with
duplicates removed (based onAllWISE ID), we have a final
dataset of 3030 radio-selected sources with a spectroscopic
redshift, W1, W2, W3, and W4 infrared magnitude, g, r, i,
and z optical magnitudes in PSF, Fibre, andModel systems
(for SDSS photometry), and Auto, 2′′, 3′′, 4′′, 5′′, 6′′, and 7′′
apertures (for DES photometry).

To summarise, all datasets are radio-selected, and contain:

• a spectroscopically measured redshift, taken from either the
Australian Dark Energy Survey (OzDES), or SDSS;

Figure 8. Similar to Fig. 2, cross-matching the AllWISE positionswith the Prescott et al.
(2018) Radio catalogue. Note the different scale of the right-side y-axis.

Figure 9. Histogram showing the density of sources at different redshifts in the com-
bined RGZ—North, Stripe82—Equatorial, and ATLAS—South—(blue), and the Square
Kilometre Array Design Survey (SKADS, Levrier et al. 2009) simulation trimmed to
expected EMU depth (Norris et al. 2011).

• g, r, i, and z optical magnitudes, taken from either the DES or
SDSS;

• W1, W2, W3, and W4 (3.4, 4.6, 12, 24 ,µm, respectively)
infrared magnitudes, taken from AllWISE;

with a final redshift distribution shown in Fig. 9. While we are still
not matching the expected distribution from the EMU survey, we
are ensuring all sources have a radio counterpart (and hence, will
be dominated by the difficult-to-estimate AGNs), with the final
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Figure 10. A comparison of the g, r, i, and z filter responses, used by the DES (top), and
the SDSS (bottom).

distribution containing more, higher redshift radio sources than
previous works like Luken et al. (2022).

The primary difference between the datasets is the source of
the optical photometry. Even though both the DECam on the
Blanco Telescope at the Cerro Tololo Inter-American Observatory
in Chile and the Sloan Foundation 2.5 m Telescope at the Apache
Point Observatory in New Mexico both use g, r, i, and z filters,
the filter responses are slightly different (demonstrated in Fig. 10,
the DES Collaboration notes that there may be up to 10% differ-
ence between the SDSS and DES equivalent filtersc), with different
processing methods producing multiple, significantly different
measurements for the same sources. For ML models, a difference
of up to 10% is significant and had significant effects on redshift
estimations in early tests without correction (sample results with
one ML algorithm shown in Appendix A).

For the SDSS, the three measures of magnitude used in this
work (Point Spread Function (PSF), Fibre and Model) are all
extensively defined by the SDSS.d Simply put, the PSF magnitude
measures the flux within the PSF of the telescope for that pointing,
the fibre is a static sized aperture based on a single fibre within the
SDSS spectrograph (generally 3′′), and the model magnitude tries
to fit the source using a variety of models.

The DES pipelines produce statically defined apertures from 2′′
to 12′′, as well as an auto magnitude that is fit by a model.

For our purposes in finding DES photometry compatible with
SDSS photometry, we only examined the DES auto, and 2–7′′
measurements, as the larger aperture DES measurements begin
to greatly differ from any measured SDSS measurement. We find
that the DES auto magnitude is most similar to the SDSS model
magnitude, and hence, exclusively use this pairing.

chttps://data.darkenergysurvey.org/aux/releasenotes/DESDMrelease.html.
dhttps://www.sdss.org/dr12/algorithms/magnitudes.

Figure 11. Plot showing the effects of homogenisation on the optical photometry.
Each panel shows the original difference between the DES and SDSS photometry for
a given band (with the band noted in the title of the subplot), as a function of g− z
colour. The orange scatterplots are the original data, with the orange line showing
a third-order polynomial fit for to the pre-corrected data. The blue scatterplots are
the corrected data, with the blue line showing the post-correction fit, highlighting the
improvement the corrections bring.

2.2. Optical photometry homogenisation

The combined dataset discussed above (Section 2.1) contains opti-
cal photometry measured using the SDSS (in the Northern, and
Equatorial fields) and the DES (Southern and Equatorial fields).
As shown in Fig. 10, while the SDSS and DES g, r, i, and z fil-
ters are similar, they are not identical, and hence should not be
directly compared without modification before use by typical ML
algorithms. As the Stripe82 Equatorial field contains observations
with both optical surveys, we can fit a third-order polynomial from
the g − z colour, to the difference in the SDSS and DES measured
magnitude for each band for each object, and use the fitted model
to homogenise the DES photometry to the SDSS photometry for
the Southern hemisphere data. Fig. 11 shows four panels—one
for each of the g, r, i, and z magnitudes—with the orange points
showing the original difference between optical samples against
the g − z colour, blue points showing the corrected difference,
orange line showing the third-order polynomial fitted to the origi-
nal data, and the blue line showing a third-order polynomial fitted
to the corrected data. While this homogenisation does not adjust
for the scatter in the differences, it does shift the average differ-
ence, dropping from 0.158, 0.149, 0.061, and 0.006 to 0.004, 0.001,
0.001, and 0.007 for the g, r, i, and zmag, respectively. We explore
the difference the corrections make to predicting the redshift of
sources with SDSS and DES, using the kNN algorithm trained on
the opposite optical survey, using corrected, and uncorrected DES
photometry in Appendix A.

2.3. Regression and classification

The distribution of spectroscopically measured redshifts is highly
non-uniform, providing additional difficulties to what is typically
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a regression problem (a real value—redshift—being estimated
based on the attributes—features—of the astronomical object). As
demonstrated in Fig. 1, it also does not follow the expected distri-
bution of the EMU survey, partly because the optical source counts
of the local universe vastly outnumber those of the high-redshift
universe, and partly because high-redshift galaxies are too faint for
most optical spectroscopy surveys. The non-uniform distribution
means high-redshift sources will be under-represented in training
samples and therefore are less likely to be modelled correctly by
ML models.

In an attempt to provide a uniform redshift distribution for the
ML methods to provide better high-z estimations, we quantise the
data into 30 redshift bins with equal numbers of sources in each
(where the bin edges, and the expected value of the bin—typically
the median redshift of the bin—are shown in Table 2). While bin-
ning the data means that it is no longer suitable for regression, it
allows us to use the classification modes of the ML methods and
test whether treating the redshift estimation problem as a classi-
fication problem rather than attempt to estimate the redshift of
sources as a continuous value aids in the estimation of sources in
the high-redshift regime.

3. Machine learning methods

In this section, we outline the error metrics we use to compare the
results across different ML algorithms (Section 3.1) and the efforts
to explain any random variance across our tests (Section 3.2),
before discussing the different algorithms used—the kNN algo-
rithm (using theMahalanobis distance metric; Section 3.3), the RF
algorithm (Section 3.4), the ANNz2 algorithm (Section 3.5), and
the GPz algorithm (Section 3.6). Finally, we discuss the training
methods used in this work (Section 3.7). In this work, we provide
an initial explanation of each algorithm. However, we direct the
reader to their original papers for a full discussion.

3.1. Error metrics

As stated in Section 1, this work differs from the typical train-
ing methods that attempt to minimise the average accuracy of the
model (defined in Equation (4), or Equation (5)). Instead, it is pri-
marily focused on minimising the number of estimates that are
incorrect by a catastrophic level—a metric defined as the Outlier
Rate:

η0.15 = 1
N

∑
z∈Z

[[|�z| > 0.15(1+ zspec)]], (1)

where η0.15 is the catastrophic outlier rate, Z is the set of sources,
|Z| =N, [[x]] is the indicator function (1 if x is true, otherwise it
is 0), zspec is the measured spectroscopic redshift, and �z is the
residual:

�z = zspec − zphoto, (2)

Alternative, we provide the 2-σ outlier rate as a more statisti-
cally sound comparison:

η0.15 = 1
N

∑
z∈Z

[[|�z| > 2σ ]], (3)

Table 2. Example redshift bin boundaries used in the
classification tests, calculated with the first random seed
used.We show the bin index, the upper and lower bounds,
and the predicted value for the bin.

Bin Lower Predicted Upper

number bound value bound

1 0.0002 0.0120 0.0394

2 0.0394 0.0556 0.0719

3 0.0719 0.0903 0.1087

4 0.1088 0.1253 0.1420

5 0.1420 0.1588 0.1755

6 0.1755 0.1910 0.2064

7 0.2064 0.2212 0.2359

8 0.2360 0.2520 0.2680

9 0.2681 0.2830 0.2979

10 0.2979 0.3121 0.3262

11 0.3262 0.3389 0.3514

12 0.3515 0.3645 0.3775

13 0.3775 0.3911 0.4047

14 0.4047 0.4178 0.4308

15 0.4309 0.4440 0.4570

16 0.4571 0.4707 0.4844

17 0.4844 0.4966 0.5088

18 0.5089 0.5223 0.5356

19 0.5356 0.5489 0.5621

20 0.5621 0.5765 0.5909

21 0.5909 0.6075 0.6241

22 0.6241 0.6437 0.6633

23 0.6633 0.6924 0.7215

24 0.7215 0.7739 0.8263

25 0.8263 0.9339 1.0416

26 1.0416 1.1861 1.3305

27 1.3305 1.4804 1.6304

28 1.6304 1.8210 2.0114

29 2.0116 2.2543 2.4970

30 2.4970 2.9163 2.9182

where η2σ is the 2-σ outlier rate, and σ is the residual standard
deviation:

σ =
√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (4)

where σ is the residual standard deviation, yi is an individual
spectroscopic redshift, and ŷi is the corresponding estimate for
source i. The residual standard deviation gives an indication of the
average accuracy of the estimates.

The Normalised Median Absolute Deviation (NMAD) gives a
similar metric to the Residual Standard Deviation, but is more
robust to outliers as it relies on the median, rather than the mean
of the residuals:

σNMAD = 1.4826× (median(|Xi −median(X)|), (5)
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σNMAD is the NMAD, X is a set of residuals (where the individual
values are calculated in Equation (2) as �z), from which xi is an
individual observation.

TheMean Square Error (MSE) is only used in regression-based
tests, provides the average squared error of the estimates

MSE= 1
N

N∑
i=1

(yi − ŷi)2, (6)

where MSE is the Mean Square Error, yi is an individual spectro-
scopic redshift, and ŷi is the corresponding estimated redshift for
source i.

The accuracy is only used in classification-based tests and pro-
vides the percentage of sources predicted in the correct ‘class’,
where the class is a particular redshift bin. This metric is provided
for completeness only, as the accuracy is only accepting of per-
fect classifications, whereas the aim of this work is provide redshift
estimates that are approximately correct—i.e. we are inherently
accepting of classifications in nearby redshift bins, which would
be considered incorrect classifications by the accuracy metric.

Accuracy(y, ŷ)= 1
N

N−1∑
i=0

[[ŷi = yi]], (7)

where y is a vector of spectroscopic redshifts, and ŷ is the corre-
sponding vector of estimated redshifts.

3.2. Statistical significance

In order to measure the potential random variation within our
results, all tests were conducted 100 times, with different ran-
dom seeds—creating 100 different training/test sets to train and
test each algorithm on. All values presented are the average of the
results gained, with the associated standard error:

σx̄ = σx√
n
, (8)

where σx̄ is the standard error of x̄ which is calculated from the the
standard deviation of the 100 repetitions of the experiment using
different random seeds (denoted as σx), x̄ is the mean classifica-
tion/regression error, and n is the number of repetitions—100 in
this case.

We note that the classification bin distribution is calculated
for each random initialisation—this means that while each of the
100 random training sets will have roughly the same redshift dis-
tribution, there will be slight differences in the bin distributions
calculated for classification.

3.3. k-Nearest Neighbours

The kNN algorithm is one of the oldest (Cover & Hart 1967), as
well as one of the simplest machine learning algorithms. Using
some kind of distance metric—typically Euclidean distance—a
similarity matrix is computed between every source in the train-
ing set, comparing the observed photometry between sources. The
photometry of sources in the test set—sources with ‘unknown’
redshift—can then be compared to the photometry in the train-
ing set and find the ‘k’ (hereafter kn) sources with most similar
photometry. The mean or mode (depending on whether regres-
sion, or classification is performed respectively) of themost similar
sources redshift from the training set is taken as the redshift of the
unknown source. Following Luken et al. (2022) who have shown

that Euclidean distance is far from optimal for redshift estima-
tion, here we use the Mahalanobis distance metric (Equation (9);
Mahalanobis 1936):

d(	p, 	q)=
√
(	p− 	q)TS−1(	p− 	q), (9)

where d(	p, 	q) is the Mahalanobis distance between two feature
vectors 	p and 	q, and S is the covariance matrix.

The value of kn is optimised using k-fold cross-validation, a
process where the training set is split into k (hereafter kf and is
assigned a value of 5 for this work) subsets, allowing the parame-
ter being optimised to be trained and tested on the entire training
set.

3.4. Random Forest

The RF algorithm is an ensemble ML algorithm, meaning that
it combines the results of many other algorithms (in this case
Decision Trees (DTs)) to produce a final estimation. DTs to split
the data in a tree-like fashion until the algorithm arrives at a single
answer (when the tree is fully grown). These decisions are calcu-
lated by optimising over the impurity at the proposed split using
Equation (10):

G(Qm, θ)= nleft
nm

H(Qleft(θ))+ nright
nm

H(Qright(θ)), (10)

where Qm is the data at node m, θ is a subset of data, nm is the
number of objects at node m, nleft and nright are the numbers of
objects on the left and right sides of the split,Qleft andQright are the
objects on the left and right sides of the split, and theH function is
an impurity function that differs between classification and regres-
sion. For Regression, the Mean Square Error is used (defined in
Equation (6)), whereas Classification often uses the Gini Impurity
(defined in Equation (11)).

H(Xm)=
∑
k∈J

pmk(1− pmk), (11)

where pmk is the proportion of split m that are class k from the set
of classes J, defined formally in Equation (12):

pmk = 1
nm

∑
y∈Qm

[[y= k]], (12)

where [[x]] is the indicator function identifying the correct classifi-
cations.

3.5. ANNz2

The ANNz2e software (Sadeh et al. 2016) is is another ensemble
method, combining the results of many (in this work we use 100)
randomly assignedmachine learningmodels as a weighted average
from the pool of NNs and boosted decision trees, using settings
noted in Bilicki et al. (2018, 2021). However, whereas Bilicki et al.
(2021) use the ANNz functionality to weight the training set by
the test set feature distributions, here we do not use this option for
two reasons. First, this work is designed for larger surveys to be
completed, for which we do not know the distributions, so we are
unable to effectively weight the training samples towards future
samples. Second, when attempted, the final outputs were not sig-
nificantly different, whether the training sets were weighted or
not.

ehttps://github.com/IftachSadeh/ANNZ.
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3.6. GMM+GPz
The GPz algorithm is based upon Gaussian Process Regression, a
ML algorithm that takes a slightly different track than traditional
methods. Whereas most algorithms model an output variable
from a set of input features using a single, deterministic func-
tion, GP use a series of Gaussians to model a probability density
function tomap the input features to output variable. TheGP algo-
rithm is extended further in the GPz algorithm to handle missing
and noisy input data, through the use of sparse GPs and additional
basis functions modelling the missing data (Almosallam, Jarvis, &
Roberts 2016a; Almosallam et al. 2016b).

Following Duncan (2022), we first segment the data into sepa-
rate clusters using aGaussianMixtureModel before training aGPz
model (without providing the redshift to the GMM algorithm) on
each cluster, the idea being that if the training data better reflects
the test data, a better redshift estimate can be made.We emphasise
that no redshift information has been provided to the GMM algo-
rithm, and the clusters determined by the algorithm is solely based
on the g – z, and W1-W4 optical and infrared photometry—the
same photometry used for the estimation of redshift.

The GMMuses the Expectation-Maximization (EM) algorithm
to optimise the centers of each cluster it defines by using an
iterative approach, adjusting the parameters of the models being
learned in order to maximise the likelihood of the data belong-
ing to the clusters assigned. The EM algorithm does not optimise
the number of clusters, which must be balanced between multiple
competing interests:

• The size of the data—the greater the number of clusters, the
more chance the GMM will end up with insufficient source
counts in a cluster to adequately train a redshift estimator

• The number of distinct source types within the data—If the
number of clusters is too small, there will be too few group-
ings that adequately split the data up into it is latent structure,
whereas if it is too high, the GMMwill begin splitting coherent
clusters

This means that the number of components used by the
GMM to model the data is a hyper-parameter to be fine-tuned.
Ideally, the number of components chosen should be physically
motivated—the number of classes of galaxy we would expect to
be within the dataset would be an ideal number, so the ML model
is only training on sources of the same type to remove another
source of possible error. However, this is not necessarily a good
option, as, due to the unsupervised nature of the GMM, we are
not providing class labels to the GMM, and hence cannot be sure
that the GMM is splitting the data into the clusters we expect.
On the other hand, being unsupervised means the GMM is find-
ing its own physically motivated clusters which do not require the
additional—often human derived—labels. The lack of labels can
be a positive, as human-decided labels may be based less on the
actual source properties, andmore on a particular science case (see
Rudnick 2021 for further discussion).

In this work, we optimise the number of components hyper-
parameter, where the number of components ncomp is drawn from
ncomp ∈ {1, 2, 3, 5, 10, 15, 20, 25, 30}. We emphasise that the num-
ber of components chosen is not related to the number of redshift
bins used for classification and has an entirely separate purpose.
The primary metric being optimised is the Bayesian Information
Criteria (BIC, Schwarz 1978):

Figure 12. Optimisation of the Bayesian Information Criteria (top), Test Size (middle),
and Outlier Rate (bottom) across a range of components.

BIC= −2 log(L̂)+ log(N)d, (13)

where log(L̂) is the log likelihood of seeing a single point drawn
from a Gaussian Mixture Model, defined in Equation (14), and d
is the number of parameters.

log L̂=
∑
i

log
∑
j

λjN (yi|µj, σj) (14)

where yi is an individual observation,N is the normal density with
parameters σ 2

j and µj (the sample variance and mean of a sin-
gle Gaussian component), and λj is the mixture parameter, drawn
from the mixture model.

The BIC operates as a weighted likelihood function, penalising
higher numbers of parameters. The lower the BIC, the better.

Fig. 12 shows the BIC (Equation (13); top panel) with error bars
denoting the standard error of each component, the average test
size of each component with the error bars denoting the minimum
and maximum test set size for each component (middle), and the
photometric error in the form of both the outlier rate (Equation
(1)), and the accuracy (Equation (7)), with error bars denoting the
standard error (bottom).

Fig. 12 shows that while the ncomp is being optimised for low-
est BIC, this has the additional benefit of lowering the resulting
redshift estimation error (Fig. 12; middle and bottom panels)—
showing that the clusters being identified by the GMM algorithm
are meaningful in the following redshift estimation. A value of
30 is chosen for the ncomp, despite the BIC continuing to decline
beyond this point. However, the number of sources in the smaller
clusters defined by the GMM becomes too small to adequately
train a GPz model.

Once the data are segmented into 30 components (an exam-
ple from one random seed is shown in Fig. 13), a GPzf model is

fhttps://github.com/cschreib/gpzpp.
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Figure 13. Redshift distribution of the 30 GMM components. In each case the vertical axis shows the count.
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Table 3. Regression results table comparing the different algorithms across the different error metrics (listed in the table footnotes). The best
values for each error metric are highlighted in bold.

Algorithm η0.15
a η2σ

b σ c NMADd MSEe

kNN 7.26%± 0.02 3.86%± 0.01 0.1450± 0.0005 0.02930± 0.00003 0.1195± 0.0007

RF 10.19%± 0.02 4.59%± 0.02 0.1472± 0.0004 0.02790± 0.00003 0.1235± 0.0007

ANNz 8.82%± 0.04 4.02%± 0.07 0.141± 0.003 0.0505± 0.0003 0.120± 0.005

GMM+GPz 9.92%± 0.13 4.81%± 0.03 0.1336± 0.0008 0.0382± 0.0004 0.126± 0.002
aCatastrophic outlier rate, Equation (1).
b2σ outlier rate, Equation (3).
cResidual Standard Deviation, Equation (4).
dNormalised Median Absolute Deviation, Equation (5).
eMean Square Error, Equation, Equation (6).

trained for each component. The GPz algorithm is based around
sparse GPs, which attempt to model the feature space provided
using Gaussian components.

3.7. Training method

ML algorithms are typically set up and trained following one of
two procedures:

1. Training/Validation/Test Splits

• The data is split into training, testing, and validation sets
(for this work, the data are split into 50%/20%/30% sub-
sets). The ML algorithm is trained on the training set, with
model hyperparameters optimised for the validation set.
Once optimised, the test set is used to estimate the model’s
generalisatibility.

• Thismethod is utilised by the ANNz andGMMalgorithms
2. k-Fold Cross-Validation

• The dataset is split into two sets (for this work, the data
are split into 70%/30% subsets), used as training and test
sets. Differing from the first method, this method trains
and optimises the ML algorithms on the training set alone,
before testing the optimised models on the test set.

• The training set is split into kf subsets. kf models are
trained on kf − 1 subsets, and hyperparameters optimised
and validated against the remaining subset.

• In this work, we use a value of 5 for kf , with the k-fold
Cross-Validation algorithms used to optimise the hyper-
parameters of the kNN and RF algorithms.

The externally developed software (ANNz and GPz) both oper-
ate using training/validation/test split datasets. This is preferable
for large, mostly uniform distributions, as it greatly reduces train-
ing time. However, for highly non-uniform distributions, the
under-represented values are less likely to be involved in all stages
of training, validation and testing. Hence, for the kNN and RF
algorithms, where we control the training process, we choose the
k-fold cross-validation method of training and optimising hyper-
parameters, to best allow the under-represented high-redshift
sources to be present at all stages of training.

3.7.1. Photometry used in training

All algorithms use the same primary photometry—g, r, i, z opti-
cal magnitudes and W1, W2, W3, and W4 infrared magnitudes.
However, the different algorithms vary in how they treat the

uncertainties associated with the photometry. For the simple ML
algorithms (kNN and RF), the uncertainties are ignored. ANNz
computes their own uncertainties using a method based on the
kNN algorithm, outlined in Oyaizu et al. (2008), and GPz uses
them directly in the fitting of the Gaussian Process.

3.7.2. Using ANNz and GPz for classification

While the Sci-Kit Learn implementations of the kNN and RF
algorithms have both regression and classification modes, there
is no directly comparable classification mode for the ANNz and
GPz algorithms. In order to compare them with the classification
modes of the kNN and RF algorithms, we use the ANNz and GPz
algorithms to predict the median of the bin, in lieu of a category.
The predictions are then re-binned to the same boundaries as the
original bins, and the re-binned data compared.

4. Results

For clarity, we break our results up into three sub-sections—
Subsection 4.1 reports the results using the regression modes of
each ML method, Subsection 4.2 reports the results using the clas-
sification modes of each ML method, and Subsection 4.3 reports
the comparison between the two modes.

4.1. Regression results

The results using the regression modes of each ML algorithm
are summarised in Table 3. Table 3 shows that the kNN algo-
rithm performs best in terms of both η0.15 and η2σ outlier rates,
while also performing similarly across other metrics—although
the GMM+GPz algorithm provides the lowest σ .

Scatter plots (Figs. 14–17) show the results from each ML
algorithmwhere the x-axis of each panel shows themeasured spec-
troscopic redshifts, the y-axis of the top panel shows the redshift
predicted by the given ML method and the bottom panel the nor-
malised residuals. The dashed red line shows a perfect prediction,
with the dashed blue lines highlighting the boundary set by the
outlier rate. All figures use the same random seed, and the same
test set.

As shown in Figs. 14–17, all algorithms suffer from the same
issues—overestimating the low-redshift sources (z < 1), while
underestimating the high-redshift sources (z > 3). At the low-
redshift end, the large majority of sources are estimated within the
η0.15 outlier rate by all algorithms, with all algorithms overestimat-
ing roughly the same number of sources. At high-redshift, the GPz
algorithm performs worst; however, the small number of sources
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Table 4. Classification results table comparing the different algorithms across the different error metrics (listed in the table footnotes). The best
values for each error metric are highlighted in bold.

Algorithm η0.15
a η2σ

b σ c NMADd Accuracye

kNN 6.21%± 0.02 3.17%± 0.01 0.1499± 0.0005 0.02791± 0.00003 0.4165± 0.0003

RF 7.69%± 0.02 3.17%± 0.01 0.1742± 0.0006 0.02819± 0.00003 0.3950± 0.0004

ANNz 8.72%± 0.05 4.41%± 0.03 0.1249± 0.0004 0.0507± 0.0002 0.355± 0.001

GMM+GPz 10.0%± 0.1 5.28%± 0.04 0.1304± 0.0009 0.0396± 0.0001 0.408± 0.002
aCatastrophic outlier rate, Equation (1).
b2σ outlier rate, Equation (3).
cResidual Standard Deviation, Equation (4).
dNormalised Median Absolute Deviation, Equation (5).
eAccuracy, Equation (7).

Figure 14. Comparison of spectroscopic and predicted values using kNN Regression.
The x-axis shows the spectroscopic redshift, with the y-axis (Top) showing the red-
shift estimated by the ML model. The y-axis (Bottom) shows the normalised residual
between spectroscopic and predicted values as a function of redshift. The turquoise
dash-dotted line shows a perfect correlation, and the blue dashed lines show the
boundaries accepted by the η0.15 outlier rate. The colour bar shows the density of
points per coloured point.

at high-redshift mean this does not significantly impact the error
metrics.

4.2. Classification results

The results using the classification modes of each ML algorithm
are summarised in Table 4. As with the Regression results in
Section 4.1, the kNN algorithm produces the lowest η0.15 rate, with
the RF algorithm being second best. All methods (aside from the
RF algorithm) have approximately the same σ . However, the RF
and GPz algorithms have a marginally lower NMAD.

Plots showing the results from each ML algorithm (Figs. 18–
21) show the scaled classification bins, with the x-axis showing the
measured (binned) spectroscopic redshifts, and the y-axis showing

Figure 15. Same as Fig. 14 but for RF Regression.

the ML classified bin for each source. While a perfect correlation
along the diagonal would be ideal, the inherent error built into
the η0.15 error metric means that at low redshift, there might be
many adjacent bins that are deemed ‘acceptable’ redshift estimates,
whereas at the highest redshift, there is only one possible bin a
source can be classified into for it to be an acceptable estimate.

The kNN algorithm correctly predicts the highest proportion
of sources belonging to the highest redshift bin, though it should
be noted that all algorithms struggle with assigning this under-
represented class. While the width of the final bin means that
sources that are not exactly classified are therefore incorrectly clas-
sified (unlike sources at the low-redshift end), in all cases, over
70% of the highest redshift sources are placed in the highest two
redshift bins. Alternatively, if these bins were to be combined,
we would be able to say that the over 70% of sources at z > 2
would be correctly classified. Further discussion is presented in
Section 5.1.
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Figure 16. Same as Fig. 14 but for ANNz Regression.

Figure 17. Same as Fig. 14 but for GPz Regression.

4.3. Regression vs classification

When comparing the results in Tables 3 and 4 (demonstrated in
Fig. 22), we find that the binning of redshifts greatly improves the
results using the RF algorithm (in terms of η0.15 outlier rate) while
for other algorithms, it does not significantly alter the η0.15 out-
lier rate. The classification process does slightly reduce σ for kNN
andANNz algorithms, bringing them closer to the results from the
GPz algorithm.

When directly comparing the the algorithms in regression
and classification mode across the different redshift bins (Fig. 23;
showing the η0.15 and η2σ outlier rates, the σ , and NMAD as
a function of redshift, comparing the Regression modes of each
algorithm with the classification modes), we can see that in terms
of η0.15 outlier rate, the kNN, RF, and ANNz algorithms signifi-
cantly improve for the highest bin (mostly going from 60–80% to
40–60% outlier rates). The average accuracy (both in terms of σ

and NMAD) is comparable between regression and classification
modes,

5. Discussion

We have found that all ML algorithms suffer from similar issues
when estimating the redshift, regardless of the training data, or
algorithm used: the redshifts of low-redshift sources are over-
estimated (i.e. they are predicted to have a higher redshift than
their measured redshift), and those of high-redshift sources are
under-estimated (i.e. they are predicted to be at a lower redshift
than their measured redshift suggests).

In this work, we investigate the combination of heterogeneous
datasets (with the impact shown in Appendix A), creating a train-
ing set with a higher median redshift in order to better sample
the high-redshift space, and provide more acceptable redshift esti-
mates to a higher redshift. We combine radio catalogues from the
northern hemisphere with SDSS optical photometry and spectro-
scopic redshifts, with radio catalogues from the southern hemi-
sphere with DES optical photometry and spectroscopic redshifts
from the OzDES survey, with the DES photometry mapped to the
SDSS photometry using a third-order polynomial. We compare
simple ML algorithms in the kNN (when using the more complex
Mahalanobis distance metric, instead of the standard Euclidean
distance metric) and RF algorithms, with the much more com-
plex ANNz and GPz (with GPz models trained on smaller subsets,
modelled using a GMM)—a NN based approach and GP based
approach respectively.

We find that the kNN algorithm provides the lowest η0.15 out-
lier rates across both the Regression andClassificationmodes, with
outlier rates of 7.26%± 0.02 and 6.21%± 0.017, respectively, pro-
viding acceptable redshift estimates of∼93% of radio sources with
complete photometry, up to a redshift of z ∼ 3.

5.1. Rigidity of η0.15 outlier rate for classification

The η0.15 outlier rate is designed to be more accepting of errors
as the source’s redshift increases. By binning the data into 30
bins with equal numbers of sources, the classification tests break
this acceptance as the predicted values of the higher redshift bins
become significantlymore spread than at low-redshift, to the point
where sources are predicted as being outliers if the source is not
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Figure 18. Confusion matrix showing the results using the kNN classification algorithm. The size of the boxes is approximately scaled (with the exception of the final, highest
redshift boxes) with the width of the classification bin. The x-axis shows the spectroscopic redshift, and the y-axis shows the predicted redshift. The left panel is an exploded
subsection of the overall right panel.

Figure 19. Same as Fig. 18, but for RF Classification.

classified into the exactly correct bin. There are multiple options to
extend the flexibility of the η0.15 outlier rate to this training regime,
however, all have flaws. One method would be to adjust the outlier
rate so that instead of determining catastrophic outliers based on
a numeric value (i.e. 0.15 scaling with redshift), it allows a fixed
number of predicted bins above and below the actual redshift bin
of the source (i.e. a source can be predicted in the exactly correct
bin, ± some number of bins, and still be considered an acceptable
prediction). However, this would mean significant ‘fiddling’ with

the bin distribution to ensure that the original intention of the
η0.15 outlier rate is maintained (that, a source be incorrect by up to
0.15—scaling with redshift—before it is considered a ‘catastrophic
failure’), andwould defeat the initial purpose of presenting redshift
estimation as a classification task—creating a uniform distribution
in order to better predict sources at higher redshift ranges that are
under-represented in all training datasets. Another option would
be to drop the η0.15 outlier rate, and label any source that is pre-
dicted within an arbitrary number of bins (2-3 perhaps) of the
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Figure 20. Same as Fig. 18, but for ANNz Classification.

Figure 21. Same as Fig. 18, but for GPz Classification.

correct bin as an acceptable estimate. However, this would severely
penalise the low-redshift end of the distribution that is dense in
sources, and would not be comparable across studies, as it would
be impossible to ensure the redshift bins (both in distribution, and
density) were similar across different datasets. The simplest alter-
native is to combine the highest two redshift bins, thereby allowing
sources in those top two bins to be classified as either, and not be
considered a catastrophic failure.

In Table 5 and Fig. 24, we present alternatives to Table 4 and
Fig. 23 based on the upper two bins being combined.

The combination of redshift bins significantly decreases the
η0.15 outlier rate for all algorithms, with the kNN algorithm still
performing best (and dropping from 6.21% to 4.88%).

5.2. Comparison with previous work

Comparison with previous works is difficult, as the selection cri-
teria, such as source type and redshift distribution, can play a
significant role in the final error metrics, with most studies aim-
ing for the largest training samples. The motivation of finding the
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Figure 22. Comparison of the different algorithms in their regression and classification
modes. In all cases, the lower the value the better, with the lowest value for eachmetric
shown with a horizontal dotted line.

largest possible training set pushes studies into large scale surveys
like the SDSS, withmillions of sources with spectroscopic redshifts
available for use. For the testing of algorithms for the use on sim-
ilar surveys like the DES and Dark Energy Camera Legacy Survey
(DECaLS) surveys, or the Legacy Survey of Space and Time (LSST)
being conducted at the Vera Rubin Observatory, this motivation
is entirely appropriate. However, this workflow cannot be directly
compared with algorithms trained and tested on datasets domi-
nated by a specific subset of sources (for example, radio selected
samples, which are typically dominated by difficult-to-estimate
AGNs), at a significantly higher redshift. The closest comparison
would with Luken et al. (2022), which contains similar primary

algorithms being tested (both this work and Luken et al. (2022)
use the kNN algorithm with a Mahalanobis distance metric, and
the RF algorithm, and compare both classification and regres-
sion modes), and similar photometry (both use 4 optical, and 4
infrared bands). Both studies are conducted on a radio-selected
sample. However, while both are radio-selected, Luken et al. (2022)
is restricted to the ATLAS dataset and the narrower infrared bands
of the SWIRE survey, with a significantly smaller dataset and lower
median redshift. The combination of the change in infrared pho-
tometry to the all-sky, wider-band AllWISE photometry, and the
smaller, lower redshift training set used by Luken et al. (2022) leads
to slightly lower η0.15 outlier rates (∼6% in Luken et al. (2022),
compared to ∼7% in this work when comparing the kNN algo-
rithm using Regression). However, due to the size and redshift
distribution of the dataset compiled in this work, models trained
are able to estimate the redshift of radio sources to a significantly
higher redshift (z < 3, compared with z < 1).

5.3. Algorithm comparison

The best performing algorithm (in terms of η0.15 outlier rate) is the
kNN algorithm, despite the kNN algorithm being significantly less
complex than all other approaches tested, with all other methods
algorithms combining the results of many models (RF combining
many Decision Trees, the ANNz algorithm combining 100 dif-
ferent, randomly initialised tree and NN based models, and GPz
including a pre-processing step using the GMM algorithm). This
may be due to the difference in the way the different algorithms are
trained. While the RF, ANNz and GPz algorithms are all methods
training some kind of model to best represent the training set, the
kNN algorithm treats the data itself as the model, and is not try-
ing to learn a representation. This subtle difference means that in
cases where the test data is well-represented by the training data,
and the number of features is small, the kNN algorithm may out-
perform more complex algorithms. The kNN algorithm also has
the added advantage that it does not need to try and account for
the ‘noise’ within astronomical data—as long as the same types of
noise present in the test data is also present in the training data,
the kNN algorithm does not need to handle it in any particular
manner.

However, the kNN algorithm has two major drawbacks. First,
the kNN algorithm is making the assumption that the test data
follows all the same distributions as the training data. There is no
way for the kNN algorithm to extrapolate beyond its training set,
whereas more complicated algorithms like GPz are—to a small
degree—able to extend beyond the training sample. This means
the kNN algorithm is entirely unsuitable when the test set is not
drawn from the same distributions as the training set.

Second, like many ML algorithms, there is no simple way to
provide errors for estimates made by the kNN algorithm in regres-
sion mode (the classification mode is able to produce a probability
density function across the classification bins chosen). The ANNz
algorithm is able to use the scatter in its ML models predictions
as a proxy for the error, and the GPz algorithm is based on the
GP algorithm, which inherently provides a probability density
function—a significant benefit for some science cases.

The tension between best η0.15 outlier rate, and ability to quan-
tify errors is not trivial and is best left to the individual science case
as to which algorithm is best suited to the chosen purpose.

Finally, it is worth reiterating the differing error metrics being
optimised between the different algorithms. The ANNz and GPz
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Table 5. Classification results table comparing the different algorithms across the different error metrics (listed in the table footnotes). The best
values for each error metric are highlighted in bold. Results following the combination of the highest two redshift bins discussed in Section 5.1.

Algorithm η0.15
a η2σ

b σ c NMADd Accuracye

kNN 4.88%± 0.02 2.92%± 0.01 0.1285± 0.0004 0.039259± 0.00004 0.4044± 0.0003

RF 6.18%± 0.02 2.48%± 0.01 0.1445± 0.0004 0.03943± 0.00004 0.4081± 0.0004

ANNz 7.02%± 0.04 3.96%± 0.02 0.1178± 0.0004 0.0422± 0.0002 0.370± 0.001

GMM+GPz 7.9%± 0.1 4.51%± 0.03 0.1217± 0.0008 0.0392± 0.0001 0.424± 0.002
aCatastrophic outlier rate, Equation (1).
b2σ outlier rate, Equation (3).
cResidual Standard Deviation, Equation (4).
dNormalised Median Absolute Deviation, Equation (5).
eAccuracy, Equation (7).

Figure 23. Comparing Regression with Classification over all methods, and all metrics.
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Figure 24. Comparing Regression with Classification over all methods, and all metrics. In this case, the highest redshift bin is combinedwith the second highest. Results following
the combination of the highest two redshift bins discussed in Section 5.1.

algorithms are both optimising error metrics favoured by their
developers for their particular science needs. In this case, the dif-
ferent error metrics being optimised (like the σ ) do not match
the science needs of the EMU project, with the η0.15 outlier rate
preferred. The effect of this means that we are comparing an
error metric that is optimised in some algorithms (the kNN and
RF algorithms), but not in others (the ANNz and GPz algo-
rithms). This presents an inherent disadvantage to the ANNz
and GPz algorithms, and and may contribute to their lower
performance.

5.4. Estimating confidence intervals

Both the ANNz and GPz algorithms explicitly estimate the uncer-
tainty of any predictionmade. GPz estimates uncertainties directly
as a by-product of the Gaussian fitting in GPz. ANNz estimates
its uncertainties as an additional step, where the 100 most similar
galaxies from the training set to the test source are found using the
kNN algorithm, biases for each estimated redshift calculated, and
the 68th percentile taken as the uncertainty of the galaxy (Oyaizu
et al. 2008; Sadeh et al. 2016).
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Table 6. Outlier rates of each error metric using their regression modes, showing the original outlier rate, the outlier rate of the subset of sources deemed ‘certain’,
and the outlier rate of the remaining sources.

Algorithm Original η0.15 (%) ‘Certain’ predictions η0.15 (%) ‘Certain’ source count ‘Uncertain’ predictions η0.15 (%) ‘Uncertain’ source count

kNN 7.18 1.27 14463 32.18 3421

RF 9.96 5.23 14610 31.09 3274

ANNz 8.85 3.10 14697 35.36 3187

GPz 11.21 3.14 14522 46.07 3362

The RF algorithm is next simplest to identify uncertain esti-
mates. Following Wager et al. (2014),g confidence intervals for RF
models can be estimated using the Jackknife method.

Finally, the kNN algorithm does not have a natural way of
estimating the uncertainty of predictions. Similar to the method
described in Oyaizu et al. (2008) though, we can get an under-
standing of which estimates are likely to be uncertain by exam-
ining the similar galaxies. We can follow the below workflow to
estimate the uncertainty of our predictions, noting that they are
unlikely to be realistic uncertainties for the estimate, and more an
estimate of how uncertain the “model” is of the prediction, given
the data:

For every source in the test set:

1. Identify the kn sources used in the estimation of the redshift.
2. Use the same model to estimate the redshift of the above kn

sources.
3. Calculate the variance of the kn sources redshift estimates and

take the variance as the uncertainty for the prediction.

We emphasise that this uncertainty is not an estimate of how
well the redshift prediction of the test source fits the photometry—
it is purely an estimate of how varied the sources were that were
used to make the initial estimate, with the implicit understanding
being that the more varied the sources used to predict the redshift,
the less likely the estimate is to be accurate. Additionally, there
are no photometric uncertainties involved, so the uncertainty pro-
vided is further unlikely to be scientifically meaningful, beyond
helping to identify potentially unreliable estimates.

5.4.1. Removing uncertain predictions

Certainty thresholds for defining acceptable estimates are not, to
the best of our knowledge, typically published. Duncan (2022)
suggests Equation (15):

σz

(1+ zphoto)
< 0.2 (15)

where σz is the uncertainty estimate from the GPz model, and
zphoto is the photometric redshift estimated from the same model.
Unfortunately, given the different quantities the different uncer-
tainties are designed to capture, Equation (15) can only be used
for the estimates measured using the GPz algorithm.

For other algorithms we aim to find a (where possible) statis-
tically sound method of removing the most uncertain estimates,
while maintaining approximately the same number of ‘certain’
sources in order to compare outlier rates with the certain GPz
estimates.

gimplemented as https://contrib.scikit-learn.org/forest-confidence-interval/index.html.

For the kNN algorithm and uncertainties (defined in Section
5.4), we can define Equation (16):

σz

(1+ zphoto)
<

∑
i (σzi − σ̄z)

2

n− 1
(16)

where σ̄z is the average uncertainty.
No statistical method of determining a cutoff for the ANNz

and RF produced similar source counts as the GPz algorithm, and
hence for this work we choose the following values (Equations
(17) and (18) respectively) in order to produce comparable outlier
rates:

σz(
1+ zphoto

) < 0.1 (17)

σz < 2.302 (18)
Once these outliers are removed, the residual outlier rates for

all methods drop significantly. We show the original outlier rates,
the outlier rates of the ‘certain’ predictions, and the outlier rates
of the ‘uncertain’ predictions shown in Table 6 for all algorithms.
Prediction plots similar to Fig. 14 for each subset and algorithm
can be found in Figs. B.1–B.4 in Appendix B.

As demonstrated, the removal of predictions with high uncer-
tainty greatly improves the outlier rates of all algorithms, with the
kNN algorithm still performing best, the ANNz and GPz algo-
rithms performing equally well, and the RF algorithm performing
worst. We do note, however, that the formal definition of uncer-
tain sources by Duncan (2022) is combined with very well-defined
uncertainties tomake GPz estimates more robust and reliable, par-
ticularly when spectroscopic redshifts are not available in test fields
of sufficient depth and quantity to help quantify reliability.

5.5. Effects of differing radio survey depths

Radio sources are typicallymore difficult to estimate the redshift of
using ML than optically selected sources, as they tend to contain
rarer sub-types of galaxies, and hence constructing a representa-
tive training sample is problematic. While all of the samples in
our training set have been radio-selected, the depth of the radio
survey used can play a part in what sub-types of galaxies are rep-
resented in the radio sample. As shown by Smolčić et al. (2017,
Fig. 13; upper right panel) at ∼110 µJy, radio samples stop being
dominated by AGN, and begin being dominated by Star Forming
Galaxys (SFGs), and hence would require additional SFG sam-
ples in the training sample in order to best estimate these sources.
While the majority (∼90%) of sources used in our training sample
come from the RGZ catalogues (drawn from the VLA FIRST sur-
vey) which have a sensitivity of∼150µJy, we include sources from
the Stripe 82 region (Hodge et al. 2011; RMS: 52 µJy, and Prescott
et al. 2018; RMS: 82 µJy), and the ATLAS surveys (Franzen et al.
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2015; RMS: 14µJy). These additional sources provide some cover-
age of the radio-faint parameter space, however, we acknowledge
that the comparatively small number is inadequate to completely
model the space.

Future work will include more radio selected data from deep
fields like COSMOS, and the LOFAR Deep Fields.

6. Conclusion

Machine Learning attempts for estimating the redshift of radio
selected galaxies have significant benefits over traditional template
fitting methods—they do not require specifically developed tem-
plates, nor do they require the disentanglement of the black hole
emission from the galaxy emission. However, the major down-
side is the requirement for a representative training sample—a
significant difficulty given the requirement for spectroscopic red-
shift measurements, and the typically significantly higher median
redshift of radio surveys, when compared with optical surveys.

By combining radio-selected data from the northern and
southern hemisphere, we have created a larger sample of radio
galaxies for training ML algorithms. Once the DES optical data
was homogenised with the SDSS optical photometry, current
leading ML algorithms were tested. We show that the kNN
algorithm—in both regression and classification tests—provides
the lowest η0.15 outlier rate, estimating ∼92% of radio-selected
sources within an acceptable limit. The depth in redshift distribu-
tion of the assembled training set allows us to estimate the redshift
of sources up to z = 3 before the results are dominated by random,
under-estimated scatter.

We show that we can use the classification modes of the tested
ML methods to identify ∼76% of sources at the highest two
redshift bins (z = 2.25 and z > 2.51), providing a way of first iden-
tifying the highest redshift sources, before using the regression
modes of the provided algorithms to estimate the redshift of the
remaining sources more effectively.

In this work, we show that the kNN algorithm using the
Mahalanobis distance metric performs best (i.e. minimises outlier
rate) for the estimation of the redshift of radio galaxies.
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Smolčić, V., et al. 2017, A&A, 602, A2
Speagle, J. S., et al. 2019, MNRAS, 490, 5658
Swan, J. A. 2018, PhD thesis, University of Tasmania, Australia
Tagliaferri, R., et al. 2003, Lecture Notes in Computer Science, 2859, 226
Thompson, A. R., Clark, B. G., Wade, C. M., & Napier, P. J. 1980, ApJ, 44, 151
Tingay, S. J., et al. 2013, PASA, 30, e007
van Haarlem, M. P., et al. 2013, A&A, 556, A2
Wager, S., Hastie, T., & Efron, B. 2014, JMLR, 15, 1625
Zhang, Y., Ma, H., Peng, N., Zhao, Y., & Wu, X.-b. 2013, AJ, 146, 22

Appendix

A. Data Homogenisation

As demonstrated in Fig. 11, the difference in measured photom-
etry can be significant between the Dark Energy Survey (DES)

Figure A.1. Training on SDSS, Testing on DES, with the same axes and notation as
Fig. 14.
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Figure A.2. Training on SDSS, Testing on DES—Corrected„ with the same axes and
notation as Fig. 14.

and Sloan Digital Sky Survey (SDSS) catalogues. In order to quan-
tify how much of an impact this difference in photometry has,
we present the following results using the k-Nearest Neighbours
(kNN) algorithm. Appendix A.1 and subsections show the effect of
the data homogenisation discussed in Section 2.2 when training on
SDSS photometry and testing on DES photometry. Appendix A.2
and subsections show the effect of the data homogenisation when
training on DES photometry and testing on SDSS photometry.
Finally, Appendix A.3 directly compares these results.

A.1. Training on SDSS Photometry, Testing on DES
Photometry

This section is divided into two components—Appendix A.1.1 and
Appendix A.1.2. In these subsections, we demonstrate the results
of using uncorrected and corrected photometry in regression and
classification tests.

A.1.1. Regression

Figs. A.1. and A.2 are of the same style as Fig. 14. Fig. A.1 is the
result of training on SDSS photometry and testing on DES pho-
tometry. Fig. A.2 is the result of training on SDSS photometry and
testing on corrected DES photometry.

Table A.1. Comparison between predictions using the kNN algorithm, trained on
one subset of data (either the northern SDSS photometry or the southern DES
photometry) and tested on the other.

Training Test Method η η

set set uncorrected (%) corrected (%)

SDSS DES Regression 11.46 10.6

SDSS DES Classification 8.56 7.52

DES SDSS Regression 13.11 11.07

DES SDSS Classification 12.97 10.69

A.1.2. Classification

Figs. A.3a and A.3b are of the same style as Fig. 18. Fig. A.3a is the
result of training on SDSS photometry,and testing on DES pho-
tometry. Fig. A.3b is the result of training on SDSS photometry
and testing on corrected DES photometry.

A.2. Training on DES Photometry, Testing on SDSS
Photometry

This section is divided into two components—Appendix A.2.1 and
Appendix A.2.2. In these subsections, we demonstrate the results
of using uncorrected and corrected photometry in regression and
classification tests.

A.2.1. Regression

Figs. A.4. and A.5 are of the same style as Fig. 14. Fig. A.4 is the
result of training on SDSS photometry and testing on DES pho-
tometry. Fig. A.5 is the result of training on SDSS photometry and
testing on corrected DES photometry.

A.2.2. Classification

Figs. A.6a and A.6b are of the same style as Fig. 18. Fig. A.6a is the
result of training on SDSS photometry and testing on DES pho-
tometry. Fig. A.6b is the result of training on SDSS photometry
and testing on corrected DES photometry.

A.3. Comparison between Uncorrected and Corrected data

In all tests, homogenising the DES photometry to the SDSS
improved the outlier rates. Table A.1 and Fig. A.7 demonstrate that
the outlier rate improves by ∼1–2% for all tests.

B. Comparing All, with Certain and Uncertain Predictions

Figs. B.1, B.2, B.3, and B.4 show plots similar to the top panel
of Fig. 14, allowing for comparisons between all predictions, just
those predictions deemed ‘certain’ by the criteria in Section 5.4.1,
and those that do not meet the criteria, and are therefore deemed
‘uncertain’. Across all algorithms, much of the scatter between
the predicted and measured redshift is removed from the ‘certain’
sample, with all algorithms benefiting across all error metrics. The
kNN algorithm retains the lowest outlier rate. However, themajor-
ity of its ‘certain’ sources lie between 0< z < 2.5, with few sources
beyond z > 2.5. The ANNz and GPz algorithms perform next best
in terms of outlier rate, though the GPz algorithm performs better
in both σ and Normalised Median Absolute Deviation (NMAD).
The GPz algorithm removes most z > 3 sources, with the ANNz
algorithm extending up to z < 4. The RF algorithm performs
worst, with predictions capped at z < 3.
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(a) (b)

Figure A.3. Scaled confusion matrices in similar style to Fig. 18, with the subfigures showing the effect of the photometry correction.

Figure A.4. Training on DES, testing on SDSS. Figure A.5. Training on DES, testing on SDSS—corrected.
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(a) (b)

Figure A.6. Same as Fig. A.3, showing a different training/test set combination.

Figure A.7. Comparison of the η outlier rates when trained on corrected and uncorrect
data.
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Figure B.1. Similar to the top panel of Fig. 14, comparing all of the predictions (left), with the predictions deemed ‘certain’ (middle) and the predictions deemed ‘uncertain’ (right)
using the kNN algorithm.

Figure B.2. As with Fig. B.1, using the RF algorithm.

Figure B.3. As with Fig. B.1, using the ANNz algorithm.
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Figure B.4. As with Fig. B.1, using the GPz algorithm.
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