We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.
The aim of this study was to investigate risk factors and psychological stress of health-care workers (HCWs) with coronavirus disease 2019 (COVID-19) in a nonfrontline clinical department.
Methods:
Data of 2 source patients and all HCWs with infection risk were obtained in a department in Wuhan from January to February 2020. A questionnaire was designed to evaluate psychological stress of COVID-19 on HCWs.
Results:
The overall infection rate was 4.8% in HCWs. Ten of 25 HCWs who contacted with 2 source patients were diagnosed with confirmed COVID-19 (8/10) and suspected COVID-19 (2/10). Other 2 HCWs were transmitted by other patients or colleagues. Close care behaviors included physical examination (6/12), life nursing (4/12), ward rounds (4/12), endoscopic examination (2/12). Contacts fluctuated from 1 to 24 times and each contact was short (8.1 min ± 5.6 min). HCWs wore surgical masks (11/12), gloves (7/12), and isolation clothing (3/12) when providing medical care. Most HCWs experienced a mild course with 2 asymptomatic infections, taking 9.8 d and 20.9 d to obtain viral shedding and clinical cure, respectively. Psychological stress included worry (58.3%), anxiety (83.3%), depression (58.3%), and insomnia (58.3%).
Conclusions:
Close contact with COVID-19 patients and insufficient protection were key risk factors. Precaution measures and psychological support on COVID-19 is urgently required for HCWs.
No studies have reported on how to relieve distress or relax in medical health workers while wearing medical protective equipment in coronavirus disease 2019 (COVID-19) pandemic. The study aimed to establish which relaxation technique, among six, is the most feasible in first-line medical health workers wearing medical protective equipment.
Methods
This was a two-step study collecting data with online surveys. Step 1: 15 first-line medical health workers were trained to use six different relaxation techniques and reported the two most feasible techniques while wearing medical protective equipment. Step 2: the most two feasible relaxation techniques revealed by step 1 were quantitatively tested in a sample of 65 medical health workers in terms of efficacy, no space limitation, no time limitation, no body position requirement, no environment limitation to be done, easiness to learn, simplicity, convenience, practicality, and acceptance.
Results
Kegel exercise and autogenic relaxation were the most feasible techniques according to step 1. In step 2, Kegel exercise outperformed autogenic relaxation on all the 10 dimensions among the 65 participants while wearing medical protective equipment (efficacy: 24 v. 15, no space limitation: 30 v. 4, no time limitation: 31 v. 4, no body position requirement: 26 v. 4, no environment limitation: 30 v. 11, easiness to learn: 28 v. 5, simplicity: 29 v. 7, convenience: 29 v. 4, practicality: 30 v. 14, acceptance: 32 v. 6).
Conclusion
Kegel exercise seems a promising self-relaxation technique for first-line medical health workers while wearing medical protective equipment among COVID-19 pandemic.
The effects of macronutrient intake on obesity are controversial. This research aims to investigate the associations between macronutrient intake and new-onset overweight/obesity. The relationship between the consumption of carbohydrate and total fat and obesity was assessed by the multivariable Cox model in this 11-year cohort, which included 6612 adults (3291 men and 3321 women) who were free of overweight and obesity at baseline. The dietary intake was recorded using a 24-h recall method for three consecutive days. Moreover, substitution models were developed to distinguish the effects of macronutrient composition alteration from energy intake modification. During 7·5 person years (interquartile range 4·3, 10·8) of follow-up, 1807 participants became overweight or obese. After adjusting for risk factors, the hazard ratio (HR) of overweight/obesity in extreme quintiles of fat was 1·48 (quintile 5 v. quintile 1, 95 % CI 1·16, 1·89; Ptrend = 0·02) in women. Additionally, replacing 5 % of energy from carbohydrate with equivalent energy from fat was associated with an estimated 4·3 % (HR 1·043, 95 % CI 1·007, 1·081) increase in overweight/obesity in women. Moreover, dietary carbohydrate was inversely associated with overweight/obesity (quintile 5 v. quintile 1, HR 0·70, 95 % CI 0·55, 0·89; Ptrend = 0·02) in women. Total fat was related to a higher risk of overweight/obesity, whereas high carbohydrate intake was related to a lower risk of overweight/obesity in women, which was not observed in men.
The isolation of male and female gametes is an effective method to study the fertilization mechanisms of higher plants. An osmotic shock method was used to rupture pollen grains of Allium tuberosum Roxb and release the pollen contents, including generative cells, which were mass collected. The pollinated styles were cut following 3 h of in vivo growth, and cultured in medium for 6–8 h, during which time pollen tubes grew out of the cut end of the style. After pollen tubes were transferred into a solution containing 6% mannitol, tubes burst and released pairs of sperm cells. Ovules of A. tuberosum were incubated in an enzyme solution for 30 min, and then dissected to remove the integuments. Following transfer to a dissecting solution free of enzymes, each nucellus was cut in the middle, and squeezed gently on the micropylar end, resulting in the liberation of the egg, zygote and proembryo from ovules at selected stages. These cells can be used to explore fertilization and embryonic development using molecular biological methods for each cell type and development stage.
"Theories of niche construction and near-decomposability, which correspond to competition and decentralization in economic parlance, illuminate how respective networks of authority served parochial purposes, with motivations related to specific challenges: in China, to rule a large territory, and in Europe, to enhance the competitive power of small states in a fragmented landscape. A shift toward outward expansion made European elites less parochial and resulted in an explosive wave of innovation. China’s centralized network enabled periods of unmatched stability and prosperity; but the merit-based bureaucracy stifled innovation, preventing the rise of a merchant class, an independent private sector, and outward expansion, all of which were associated with Europe’s industrialization. China’s inward gaze ensured the paramount political power of bureaucratic elites, resulting in systemic corruption that grew extensively over time, impoverishing the peasantry and causing rebellions, chaos, and conflict – a process that repeated itself throughout China’s history.
A number of vision-based methods for detecting laser-induced defects on optical components have been implemented to replace the time-consuming manual inspection. While deep-learning-based methods have achieved state-of-the-art performances in many visual recognition tasks, their success often hinges on the availability of a large number of labeled training sets. In this paper, we propose a surface defect detection method based on image segmentation with a U-shaped convolutional network (U-Net). The designed network was trained on paired sets of online and offline images of optics from a large laser facility. We show in our experimental evaluation that our approach can accurately locate laser-induced defects on the optics in real time. The main advantage of the proposed method is that the network can be trained end to end on small samples, without the requirement for manual labeling or manual feature extraction. The approach can be applied to the daily inspection and maintenance of optical components in large laser facilities.
Little is known about the combined use of benzodiazepines and antidepressants in older psychiatric patients. This study examined the prescription pattern of concurrent benzodiazepines in older adults treated with antidepressants in Asia, and explored its demographic and clinical correlates.
Methods:
The data of 955 older adults with any type of psychiatric disorders were extracted from the database of the Research on Asian Psychotropic Prescription Patterns for Antidepressants (REAP-AD) project. Demographic and clinical characteristics were recorded using a standardized protocol and data collection procedure. Both univariate and multiple logistic regression analyses were performed.
Results:
The proportion of benzodiazepine and antidepressant combination in this cohort was 44.3%. Multiple logistic regression analysis revealed that higher doses of antidepressants, younger age (<65 years), inpatients, public hospital, major comorbid medical conditions, antidepressant types, and country/territory were significantly associated with more frequent co-prescription of benzodiazepines and antidepressants.
Conclusions:
Nearly, half of the older adults treated with antidepressants in Asia are prescribed concurrent benzodiazepines. Given the potentially adverse effects of benzodiazepines, the rationale of benzodiazepines and antidepressants co-prescription needs to be revisited.
Large-scale green tides of Ulva prolifera occur repeatedly in the Yellow Sea, and the microscopic propagules of U. prolifera play a critical role during the development of green tides. Ulva prolifera propagules and microalgae are both present in seawater and share similar niches, but their potential interactions are poorly understood. Nine species of microalgae were selected to study their interactions with the propagules of U. prolifera (gametes) in laboratory. The results showed that settlement of gametes could be inhibited by some microalgae, such as Alexandrium tamarense, Prorocentrum lima and Karenia mikimotoi, at the cell density of blooming (102–103 cells ml–1). Inversely, the germlings germinated from U. prolifera gametes had negative effects on the microalgae, the inhibition rate ranged from 28 to 66%. Our results demonstrated the complex interactions between microalgae and propagules of green algae, which may influence the formation of green tides and their ecological consequences in the Yellow Sea.
The high-cycle fatigue (HCF) behavior is significantly affected by surface roughness, especially for high strength metal FV520B-I. However, with surface roughness effect, neither the fatigue property, nor the high-cycle fatigue life model about FV520B-I with surface roughness has been reported. In this paper, designed fatigue experiment using the specimen with different surface roughness is presented to study the effectiveness of the roughness to the fatigue. The observations of the fatigue crack initiation sites and the crack propagation. Then the high cycle fatigue behavior of FV520B-I affected by surface roughness is analyzed. The existing very-high-cycle fatigue life model is not well-fit for high-cycle fatigue model of FV520B-I. A NEW high-cycle fatigue life prediction model of FV520B-I, taking surface roughness as a main effective variable is proposed. The model is built up by a comprehensive use of experimental data and the traditional fatigue modeling theory. The new finding between the fatigue strength coefficient and stress amplitude, with surface roughness, is adopted, leading to a NEW modified life prediction model. Study on fatigue model of FV520B-I with surface roughness is a very beneficial effort in fatigue theory and fatigue engineering development.
We examined how external stakeholder pressure and ethical leadership independently and interactively influence the implementation of corporate social responsibility. Based on data collected from 292 employees from 53 companies (Study 1) and from 224 middle-level managers from 40 companies (Study 2) in mainland China, we found that both ethical leadership and external stakeholder pressure have significant and positive impacts on corporate social responsibility implementation and the positive effect of external stakeholder pressure on corporate social responsibility weakens under a higher level of ethical leadership and strengthens under a low level of ethical leadership. The theoretical and practical implications of these findings are discussed.
Large-scale blooms of dinoflagellates, such as Prorocentrum donghaiense and Karenia mikimotoi, have occurred frequently in the East China Sea (ECS) in recent decades. However, little is known about their effects on the entire life history of copepods. Under laboratory conditions, we investigated the effects of these two common dinoflagellates on the survival of Calanus sinicus individuals at different stages and on reproduction of this copepod. Compared with the control treatment (Skeletonema costatum), the presence of P. donghaiense and K. mikimotoi decreased the survival rates of adults and nauplii during the 16 days of the experiment. Survival of nauplii decreased to 49% and 48%, respectively, relative to the nearly 80% survival of adults. Among the six stages of nauplii, individuals at NII and NIII were more susceptible to P. donghaiense and K. mikimotoi. Lower egg production rates were also observed when copepods were exposed to P. donghaiense and K. mikimotoi, and hatching success decreased only with exposure to P. donghaiense. These results suggest that blooms of the two common dinoflagellates may have detrimental effects on the survival of nauplii and the reproduction of C. sinicus, which may pose a major threat to the recruitment of C. sinicus.
This study examined how information seeking and proximal adjustment outcomes (role clarity and social integration) mediate the relationship between transformational leadership and distal adjustment outcome (affective organizational commitment) in work group context. The results of hierarchical linear modeling involving 212 newcomers and their 53 immediate supervisors revealed that information seeking mediated the relationship between transformational leadership and proximal adjustment outcomes. These in turn were positively related to distal adjustment outcome. Furthermore, work group structure was found to moderate the relationship between transformational leadership and newcomer information seeking.
Nanogenerators (NGs) have great potential to solve the problems of energy depletion and environmental pollution. Here, two types of flexible nanogenerators (FNGs) based on graphene oxide (GO) and multiwall carbon nanotubes (MW-CNTs) are presented. The peak output voltage and current of GO based FNG reached up to 2 V and 30 nA, respectively, under 15 N force at 1 Hz. Moreover, the output voltage could be improved to 34.4 V when the frequency was increased to 10 Hz. It was also found the output voltage increased from 0.1 V to 2.0 V using a released GO structure. The other FNG was made by MW-CNTs mixed with ZnO nanoparticles (NPs). Its output voltage and power reached up to 7.5 V and 18.75 mW, respectively, which is much larger than that of bare ZnO based FNG. Furthermore, a peak voltage of 30 V could be gained by stamping one’s foot on the FNG. Finally, a modified NG was fabricated using four springs and two flexible layers. As a result, the voltage and power reached up to 9 V and 27mW, respectively. These works may bring out broad applications in energy harvesting.
The influence of predeformation and stress on the isothermal bainite transformation has been investigated in G55SiMoV steel via microstructure observation and kinetic analysis. It was found that the bainite transformation became faster and at the end of isothermal holding the bainite fraction increased under the applied stress condition. When the stress increased to 150 MPa, the bainite distribution became to be nonrandom in G55SiMoV steel. Different deformation conditions, in which both promotion and inhibition occurred in the same steel, were created. The promoting and inhibiting factors affected bainite transformation comprehensively. 20% deformation could promote the bainite transformation when it deformed at 900 °C, but prevent bainite transformation when it deformed at 750 °C. Increase of ferrite nucleation rate caused by distortion and dislocation, would suppress the growth of bainite carbides and make most carbides without full growth be finer and shorter.
Plant height is important for crop yield improvement. In this study, a dwarf mutant, Gmdwarf1, was screened from a γ-ray-treated soybean population. Compared with the wild type, the mutant exhibited later germination, smaller and darker green leaves, and less-elongated shoots. Genome-wide transcriptome detection through RNA-seq analysis revealed that not only gibberellin-related genes but many other genes involved in hormone biosynthetic pathways were also significantly influenced in the mutant. We presumed that Gmdwarf1 might play essential roles in the plant hormone pathways. Future functional analysis of this dwarf mutant would help us to understand the underlying mechanisms and be beneficial for improving soybean yield.
Various heat treatments and thermal simulation with different austenitizing temperatures and austenite deformation were applied on a bearing steel to obtain various austenitic state. The effect of austenitic state on microstructure of martensite/bainite (M/B) dual phase steel and its mechanical property has been investigated via microstructure observation and kinetic analysis. The results show that the M/B steels austenitized at 900 and 950 °C have better comprehensive performance compared with the steels austenitized at 850 and 1050 °C. The refined microstructure can be obtained after deformation, and the heavy deformation and low deformation temperature are useful for refining the microstructure. The bainite lath is longer and has well-directional arrangement at high austenitizing temperature with the same deformation. Furthermore, austenite deformation can improve the nucleation ratio, reduce incubation process, and affect the kinetics of bainite transformation significantly.
In this work, the relationship between the substrate crystallinity and the on-state resistances of silicon carbide (SiC) photoconductive semiconductor switches (PCSSs) was investigated. PCSSs with different channel lengths were fabricated on semi insulating 6H–SiC having different crystal qualities. A method was introduced for determining the photoconductive capacity of the SiC PCSSs. The experimental data suggest that the photoconductive capacity decreases sharply with the degradation of the full width at half maximum of the rocking curve of the 6H–SiC substrates. It is found that increasing the carrier mobility is a key factor for reducing the on-state resistance of the 6H–SiC PCSSs. Moreover, the results in this work present reference for the selection of 6H–SiC substrates for the fabrication of PCSSs and some other photoelectric devices.
The localization of heat shock protein 70 (HSP70) and HSP70 mRNA in the heart, liver, lung, kidney, spleen, thymus and cloacal bursa in broilers that were heat stressed for 6 h was conducted using immunohistochemistry and in situ hybridization techniques. Positive HSP70 mRNA signals were detected in the liver and lung, especially in the vessel walls. A weak presence was found in the myocardial cells. No significant signals were observed in spleen, thymus and cloacal bursa. HSP70 was observed in the vessel walls of all investigated broiler tissues. Localizations of HSP70 and HSP70 mRNA suggest that HSP70 could be correlated with cardiovascular function.
The molecular mechanisms underlying the involvement of oligodendrocytes in formation of the nodes of Ranvier (NORs) remain poorly understood. Here we show that oligodendrocyte-myelin glycoprotein (OMgp) aggregates specifically at NORs. Nodal location of OMgp does not occur along demyelinated axons of either Shiverer or proteolipid protein (PLP) transgenic mice. Over-expression of OMgp in OLN-93 cells facilitates process outgrowth. In transgenic mice in which expression of OMgp is down-regulated, myelin thickness declines, and lateral oligodendrocyte loops at the node-paranode junction are less compacted and even join together with the opposite loops, which leads to shortened nodal gaps. Notably, each of these structural abnormalities plus modest down-regulation of expression of Na+ channel α subunit result in reduced conduction velocity in the spinal cords of the mutant mice. Thus, OMgp that is derived from glia has distinct roles in regulating nodal formation and function during CNS myelination.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.