We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Pie charts are often used to communicate risk, such as the risk of driving. In the foreground-background salience effect (FBSE), foreground (probability of bad event) has greater salience than background (no bad event) in such a chart. Experiment 1 confirmed that the displays format of pie charts showed a typical FBSE. Experiment 2 showed that the FBSE resulted from a difference in cognitive efforts in processing the messages and that a foreground-emphasizing display was easier to process. Experiment 3 manipulated subjects’ information processing mindset and explored the interaction between displays format and information processing mindset. In the default mindset, careless subjects displayed a typical FBSE, while those who were instructed to be careful reported similar risk-avoidant behavior preference reading both charts. Suggestions for improving risk communication are discussed.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
This study is performed to figure out how the presence of diabetes affects the infection, progression and prognosis of 2019 novel coronavirus disease (COVID-19), and the effective therapy that can treat the diabetes-complicated patients with COVID-19. A multicentre study was performed in four hospitals. COVID-19 patients with diabetes mellitus (DM) or hyperglycaemia were compared with those without these conditions and matched by propensity score matching for their clinical progress and outcome. Totally, 2444 confirmed COVID-19 patients were recruited, from whom 336 had DM. Compared to 1344 non-DM patients with age and sex matched, DM-COVID-19 patients had significantly higher rates of intensive care unit entrance (12.43% vs. 6.58%, P = 0.014), kidney failure (9.20% vs. 4.05%, P = 0.027) and mortality (25.00% vs. 18.15%, P < 0.001). Age and sex-stratified comparison revealed increased susceptibility to COVID-19 only from females with DM. For either non-DM or DM group, hyperglycaemia was associated with adverse outcomes, featured by higher rates of severe pneumonia and mortality, in comparison with non-hyperglycaemia. This was accompanied by significantly altered laboratory indicators including lymphocyte and neutrophil percentage, C-reactive protein and urea nitrogen level, all with correlation coefficients >0.35. Both diabetes and hyperglycaemia were independently associated with adverse prognosis of COVID-19, with hazard ratios of 10.41 and 3.58, respectively.
Acritarch biostratigraphic and δ13C chemostratigraphic data from the Krol A Formation in the Solan area (Lesser Himalaya, northern India) are integrated to aid inter-basinal correlation of early–middle Ediacaran strata. We identified a prominent negative δ13C excursion (likely equivalent to EN2 in the lower Doushantuo Formation in the Yangtze Gorges area of South China), over a dozen species of acanthomorphs (including two new species—Cavaspina tiwariae Xiao n. sp., Dictyotidium grazhdankinii Xiao n. sp.), and numerous other microfossils from an interval in the Krol A Formation. Most microfossil taxa from the Krol A and the underlying Infra-Krol formations are also present in the Doushantuo Formation. Infra-Krol acanthomorphs support a correlation with the earliest Doushantuo biozone: the Appendisphaera grandis-Weissiella grandistella-Tianzhushania spinosa Assemblage Zone. Krol A microfossils indicate a correlation with the second or (more likely, when δ13C data are considered) the third biozone in the lower Doushantuo Formation (i.e., the Tanarium tuberosum-Schizofusa zangwenlongii or Tanarium conoideum-Cavaspina basiconica Assemblage Zone). The association of acanthomorphs with EN2 in the Krol Formation fills a critical gap in South China where chert nodules, and thus acanthomorphs, are rare in the EN2 interval. Like many other Ediacaran acanthomorphs assemblages, Krol A and Doushantuo acanthomorphs are distributed in low paleolatitudes, and they may represent a distinct paleobiogeographic province in east Gondwana. The Indian data affirm the stratigraphic significance of acanthomorphs and δ13C, clarify key issues of lower Ediacaran bio- and chemostratigraphic correlation, and strengthen the basis for the study of Ediacaran eukaryote evolution and paleobiogeography.
The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82–39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.
Schizophrenia is considered a polygenic disorder. People with schizophrenia and those with genetic high risk of schizophrenia (GHR) have presented with similar neurodevelopmental deficits in hemispheric asymmetry. The potential associations between neurodevelopmental abnormalities and schizophrenia-related risk genes in both schizophrenia and those with GHR remains unclear.
Aims
To investigate the shared and specific alternations to the structural network in people with schizophrenia and those with GHR. And to identify an association between vulnerable structural network alternation and schizophrenia-related risk genes.
Method
A total of 97 participants with schizophrenia, 79 participants with GHR and 192 healthy controls, underwent diffusion tensor imaging (DTI) scans at a single site. We used graph theory to characterise hemispheric and whole-brain structural network topological metrics. For 26 people in the schizophrenia group and 48 in the GHR group with DTI scans we also calculated their schizophrenia-related polygenic risk scores (SZ-PRSs). The correlations between alterations to the structural network and SZ-PRSs were calculated. Based on the identified genetic–neural association, bioinformatics enrichment was explored.
Results
There were significant hemispheric asymmetric deficits of nodal efficiency, global and local efficiency in the schizophrenia and GHR groups. Hemispheric asymmetric deficit of local efficiency was significantly positively correlated with SZ-PRSs in the schizophrenia and GHR groups. Bioinformatics enrichment analysis showed that these risk genes may be linked to signal transduction, neural development and neuron structure. The schizophrenia group showed a significant decrease in the whole-brain structural network.
Conclusions
The shared asymmetric deficits in people with schizophrenia and those with GHR, and the association between anomalous asymmetry and SZ-PRSs suggested a vulnerability imaging marker regulated by schizophrenia-related risk genes. Our findings provide new insights into asymmetry regulated by risk genes and provides a better understanding of the genetic–neural pathological underpinnings of schizophrenia.
The microstructure evolution, dynamic recrystallization (DRX) and precipitation of the ZM61 alloy sheets prepared with different rolling conditions were studied. The DRX grain sizes (dDRX) at four high strain rate rolling (HSRR) temperatures (275–350 °C) are 1.9, 2.3, 2.6 and 3.1 μm, respectively, while the DRX volume fractions (fVDRX) are 69, 73, 76 and 82%, respectively. 300 °C is selected as the optimal HSRR temperature. The dDRX and fVDRX of the alloys prepared by pre-rolling (PR) at 300 °C + HSRR are 1.0 μm and 91%, respectively. The PR treatment does not change the types of the precipitates but promotes the precipitation. The tensile strength (UTS) of 369 MPa and yield strength (YS) of 261 MPa can be achieved by HSRR at 300 °C, while a further increase in both UTS and YS can be obtained by PR treatment.
We aimed to evaluate the relationship of plasma Mg with the risk of new-onset hyperuricaemia and examine any possible effect modifiers in hypertensive patients. This is a post hoc analysis of the Uric acid (UA) Sub-study of the China Stroke Primary Prevention Trial (CSPPT). A total of 1685 participants were included in the present study. The main outcome was new-onset hyperuricaemia defined as a UA concentration ≥417 μmol/l in men or ≥357 μmol/l in women. The secondary outcome was a change in UA concentration defined as UA at the exit visit minus that at baseline. During a median follow-up duration of 4·3 years, new-onset hyperuricaemia occurred in 290 (17·2 %) participants. There was a significantly inverse relation of plasma Mg with the risk of new-onset hyperuricaemia (per sd increment; OR 0·85; 95 % CI 0·74, 0·99) and change in UA levels (per sd increment; β −3·96 μmol/l; 95 % CI −7·14, −0·79). Consistently, when plasma Mg was analysed as tertiles, a significantly lower risk of new-onset hyperuricaemia (OR 0·67; 95 % CI 0·48, 0·95) and less increase in UA levels (β −8·35 μmol/l; 95 % CI −16·12, −0·58) were found among participants in tertile 3 (≥885·5 μmol/l) compared with those in tertile 1 (<818·9 μmol/l). Similar trends were found in males and females. Higher plasma Mg levels were associated with a decreased risk of new-onset hyperuricaemia in hypertensive adults.
The experiment was conducted to investigate the effects of dietary threonine (Thr) on growth performance and muscle growth, protein synthesis and antioxidant-related signalling pathways of hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. A total of 1200 fish (14·19 (se 0·13) g) were randomly distributed into six groups with four replicates each, fed six diets with graded level of Thr (9·5, 11·5, 13·5, 15·4, 17·4 and 19·3 g/kg diets) for 56 d. Results showed (P < 0·05) that dietary Thr (1) increased percentage weight gain, specific growth rate, feed efficiency and protein efficiency ratio; (2) up-regulated growth hormone (GH), insulin-like growth factor 1 (IGF-1), proliferating cell nuclear antigen, myogenic regulation factors (MyoD, Myf5, MyoG and Mrf4) and myosin heavy chain (MyHC) mRNA levels; (3) increased muscle protein content via regulating the protein kinase B/target of rapamycin signalling pathway and (4) decreased malondialdehyde and protein carbonyl contents, increased catalase, glutathione-S-transferase, glutathione reductase and GSH activities, up-regulated mRNA levels of antioxidant enzymes related to NFE2-related factor 2 and γ-glutamylcysteine ligase catalytic subunit. These results suggest that Thr has a potential role to improve muscle growth and protein synthesis, which might be due to the regulation of GH-IGF system, muscle growth-related gene, antioxidative capacity and protein synthesis-related signalling pathways. Based on the quadratic regression analysis of specific growth rate, the Thr requirement of hybrid catfish (14·19–25·77 g) was estimated to be 13·77 g/kg of the diet (33·40 g/kg of dietary protein).
The jungles of Linyun and Longlin Autonomous Prefecture, located in the heart of the southwestern Guangxi Zhuang Autonomous Region of China, are home to the oldest tea trees (Camellia sinensis) in the world. In the absence of regular annual rings, radiocarbon (14C) dating is one of the most powerful tools that can assist in the determination of the ages and growth rates of these plants. In this work, cores were extracted from large ancient tea trees in a central Longlin rain forest; extraction of carbon was performed with an automated sample preparation system. The 14C levels in the tree cores were measured using accelerator mass spectrometry (AMS) at the University of Tsukuba. These measurements indicated that contrary to conventional views, the ages of trees in these forests range up to ~700 years, and the growth rate of this species is notably slow, exhibiting a long-term radial growth rate of 0.039±0.006 cm/yr. It was demonstrated that 14C analyses provide accurate determination of ages and growth rates for subtropical wild tea trees.
Endometrial injury is an important cause of intrauterine adhesion (IUA), amenorrhea and infertility in women, with limited effective therapies. Recently, stem cells have been used in animal experiments to repair and improve injured endometrium. To date, our understanding of adipose-derived stem cells (ADSCs) in endometrial injury repair and their further therapeutic mechanisms is incomplete. Here, we examined the benefit of ADSCs in restoration of injured endometrium by applying a rat endometrial injury model. The results revealed by immunofluorescence showed that green fluorescent protein (GFP)-labelled ADSCs can differentiate into endometrial epithelial cells in vivo. At 30 days after ADSCs transplantation, injured endometrium was significantly improved, with increased microvessel density, endometrial thickness and glands when compared with the model group. Furthermore, the fertility of rats with injured endometrium in ADSCs group was improved and had a higher conception rate (60% vs 20%, P = 0.014) compared with the control phosphate-buffered saline (PBS) group. However, there was no difference in the control group compared with the sham group. In addition, expression levels of the oestrogen receptor Eα/β (ERα, ERβ) and progesterone receptor (PR) detected by western blot and enzyme-linked immunosorbent assay (ELISA) were higher in the ADSCs group than in the PBS group. Taken together, these results suggested that ADSC transplantation could improve endometrial injury as a novel therapy for IUA.
Genome-wide association studies (GWAS) have consistently revealed that a variant of microRNA 137 (MIR137) shows a quite significant association with schizophrenia. Identifying the network of genes regulated by MIR137 could provide insights into the biological processes underlying schizophrenia. In addition, DLPFC functional connectivity, a robust correlate of MIR137, may provide plausible endophenotypes. However, the regulatory role of the MIR137 gene network in the disrupted functional connectivity remains unclear. Here, we tested the effects of the MIR137 regulated genes on the risk for schizophrenia and DLPFC functional connectivity.
Methods
To evaluate the additive effects of the MIR137 regulated genes (N = 1274), we calculated a MIR137 polygenic risk score (PRS) for schizophrenia and tested its association with the risk for schizophrenia in the genomic data of a Han Chinese population that included schizophrenia patients (N = 589) and normal controls (N = 575). We then investigated the association between MIR137 PRS and DLPFC functional connectivity in two independent young healthy cohorts (N = 356 and N = 314).
Results
We found that the MIR137 PRS successfully captured the differences in genetic structure between the patients and controls, but the single gene MIR137 did not. We then consistently found that a higher MIR137 PRS was correlated with lower functional connectivities between the DLPFC and both the superior parietal cortex and the inferior temporal cortex in two independent cohorts.
Conclusion
The findings suggested that these two functional connectivities of the DLPFC could be important endophenotypes linking the MIR137-regulated genetic structure to schizophrenia.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
The timing of the Holocene summer monsoon maximum (HSMM) in northeastern China has been much debated and more quantitative precipitation records are needed to resolve the issue. In the present study, Holocene precipitation and temperature changes were quantitatively reconstructed from a pollen record from the sediments of Tianchi Crater Lake in northeastern China using a plant functional type-modern analogue technique (PFT-MAT). The reconstructed precipitation record indicates a gradual increase during the early to mid-Holocene and a HSMM at ~5500–3100 cal yr BP, while the temperature record exhibits a divergent pattern with a marked rise in the early Holocene and a decline thereafter. The trend of reconstructed precipitation is consistent with that from other pollen records in northeastern China, confirming the relatively late occurrence of the HSMM in the region. However, differences in the onset of the HSMM within northeastern China are also evident. No single factor appears to be responsible for the late occurrence of the HSMM in northeastern China, pointing to a potentially complex forcing mechanism of regional rainfall in the East Asian monsoon region. We suggest that further studies are needed to understand the spatiotemporal pattern of the HSMM in the region.
Chitooligosaccharides (COS) are multi-functional foods and nutrients and environmentally friendly biological abiotic-resistance inducing agents for plants. In the current study, the effects and possible mechanisms of COS on improving the cold resistance of rice (II YOU 1259) seedlings were investigated. Compared with the control, a COS pre-soaking treatment enhanced photosynthesis, reduced oxidation damage and led to accumulation of more osmotic regulation substances under chilling treatment. In addition, a novel Deg/HtrA family serine endopeptidase (DegQ) gene, related to COS enhanced rice cold resistance, was identified. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that transcription of DegQ and psbA (D1 protein encoding gene) were up-regulated in a time-dependent manner by COS treatment under cold stress. With increasing expression of the D1 protein, chlorophyll b content was enhanced correspondingly. The current results suggest that COS could enhance cold stress tolerance of rice by repairing the photodamaged photosystem II, altering osmotic regulation and reducing oxidation damage.
Since 2010, Jankowski’s Bunting Emberiza jankowskii has been listed as ‘Endangered’ on the IUCN Red List of Threatened Species. However, because no comprehensive surveys had been conducted, it was not known whether undiscovered populations existed elsewhere, so the population status of the species could not be assessed accurately. The aim of this study was to assess the breeding distribution and population size of Jankowski’s Bunting in China. Fifty sites in Inner Mongolia, and Jilin, Heilongjiang, Liaoning and Hebei Provinces were surveyed to locate suitable habitat and breeding populations of Jankowski’s Bunting. The surveyed sites included historical breeding distribution areas, wintering sites, and regions adjacent to historical breeding distribution areas. We confirmed that Jankowski’s Bunting has disappeared from most of its former breeding distributions, with the exceptions of Dagang, Xiergen and Tumiji. Additionally, 13 new breeding sites were discovered in Inner Mongolia. All currently known populations breed in Mongolian steppe-vegetation zones, with shrubs dominated by the natural Siberian apricot Prunus sibirica, indicating that this type of habitat is crucial for the survival of the species. Based on remote sensing, the suitable breeding habitat for Jankowski’s Bunting is estimated to be approximately 280 km2. The population size of Jankowski’s Bunting could range between 9,800 and 12,500 individuals, which is much higher than the numbers estimated in previous reports that were based on partial surveys. The suitable habitat remaining in Inner Mongolia would highly benefit from the implementation of the National Key Public Forest Protection Project. The population size of Jankowski’s Bunting is larger than previously estimated, but it is still threatened by habitat degradation and fragmentation, and our survey results reinforce the need for more research. The status of Jankowski’s Bunting in China still meets the IUCN criteria B2ab for an ‘Endangered’ species.
In this work, the hybrid carbon nanofibers (Cu2O/CNFs) containing cuprous oxide (Cu2O) nanoparticles were prepared by a convenient electrospinning method and following a carbonization treatment. The morphology, composition, and microstructure of the Cu2O/CNFs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffractometer. The as-prepared Cu2O/CNFs exhibited a stronger absorption in the range of 250–700 nm. The band gap energy of the Cu2O/CNFs was estimated to be 2.0 eV. Due to the synergistic effect between photocatalytic activity of Cu2O and excellent adsorption capacity of CNFs, the obtained Cu2O/CNFs exhibited excellent photocatalytic activity for degradation of rhodamine B (RhB) and phenol. The possible mechanism for degradation of RhB and phenol degradation were also discussed. The resultant hybrid carbon composites offer the significant advantages, such as low dosage, high catalytic activity, easy recycling, and excellent stability. We hope that the resultant hybrid composite Cu2O/CNFs could be applied as catalytic materials for further application in the future.