We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Improving grain yield and lodging resistance are two important targets for improving rice production. The aim of this study was to link grain yield and lodging resistance with growth patterns in rice. A nitrogen (N) fertilization experiment was conducted in 2020 and 2021, which consisted of two N rates (150 and 225 kg ha–1) and three N split-application ratios among the basal, early tillering, and panicle initiation stages (6:3:1, 5:3:2, and 4:3:3). The results demonstrated that increasing the N rate from 150 to 225 kg ha–1 did not affect grain yield but increased the plant lodging index by 16%. This increase in the plant lodging index was attributable to a higher plant fresh weight resulting from improved post-heading growth and a lower plant lodging load, which was partially due to a higher leaf area index. Altering the N split-application ratio from 6:3:1 to 4:3:3 increased grain yield by 4% but did not affect the plant lodging index in rice. The increase in grain yield was due to improved post-heading growth mainly resulting from increased radiation use efficiency during the post-heading period, which was partially attributable to increased specific leaf weight. An improvement in pre-heading growth in 2021 did not affect grain yield but increased the plant lodging load and decreased the plant lodging index by 36% compared to 2020. The improvement in pre-heading growth was due to a higher intercepted solar radiation resulting from higher leaf area index and incident solar radiation during the pre-heading period. The results of this study indicate that improving pre-heading growth can maintain grain yield and increase lodging resistance, while improving post-heading growth by increasing canopy radiation use efficiency (but not the leaf area index) can increase grain yield and maintain lodging resistance.
This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass, which will be utilized under liquid cooling conditions for high-power laser systems. The thermal stress, interface bubbles and residual reflectivity, which are due to high-temperature casting and bonding during the monolithic edge-cladding process, are simulated and determined. The applied mould is optimized to a rectangular cavity mould, and the casting temperature is optimized to 1000°C. The resulting lower bubble density makes the mean residual reflectivity as low as 6.75 × 10−5, which is enough to suppress the amplified spontaneous emission generated in the Nd-glass disk, and the resulting maximum optical retardation is converged to 10.2–13.3 nm/cm, which is a favourable base for fine annealing to achieve the stress specification of less than or equal to 5 nm/cm. After fine annealing at the optimized 520°C, the maximum optical retardation is as low as 4.8 nm/cm, and the minimum transmitted wavefront peak-to-valley value is 0.222 wavelength (632.8 nm). An N31 elliptical disk with the size of 194 mm × 102 mm × 40 mm can be successfully cladded by the optimized monolithic edge-cladding process, whose edge-cladded disk with the size of 200 mm × 108 mm × 40 mm can achieve laser gain one-third higher than that of an N21-type disk of the same size.
The development of high-yielding, short-duration super-rice hybrids is important for ensuring food security in China where multiple cropping is widely practiced and large-scale farming has gradually emerged. In this study, field experiments were conducted over 3 years to identify the yield formation characteristics in the shorter-duration (∼120 days) super-rice hybrid ‘Guiliangyou 2’ (G2) by comparing it with the longer-duration (∼130 days) super-rice hybrid ‘Y-liangyou 1’ (Y1). The results showed that G2 had a shorter pre-heading growth duration and consequently a shorter total growth duration compared to Y1. Compared to Y1, G2 had lower total biomass production that resulted from lower daily solar radiation, apparent radiation use efficiency (RUE), crop growth rate (CGR), and biomass production during the pre-heading period, but the grain yield was not significantly lower than that of Y1 because it was compensated for by the higher harvest index that resulted from slower leaf senescence (i.e., slower decline in leaf area index during the post-heading period) and higher RUE, CGR, and biomass production during the post-heading period. Our findings suggest that it is feasible to reduce the dependence of yield formation on growth duration to a certain extent in rice by increasing the use efficiency of solar radiation through crop improvement and also highlight the need for a greater fundamental understanding of the physiological processes involved in the higher use efficiency of solar radiation in super-rice hybrids.
Double-layer absorbers have recently been extensively studied because single-layer absorbers can hardly meet the requirements of advanced absorbing materials. However, determining how to couple the matching and absorption layers remains a challenge. In the present work, we applied the hydrothermal method to prepare an ultrasmall Fe3O4 nanoparticle and a hierarchical MXene/Fe3O4 composite and then studied the microwave attenuation capabilities of single- and double-layer absorbers containing these two materials with different thicknesses. Absorbers with well-coupled layers showed improved absorption performance on account of the excellent impedance matching behavior of the Fe3O4 layer and the high microwave attenuation capability of the MXene/Fe3O4 layer. When the thickness of the matching layer filled with Fe3O4 was 0.1 mm and that of the absorption layer filled with MXene/Fe3O4 was 1.9 mm, a maximum reflection loss of −48.7 dB was achieved at 9.9 GHz. More importantly, when the thicknesses of the matching and absorption layers were 0.9 and 1.1 mm, respectively, the effective bandwidth was nearly 3.9 GHz. The double-layer absorbers with enhanced absorption properties may be regarded as a new generation of materials for electromagnetic wave absorption.
The South Altyn Orogenic Belt (SAOB) is one of the most important orogenic belts in NW China, consisting of the South Altyn Continental Block and the Apa–Mangya Ophiolitic Mélange Belt. However, its Palaeozoic tectonic evolution is still controversial. Here, we present petrological, geochemical, zircon U–Pb and Lu–Hf isotopic data for the Mangya plutons with the aim of establishing the Palaeozoic tectonic evolution. We divide the Early Palaeozoic magmatism in the Apa–Mangya Ophiolitic Mélange Belt into four episodes and propose a plate tectonic model for the formation of these rocks. During 511–494 Ma, the South Altyn Ocean (SAO) was in a spreading stage, and some shoshonite series, I-type granitic rocks were generated. From 484 to 458 Ma, the oceanic crust of the SAO subducted northward, accompanied by large-scale magmatic events resulting in the generation of vast high-K calc-alkaline series, I-type granitic rocks. During 450–433 Ma, the SAO closed, and break-off of the subducted oceanic slab occurred, with the generation of some high-K calc-alkaline series, I–S transitional type granites. The SAOB was in post-orogenic extensional environment from 419 to 404 Ma, and many A-type granites were generated.
Maintenance haemodialysis (MHD) is the use of a machine to filter wastes, salts and fluid from blood for at least 3 months to prolong the life of patients with advanced kidney failure. Although low dietary energy intake (DEI) has been observed in MHD patients, few studies have related DEI to the risk of mortality. To explore this relationship, a study included 1039 MHD patients from eight centres was conducted. DEI was assessed by three 24-h diet recalls and was normalised to ideal body weight (IBW). All-cause mortality and CVD mortality were the primary and secondary outcomes, respectively. During a median follow-up of 28 months, a U-shaped relationship was observed between DEI and all-cause or CVD mortality. The risk of all-cause mortality decreased significantly with the increase of DEI in participants with DEI <167·4 kJ/kg IBW per d (hazard ratio (HR) 0·98; 95 % CI 0·96, 1·00) and increased significantly with the increase of DEI in those with DEI ≥167·4 kJ/kg IBW per d (HR 1·12; 95 % CI 1·04, 1·20). Similarly, the risk of CVD mortality decreased with the increase of DEI in participants with DEI <152·7 kJ/kg IBW per d (HR 0·96; 95 % CI 0·93, 0·99) and increased with the increase of DEI in participants with DEI ≥152·7 kJ/kg IBW per d (HR 1·11; 95 % CI 1·04, 1·18). In summary, there was a U-shaped association between DEI and all-cause or CVD mortality, with a turning point at about 167·4 and 152·7 kJ/kg IBW per d, respectively, in MHD patients.
We previously reported four heterozygous missense mutations of MYH7, KCNQ1, MYLK2, and TMEM70 in a single three-generation Chinese family with dual Long QT and hypertrophic cardiomyopathy phenotypes for the first time. However, the clinical course among the family members was various, and the potential myocardial dysfunction has not been investigated.
Objectives
The objective of this study was to investigate the echocardiographic and electrocardiographic characteristics in a genetic positive Chinese family with hypertrophic cardiomyopathy and further to explore the association between myocardial dysfunction and electric activity, and the identified mutations.
Methods
A comprehensive echocardiogram – standard two-dimensional Doppler echocardiography and three-dimensional speckle tracking echocardiography – and electrocardiogram were obtained for members in this family.
Results
As previously reported, four missense mutations – MYH7-H1717Q, KCNQ1-R190W, MYLK2-K324E, and TMEM70-I147T – were identified in this family. The MYH7-H1717Q mutation carriers had significantly increased left ventricular mass indices, elevated E/e’ ratio, deteriorated global longitudinal stain, but enhanced global circumferential and radial strain compared with those in non-mutation patients (all p<0.05). The KCNQ1-R190W carriers showed significantly prolonged QTc intervals, and the MYLK2-K324E mutation carriers showed inverted T-waves (both p<0.05). However, the TMEM70-I147T mutation carriers had similar echocardiography and electrocardiographic data as non-mutation patients.
Conclusions
Three of the identified four mutations had potential pathogenic effects in this family: MYH7-H1717Q was associated with increased left ventricular thickness, elevated left ventricular filling pressure, and altered myocardial deformation; KCNQ1-R190W and MYLK2-K324E mutations were correlated with electrocardiographic abnormalities reflected in long QT phenotype and inverted T-waves, respectively.
Previous neuroimaging studies demonstrated that retinal detachment (RD) subjects were associated with abnormal spontaneous brain activities; however, whether the altered interhemispheric functional connectivity (FC) occurred in RD patients remains unknown. The current study tried to explore the alternations of interhemispheric FC of the whole brain in unilateral RD patients using the voxel-mirrored homotopic connectivity (VMHC) method and their connections to clinical features. Methods: We recruited 30 patients with RD (16 males and 14 females) and 30 healthy controls (HCs) (16 males and 14 females) whose age and sex were closely matched. All subjects underwent the rs-fMRI scans. The VMHC method was applied to directly assess the hemispheres’ functional interaction. The VMHC in these brain areas, which could be used as biomarkers to differentiate RD from HC, was identified by the receiver operating characteristic (ROC) curve analyses. The relations between these patients’ clinical features and their mean VMHC signal values in multiple brain regions were calculated by Pearson correlation analysis. Results: RD patients had significantly lower VMHC values than HCs in the bilateral occipital lobe (Brodmann areas, BA 18), bilateral superior temporal gyrus (BA 39), and bilateral cuneus (BA 19). Moreover, the mean VMHC signal values of the bilateral cuneus were in positive correlation with the duration of the RD (r = 0.446, P = 0.013). Conclusion: Our results provided an evidence of disturbed interhemispheric FC in the visual area occurred in RD patients, which might provide some useful information to understand the neural mechanism of RD patients with acute vision loss. Furthermore, the VMHC values might indicate the progress of the RD.
The neuropsychological origins of negative syndrome of schizophrenia remain elusive. Evidence from behavioural studies, which utilised emotion-inducing pictures to elicit motivated behaviour generally reported that that schizophrenia patients experienced similar affective experience as healthy individuals but failed to translate emotional salience to motivated behaviour, a phenomenon called emotion–behaviour decoupling. However, a few studies have examined emotion–behaviour decoupling in non-psychotic high-risk populations, who are relatively unaffected by medication effects.
Methods
In this study, we examined the nature and extent of emotion–behaviour decoupling in in three independent samples (65 schizophrenia patients v. 63 controls; 40 unaffected relatives v. 45 controls; and 32 individuals with social anhedonia v. 32 controls). We administered an experimental task to examine their affective experience and its coupling with behaviour, using emotion-inducing slides, and allowed participants to alter stimulus exposure using button-pressing to seek pleasure or avoid aversion.
Results
Schizophrenia patients reported similar affective experiences as their controls, while their unaffected relatives and individuals with high levels of social anhedonia exhibited attenuated affective experiences, in particular in the arousal aspect. Compared with their respective control groups, all of the three groups showed emotion–behaviour decoupling.
Conclusions
Our findings support that both genetically and behaviourally high-risk groups exhibit emotion–behaviour decoupling. The familial association apparently supports its role as a putative trait marker for schizophrenia.
By
Victor R. Lee, Utah State University,
Min Yuan, Utah State University,
Lei Ye, Pacific Northwest University of Health Sciences,
Mimi Recker, Utah State University
In late 2010, the online services giant Google released a tool for public use called the Google Books Ngram Viewer. The Ngram viewer was a Web interface that enabled virtually anyone with an Internet connection to run frequency searches of character strings in a corpus of more than 5.2 million digitized books, or roughly 500 billion words, published between the sixteenth and twenty-first centuries. With these massive corpora at hand, a new branch of humanistic research has been established, dubbed “culturomics” (Michel et al., 2011). Culturomics enables investigators to examine changes over time reflected in print material associated with the lexicon being used and can offer evidence of social patterns and orientations within a language community. For example, one could use the Ngram viewer to chart how often the word “slavery” was printed over time and see that it increased dramatically in the years leading up to the US Civil War and had since declined substantially. Similarly, one could look at the appearance of technological innovations, such as the radio and the telephone, in print material and infer that the rate of cultural adoption of these technologies has increased over time. These kinds of capabilities are not contingent on the existence of the Ngram Viewer, but rather reflective of how analysts can look toward word usage in print materials from different times to understand changes within a community and culture (e.g., Lieberman et al., 2007).
What would such an approach tell us about the learning sciences (LS)? Granted, the field spans decades rather than centuries, and the corpus of associated text is modest even against the wide range of education research literature published during the same period of time. However, it is our suspicion that even for a field that is still emerging and establishing its academic identity, an examination of frequency of word use across different times could be informative for our understanding of the field. This chapter summarizes some of our efforts to do that work. Building upon an analysis presented in 2012 (Lee, Ye, & Recker, 2012), we provide here an elaborated comparative analysis of proceedings from the first and the most recent (at the time of this writing) LS conferences (Birnbaum, 1991; Polman et al., 2014), as well as a third conference, roughly collocated with the first LS conference (Gomez, Lyons, & Radinsky, 2010).
In the present study, we investigated whether high dietary Ca and exogenous parathyroid hormone 1–34 fragments (PTH 1–34) have synergistic effects on bone formation in adult mice, and explored the related mechanisms. Adult male mice were fed a normal diet, a high-Ca diet, a PTH-treated diet, or a high-Ca diet combined with subcutaneously injected PTH 1–34 (80 μg/kg per d) for 4 weeks. Bone mineral density, trabecular bone volume, osteoblast number, alkaline phosphatase (ALP)- and type I collagen-positive areas, and the expression levels of osteoblastic bone formation-related genes and proteins were increased significantly in mice fed the high-Ca diet, the PTH-treated diet, and, even more dramatically, the high-Ca diet combined with PTH. Osteoclast number and surface and the ratio of receptor activator for nuclear factor-κB ligand (RANKL):osteoprotegerin (OPG) were decreased in the high-Ca diet treatment group, increased in the PTH treatment group, but not in the combined treatment group. Furthermore, third-passage osteoblasts were treated with high Ca (5 mm), PTH 1–34 (10− 8m) or high Ca combined with PTH 1–34. Osteoblast viability and ALP activity were increased in either the high Ca-treated or PTH-treated cultures and, even more dramatically, in the cultures treated with high Ca plus PTH, with consistent up-regulation of the expression levels of osteoblast proliferation and differentiation-related genes and proteins. These results indicate that dietary Ca and PTH play synergistic roles in promoting osteoblastic bone formation by stimulating osteoblast proliferation and differentiation.
The predictions of Length-Of-Day (LOD) are studied by means of Gaussian Process Regression (GPR). The EOP C04 time-series with daily values from the International Earth Rotation and Reference Systems Service (IERS) serve as the data basis. Firstly, well known effects that can be described by functional models, for example effects of the solid Earth and ocean tides or seasonal atmospheric variations, are removed a priori from the C04 time-series. Only the differences between the modelled and actual LOD, i.e. the irregular and quasi-periodic variations, are employed for training and prediction. Different input patterns are discussed and compared so as to optimise the GPR model. The optimal patterns have been found in terms of the prediction accuracy and efficiency, which conduct the multi-step ahead predictions utilising the formerly predicted values as inputs. Finally, the results of the predictions are analysed and compared with those obtained by other prediction methods. It is shown that the accuracy of the predictions are comparable with that of other prediction methods. The developed method is easy to use.
An all-solid-state single-frequency 1064 nm laser with a $100~{\rm\mu}\text{s}$ pulse width, 500 Hz repetition rate and 700 mJ single pulse energy is designed using seed injection and a three-stage master oscillator power amplifier (MOPA) construction. Using this as a basis, research on long-pulse laser frequency doubling is carried out. By designing and optimizing the lithium triborate (LBO) crystal, the theoretically calculated maximum conversion efficiency ${\it\eta}_{\max }$ reaches 68% at $M^{2}=1$, while ${\it\eta}_{\min }$ is 33% at $M^{2}=3$. Generation of 212 mJ pulses of green light with a repetition rate as high as 500 Hz is obtained from a fundamental energy of 700 mJ. The experimental conversion efficiency reaches 31% and the power stability is better than $\pm 1\%$.
Oocyte-specific linker histone, H1foo, is localized on the oocyte chromosomes during the process of meiotic maturation, and is essential for mouse oocyte maturation. Bovine H1foo has been identified, and its expression profile throughout oocyte maturation and early embryo development has been established. However, it has not been confirmed if H1foo is indispensable during bovine oocyte maturation. Effective siRNAs against H1foo were screened in HeLa cells, and then siRNA was microinjected into bovine oocytes to down-regulate H1foo expression. H1foo overexpression was achieved via mRNA injection. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that H1foo was up-regulated by 200% and down-regulated by 70%. Based on the first polar body extrusion (PB1E) rate, H1foo overexpression apparently promoted meiotic progression. The knockdown of H1foo significantly impaired bovine oocyte maturation compared with H1foo overexpression and control groups (H1foo overexpression = 88.7%, H1foo siRNA = 41.2%, control = 71.2%; P < 0.05). This decrease can be rescued by co-injection of a modified H1foo mRNA that has escaped from the siRNA target. However, the H1e (somatic linker histone) overexpression had no effect on PB1E rate when compared with the control group. Therefore we concluded that H1foo is essential for bovine oocyte maturation and its overexpression stimulates the process.
Potassium dihydrogen phosphate (KDP) single crystals are the only nonlinear crystals currently used for electro-optic switches and frequency converters in inertial confinement fusion research, due to their large dimension and exclusive physical properties. Based on the traditional solution-growth process, large bulk KDP crystals, usually with sizes up to 600 $\times $ 600 mm$^{{2}}$ so as to make a frequency doubler for the facility requirement loading highly flux of power laser, can be grown in standard Holden-type crystallizers, without spontaneous nucleation and visible defects, one to two orders of magnitude faster than by conventional methods. Pure water and KDP raw material with a few ion impurities such as Fe, Cr, and Al (less than 0.1 ppm) were used. The rapid-growth method includes extreme conditions such as temperature range from 60 to 35$^{\circ }$C, overcooling up to 5$^{\circ }$C, growth rates exceeding 10 mm/day, and crystal size up to 600 mm. The optical parameters of KDP crystals were determined. The optical properties of crystals determined indicate that they are of favorable quality for application in the facility.
Nucleation doping strategy is an effective doping method; herein the synthesis of MnSe/CdSe nanocrystals using this strategy with different anion precursors was demonstrated. The resulted nanocrystals were characterized by various test technology to confirm the composition and structure. Wurtzite CdSe shell was achieved without using alkylphosphine, this is meaningful for the development of green chemistry. It is argued that the shell growth is more like a second nucleation process, rather than the epitaxial growth; this conclusion is believed to shed some light on the nucleation doping process.