Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T16:47:45.628Z Has data issue: false hasContentIssue false

Double-layer absorbers based on hierarchical MXene composites for microwave absorption through optimal combination

Published online by Cambridge University Press:  11 June 2020

Peijiang Liu*
Affiliation:
College of Electronic Information and Electrical Engineering, Xiangnan University, Chenzhou423000, China South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou510640, China College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing211100, Jiangsu, China School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798
Shuixian Chen
Affiliation:
College of Electronic Information and Electrical Engineering, Xiangnan University, Chenzhou423000, China
Min Yao
Affiliation:
College of Electronic Information and Electrical Engineering, Xiangnan University, Chenzhou423000, China
Zhengjun Yao*
Affiliation:
College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing211100, Jiangsu, China
Vincent Ming Hong Ng
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798
Jintang Zhou
Affiliation:
College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing211100, Jiangsu, China
Yiming Lei
Affiliation:
College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing211100, Jiangsu, China
Zhihong Yang
Affiliation:
College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing211100, Jiangsu, China
Ling Bing Kong*
Affiliation:
College of New Materials and New Energies, Shenzhen Technology University, Guangdong, China
*
a)Address all correspondence to these authors. e-mail: 253713869@qq.com
Get access

Abstract

Double-layer absorbers have recently been extensively studied because single-layer absorbers can hardly meet the requirements of advanced absorbing materials. However, determining how to couple the matching and absorption layers remains a challenge. In the present work, we applied the hydrothermal method to prepare an ultrasmall Fe3O4 nanoparticle and a hierarchical MXene/Fe3O4 composite and then studied the microwave attenuation capabilities of single- and double-layer absorbers containing these two materials with different thicknesses. Absorbers with well-coupled layers showed improved absorption performance on account of the excellent impedance matching behavior of the Fe3O4 layer and the high microwave attenuation capability of the MXene/Fe3O4 layer. When the thickness of the matching layer filled with Fe3O4 was 0.1 mm and that of the absorption layer filled with MXene/Fe3O4 was 1.9 mm, a maximum reflection loss of −48.7 dB was achieved at 9.9 GHz. More importantly, when the thicknesses of the matching and absorption layers were 0.9 and 1.1 mm, respectively, the effective bandwidth was nearly 3.9 GHz. The double-layer absorbers with enhanced absorption properties may be regarded as a new generation of materials for electromagnetic wave absorption.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

You, W., Bi, H., She, W., Zhang, Y., and Che, R.: Dipolar-distribution cavity gamma-Fe2O3@C@alpha-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 13(5), 1602779 (2017).CrossRefGoogle ScholarPubMed
Shi, X.-L., Cao, M.-S., Yuan, J., and Fang, X.-Y.: Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95(16), 163108 (2009).CrossRefGoogle Scholar
Sun, D., Zou, Q., Wang, Y., Wang, Y., Jiang, W., and Li, F.: Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6(12), 6557 (2014).CrossRefGoogle ScholarPubMed
Zhang, Y., Huang, Y., Zhang, T., Chang, H., Xiao, P., Chen, H., Huang, Z., and Chen, Y.: Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049 (2015).CrossRefGoogle ScholarPubMed
Han, M., Yin, X., Kong, L., Li, M., Duan, W., Zhang, L., and Cheng, L.: Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2(39), 16403 (2014).CrossRefGoogle Scholar
Chen, H., Huang, Z., Huang, Y., Zhang, Y., Ge, Z., Ma, W., Zhang, T., Wu, M., Xu, S., Fan, F., Chang, S., and Chen, Y.: Consecutively strong absorption from gigahertz to terahertz bands of a monolithic three-dimensional Fe3O4/graphene material. ACS Appl. Mater. Interfaces 11(1), 1274 (2019).CrossRefGoogle ScholarPubMed
Duan, W., Fan, Z., Wang, H., Zhang, J., Qiao, T., and Yin, X.: Electromagnetic interference shielding and mechanical properties of Si3N4–SiOC composites fabricated by 3D-printing combined with polymer infiltration and pyrolysis. J. Mater. Res. 32(17), 3394 (2017).CrossRefGoogle Scholar
Tong, G., Liu, F., Wu, W., Du, F., and Guan, J.: Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2(20), 7373 (2014).CrossRefGoogle Scholar
Liu, P., Ng, V.M.H., Yao, Z., Zhou, J., Lei, Y., Yang, Z., Lv, H., and Kong, L.B.: Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9(19), 16404 (2017).CrossRefGoogle ScholarPubMed
Li, Z., Li, X., Zong, Y., Tan, G., Sun, Y., Lan, Y., He, M., Ren, Z., and Zheng, X.: Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493 (2017).CrossRefGoogle Scholar
Wu, H., Wu, G., Ren, Y., Li, X., and Wang, L.: Multishelled metal oxide hollow spheres: Easy synthesis and formation mechanism. Chem. Eur. J. 22(26), 8864 (2016).CrossRefGoogle ScholarPubMed
Pang, H., Duan, Y., Liu, J., and Zhang, B.: Low-temperature synthesis and microwave absorbing properties of Mn3O4–graphene nanocomposite. J. Mater. Res. 33(23), 4062 (2018).CrossRefGoogle Scholar
Li, J.-S., Huang, H., Zhou, Y.-J., Zhang, C.-Y., and Li, Z.-T.: Research progress of graphene-based microwave absorbing materials in the last decade. J. Mater. Res. 32(7), 1213 (2017).CrossRefGoogle Scholar
Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M., and Gogotsi, Y.: Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137 (2016).CrossRefGoogle Scholar
Zhao, M.-Q., Ren, C.E., Ling, Z., Lukatskaya, M.R., Zhang, C., Van Aken, K.L., Barsoum, M.W., and Gogotsi, Y.: Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339 (2015).CrossRefGoogle ScholarPubMed
Liu, P., Ng, V.M.H., Yao, Z., Zhou, J., Lei, Y., Yang, Z., and Kong, L.B.: Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites. J. Alloys Compd. 701, 841 (2017).CrossRefGoogle Scholar
Su, L., Li, M., Wang, H., Niu, M., Lu, D., and Cai, Z.: Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 11(17), 15795 (2019).CrossRefGoogle ScholarPubMed
Han, M.K., Yin, X.W., Wu, H., Hou, Z.X., Song, C.Q., Li, X.L., Zhang, L.T., and Cheng, L.F.: Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011 (2016).CrossRefGoogle ScholarPubMed
Green, M. and Chen, X.: Recent progress of nanomaterials for microwave absorption. J. Materiomics 5(4), 503 (2019).CrossRefGoogle Scholar
Naguib, M., Mochalin, V.N., Barsoum, M.W., and Gogotsi, Y.: 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26(7), 992 (2014).CrossRefGoogle ScholarPubMed
Liu, P., Yao, Z., Ng, V.M.H., Zhou, J., Kong, L.B., and Yue, K.: Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Composites, Part A 115, 371 (2018).CrossRefGoogle Scholar
Liu, P., Ng, V.M.H., Yao, Z., Zhou, J., and Kong, L.B.: Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 229, 286 (2018).CrossRefGoogle Scholar
Liu, P., Yao, Z., Ng, V.M.H., Zhou, J., and Kong, L.B.: Novel multilayer-like structure of Ti3C2Tx/CNZF composites for low-frequency electromagnetic absorption. Mater. Lett. 248, 214 (2019).CrossRefGoogle Scholar
Narang, S.B. and Pubby, K.: Single-layer & double-layer microwave absorbers based on Co–Ti substituted barium hexaferrites for application in X and Ku-band. J. Mater. Res. 31(23), 3682 (2016).CrossRefGoogle Scholar
Li, Z., Wei, L., Gao, M.Y., and Lei, H.: One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 17(8), 1001 (2005).CrossRefGoogle Scholar
Liu, P., Yao, Z., Zhou, J., Yang, Z., and Kong, L.B.: Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4(41), 9738 (2016).CrossRefGoogle Scholar
Huang, Y., Ding, X., Li, S., Zhang, N., and Wang, J.: Magnetic reduced graphene oxide nanocomposite as an effective electromagnetic wave absorber and its absorbing mechanism. Ceram. Int. 42(15), 17116 (2016).CrossRefGoogle Scholar
Berkowitz, A.E., Schuele, W.J., and Flanders, P.J.: Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J. Appl. Phys. 39(2), 1261 (1968).CrossRefGoogle Scholar
Su, J., Cao, M., Ren, L., and Hu, C.: Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 115(30), 14469 (2011).CrossRefGoogle Scholar
Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., Gogotsi, Y., and Barsoum, M.W.: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78 (2014).CrossRefGoogle ScholarPubMed
Ling, Z., Ren, C.E., Zhao, M.-Q., Yang, J., Giammarco, J.M., Qiu, J., Barsoum, M.W., and Gogotsi, Y.: Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111(47), 16676 (2014).CrossRefGoogle ScholarPubMed
Liu, P., Yao, Z., and Zhou, J.: Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites. Ceram. Int. 42(7), 9241 (2016).CrossRefGoogle Scholar
Liu, P., Yao, Z., and Zhou, J.: Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites covered with reduced graphene oxide. RSC Adv. 5(114), 93739 (2015).CrossRefGoogle Scholar
Liu, T., Pang, Y., Zhu, M., and Kobayashi, S.: Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6(4), 2447 (2014).CrossRefGoogle ScholarPubMed
Wen, S.L., Liu, Y., Zhao, X.C., Cheng, J.W., and Li, H.: Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys. Chem. Chem. Phys. 16(34), 18333 (2014).CrossRefGoogle ScholarPubMed
Zhang, L., Yu, X., Hu, H., Li, Y., Wu, M., Wang, Z., Li, G., Sun, Z., and Chen, C.: Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. Sci. Rep. 5(1), 9298. doi: 10.1038/srep09298.CrossRefGoogle Scholar
Chen, Y., Song, B.H., Li, M., Lu, L., and Xue, J.M.: Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications. Adv. Funct. Mater. 24(3), 319 (2014).CrossRefGoogle Scholar
Du, Y., Liu, W., Qiang, R., Wang, Y., Han, X., Ma, J., and Xu, P.: Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6(15), 12997 (2014).CrossRefGoogle ScholarPubMed
Zhao, Y., Liu, L., Jiang, K., Fan, M., Jin, C., Han, J., Wu, W., and Tong, G.: Distinctly enhanced permeability and excellent microwave absorption of expanded graphite/Fe3O4 nanoring composites. RSC Adv. 7(19), 11561 (2017).CrossRefGoogle Scholar
Liu, P., Yao, Z., and Zhou, J.: Preparation of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceram. Int. 41(10), 13409 (s).CrossRefGoogle Scholar
Srivastava, C.M., Shringi, S.N., Srivastava, R.G., and Nanadikar, N.G.: Magnetic-ordering and domain-wall relaxation in zinc-ferrous ferrites. Phys. Rev. B 14(5), 2032 (1976).CrossRefGoogle Scholar
Wang, Z.Z., Bi, H., Wang, P.H., Wang, M., Liu, Z.W., Shen, L., and Liu, X.S.: Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals. Phys. Chem. Chem. Phys. 17(5), 3796 (2015).CrossRefGoogle ScholarPubMed
Ni, S., Sun, X., Wang, X., Zhou, G., Yang, F., Wang, J., and He, D.: Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater. Chem. Phys. 124(1), 353 (2010).CrossRefGoogle Scholar
Wu, H., Wang, L., Guo, S., and Shen, Z.: Double-layer structural design of dielectric ordered mesoporous carbon/paraffin composites for microwave absorption. Appl. Phys. A 108(2), 439 (2012).CrossRefGoogle Scholar
Feng, J., Zong, Y., Sun, Y., Zhang, Y., Yang, X., Long, G., Wang, Y., Li, X., and Zheng, X.: Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 345, 441 (2018).CrossRefGoogle Scholar
Tian, X., Meng, F., Meng, F., Chen, X., Guo, Y., Wang, Y., Zhu, W., and Zhou, Z.: Synergistic enhancement of microwave absorption using hybridized polyaniline@helical CNTs with dual chirality. ACS Appl. Mater. Interfaces 9(18), 15711 (2017).CrossRefGoogle ScholarPubMed
Meng, F., Wang, H., Huang, F., Guo, Y., Wang, Z., Hui, D., and Zhou, Z.: Graphene-based microwave absorbing composites: A review and prospective. Composites, Part B 137, 260 (2018).CrossRefGoogle Scholar
Liu, P.-J., Yao, Z.-J., Ng, V.M.H., Zhou, J.-T., Yang, Z.-H., and Kong, L.-B.: Enhanced microwave absorption properties of double-layer absorbers based on spherical NiO and Co0.2Ni0.4Zn0.4Fe2O4 ferrite composites. Acta Metall. Sin. 31(2), 171 (2018).CrossRefGoogle Scholar
Lu, M.-M., Cao, M.-S., Chen, Y.-H., Cao, W.-Q., Liu, J., Shi, H.-L., Zhang, D.-Q., Wang, W.-Z., and Yuan, J.: Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 7(34), 19408 (2015).CrossRefGoogle Scholar