We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between dietary inflammatory index (DII) and DKD in US adults.
Design:
This is a cross-sectional study.
Setting:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used. DII was calculated from 24-h dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations.
Participants:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used, which can provide the information of participants.
Results:
Four thousand two-hundred and sixty-four participants were included in this study. The adjusted OR of DKD was 1·04 (95 % CI 0·81, 1·36) for quartile 2, 1·24 (95 % CI 0·97, 1·59) for quartile 3 and 1·64 (95 % CI 1·24, 2·17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose–response pattern was observed between DII and DKD (Pnonlinearity = 0·73). In the stratified analyses, the OR for quartile 4 of DII were significant among adults with higher educational level (OR 1·83, 95 % CI 1·26, 2·66) and overweight or obese participants (OR 1·67, 95 % CI 1·23, 2·28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0·05).
Conclusions:
Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
Immunoprophylaxis has not completely eliminated hepatitis B virus (HBV) infection due to hyporesponsiveness to hepatitis B vaccine (HepB). We explored the impact of folic acid supplementation (FAS) in pregnant women with positive hepatitis B surface antigen (HBsAg) on their infant hepatitis B surface antibody (anti-HBs) and the mediation effect of infant interleukin-4 (IL-4). We recruited HBsAg-positive mothers and their neonates at baseline. Maternal FAS was obtained via a questionnaire, and neonatal anti-HBs and IL-4 were detected. Follow-up was performed at 11-13 months of age of infants, when anti-HBs and IL-4 were measured. We applied univariate and multivariate analyses. A mediation effect model was performed to explore the mediating role of IL-4. A total of 399 mother–neonate pairs were enrolled and 195 mother–infant pairs were eligible for this analysis. The infant anti-HBs geometric mean concentrations (GMCs) in the maternal FAS group were significnatly higher than those in the no-FAS group [383.8 mIU/ml, 95% confidence interval (CI): 294.2 mIU/ml to 500.7 mIU/ml vs. 217.0 mIU/ml, 95% CI: 147.0 mIU/ml to 320.4 mIU/ml, z=-3.2, P=0.001]. Infants born to women who took folic acid (FA) within the first trimester were more likely to have high anti-HBs titres (adjusted β-value=194.1, P=0.003). The fold change in IL-4 from neonates to infants partially mediated the beneficial influence of maternal FAS on infant anti-HBs (24.7% mediation effect) after adjusting for confounding factors. FAS during the first trimester to HBsAg-positive mothers could facilitate higher anti-HBs levels in infants aged 11-13 months partly by upregulating IL-4 in infants.
We aimed to investigate the associations between dietary branched-chain amino acids (BCAA) intake and long-term risks of CVD, cancer and all-cause mortality in nationwide survey participants aged ≥ 18.
Design:
This was a prospective cohort study. Dietary intakes of BCAA (leucine, isoleucine and valine) were determined from the total nutrient intake document. The main outcomes were CVD, cancer and all-cause mortality.
Setting:
A nationally representative sample of US adults were recruited by the National Center for Health Statistics (NCHS) from 1988 to 1994.
Participants:
A total of 14 397 adults aged ≥ 18 who participated in the United States National Health and Nutrition Examination Survey III (NHANES III) were included.
Results:
During 289 406 person-years of follow-up, we identified 4219 deaths, including 1133 from CVD and 926 from cancer. After multivariate adjustment, the hazard ratios (95 % confidence intervals) of all-cause mortality in the highest dietary BCAA and isoleucine intake quintile (reference: lowest quintiles) were 0·68 (0·48, 0·97) and 0·68 (0·48, 0·97), respectively. Each one-standard-deviation increase in total dietary BCAA or isoleucine intake was associated with an 18 % or 21 % decrease in the risk of all-cause mortality, respectively. The serum triglyceride (TAG) concentration was found to modify the association between the dietary BCAA intake and all-cause mortality (Pfor interaction = 0·008).
Conclusions:
In a nationally representative cohort, higher dietary intakes of BCAA and isoleucine were independently associated with a lower risk of all-cause mortality, and these associations were stronger in participants with higher serum TAG concentrations.
The association between dietary Fe intake and diabetes risk remains inconsistent. We aimed to explore the association between dietary Fe intake and type 2 diabetes mellitus (T2DM) risk in middle-aged and older adults in urban China. This study used data from the Guangzhou Nutrition and Health Study, an on-going community-based prospective cohort study. Participants were recruited from 2008 to 2013 in Guangzhou community. A total of 2696 participants aged 40–75 years without T2DM at baseline were included in data analyses, with a median of 5·6 (interquartile range 4·1–5·9) years of follow-up. T2DM was identified by self-reported diagnosis, fasting glucose ≥ 7·0 mmol/l or glycosylated Hb ≥ 6·5 %. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95 % CI. We ascertained 205 incident T2DM cases during 13 476 person-years. The adjusted HR for T2DM risk in the fourth quartile of haem Fe intake was 1·92 (95 % CI 1·07, 3·46; Ptrend = 0·010), compared with the first quartile intake. These significant associations were found in haem Fe intake from total meat (HR 2·74; 95 % CI 1·22, 6·15; Ptrend = 0·011) and haem Fe intake from red meat (HR 1·86; 95 % CI 1·01, 3·44; Ptrend = 0·034), but not haem Fe intake from processed meat, poultry or fish/shellfish. The association between dietary intake of total Fe or non-haem Fe with T2DM risk had no significance. Our findings suggested that higher dietary intake of haem Fe (especially from red meat), but not total Fe or non-haem Fe, was associated with greater T2DM risk in middle-aged and older adults.
The impact of diet on the metabolic syndrome (MetS) and CVD has been investigated widely, but few studies have investigated the association between dietary patterns (DP) and the predicted CVD, derived from reduced rank regression (RRR). The objectives of this study were to derive DP using RRR and principal component analysis (PCA) and investigate their associations with the MetS and estimated 10-year atherosclerotic CVD (ASCVD). We used the baseline dataset from the Xinjiang multi-ethnic cohort study in China, collected from June 2018 to May 2019. A total of 14 982 subjects aged 35–74 years from Urumqi, Huo Cheng and Mo Yu were included in the analysis. The 10-year ASCVD risk was estimated using the Chinese ASCVD risk equations. The associations of DP with the MetS and 10-year ASCVD were determined using multivariable logistic regression models. In Urumqi and Mo Yu, the increased RRR DP score was associated with a higher OR of having the MetS and with a higher OR of elevated 10-year ASCVD risk. However, only the first DP determined by PCA in Urumqi was inversely associated with the MetS and elevated 10-year ASCVD risk. The prevalence of the MetS and elevated ASCVD risk in urban population is higher than that in rural areas. Our results may help nutritionists develop more targeted dietary strategies to prevent the MetS and ASCVD in different regions in China.
To improve the stability of Cs2SnCl6 under aqueous/moisture environments, we applied a concept of artificial passivation by depositing a protective TiO2 coating of 10 nm on the surface of Cs2SnCl6. Static leaching experiments results indicate that the initial release rates of Cs+ and Cl− are decreased by 20–30 times with TiO2 coating, suggesting its possibility to improve the short-term water/environmental stability of Cs2SnCl6. An amorphous-to-crystalline phase transition in TiO2 film was observed, possibly resulting in degradation of Cs2SnCl6. However, the crystalline TiO2 film still remains after 21 days water exposure and can still act as an effective passivation layer to reduce the release rates of Cs+ and Cl- by as much as about 17 and 7 times, respectively, relative to static leaching without artificial coatings. Therefore, the water/environmental stability of metal halide perovskite Cs2SnCl6, which is a highly soluble molecular salt, can be enhanced by the nanoscale TiO2 coating as an artificial passivation film.
Lipopolysaccharides (LPS) could induce milk fat depression via regulating the body and blood fat metabolism. However, it is not completely clear how LPS might regulate triglyceride synthesis in dairy cow mammary epithelial cells (DCMECs). DCMECs were isolated and purified from dairy cow mammary tissue and treated with LPS. The level of triglyceride synthesis, the expression and activity of the liver X receptor α (LXRα), enzymes related to de novo fatty acid synthesis, and the expression of the fatty acid transporters were investigated. We found that LPS decreased the level of triglyceride synthesis via a down-regulation of the transcription, translation, and nuclear translocation level of the LXRα. The results also indicated that the transcription level of the LXRα target genes, sterol regulatory element binding protein 1 (SREBP1), fatty acid synthetase (FAS), acetyl-CoA carboxylase-1 (ACC1), were significantly down-regulated in DCMECs after LPS treatment. Our data may provide new insight into the mechanisms of milk fat depression caused by LPS.
A higher dietary intake or serum concentration of betaine has been associated with greater lean body mass in middle-aged and older adults. However, it remains unknown whether betaine intake is associated with age-related loss of skeletal muscle mass (SMM). We assessed the association between dietary betaine intake and relative changes in SMM after 3 years in middle-aged adults. A total of 1242 participants aged 41–60 years from the Guangzhou Nutrition and Health Study 2011–2013 and 2014–2017 with body composition measurements by dual-energy X-ray absorptiometry were included. A face-to-face questionnaire was used to collect general baseline information. After adjustment for potential confounders, multiple linear regression found that energy-adjusted dietary betaine intake was significantly and positively associated with relative changes (i.e. percentage loss or increase) in SMM of legs, limbs and appendicular skeletal mass index (ASMI) over 3 years of follow-up (β 0·322 (se 0·157), 0·309 (se 0·142) and 0·303 (se 0·145), respectively; P < 0·05). The ANCOVA models revealed that participants in the highest betaine tertile had significantly less loss in SMM of limbs and ASMI and more increase in SMM of legs over 3 years of follow-up, compared with those in the bottom betaine tertile (all Ptrend < 0·05). In conclusion, our findings suggest that elevated higher dietary betaine intake may be associated with less loss of SMM of legs, limbs and ASMI in middle-aged adults.
In late December 2019, patients of atypical pneumonia due to an unidentified microbial agent were reported in Wuhan, Hubei Province, China. Subsequently, a novel coronavirus was identified as the causative pathogen which was named SARS-CoV-2. As of 12 February 2020, more than 44 000 cases of SARS-CoV-2 infection have been confirmed in China and continue to expand. Provinces, municipalities and autonomous regions of China have launched first-level response to major public health emergencies one after another from 23 January 2020, which means restricting movement of people among provinces, municipalities and autonomous regions. The aim of this study was to explore the correlation between the migration scale index and the number of confirmed coronavirus disease 2019 (COVID-19) cases and to depict the effect of restricting population movement. In this study, Excel 2010 was used to demonstrate the temporal distribution at the day level and SPSS 23.0 was used to analyse the correlation between the migration scale index and the number of confirmed COVID-19 cases. We found that since 23 January 2020, Wuhan migration scale index has dropped significantly and since 26 January 2020, Hubei province migration scale index has dropped significantly. New confirmed COVID-19 cases per day in China except for Wuhan gradually increased since 24 January 2020, and showed a downward trend from 6 February 2020. New confirmed COVID-19 cases per day in China except for Hubei province gradually increased since 24 January 2020, and maintained at a high level from 24 January 2020 to 4 February 2020, then showed a downward trend. Wuhan migration scale index from 9 January to 22 January, 10 January to 23 January and 11 January to 24 January was correlated with the number of new confirmed COVID-19 cases per day in China except for Wuhan from 22 January to 4 February. Hubei province migration scale index from 10 January to 23 January and 11 January to 24 January was correlated with the number of new confirmed COVID-19 cases per day in China except for Hubei province from 22 January to 4 February. Our findings suggested that people who left Wuhan from 9 January to 22 January, and those who left Hubei province from 10 January to 24 January, led to the outbreak in the rest of China. The ‘Wuhan lockdown’ and the launching of the first-level response to this major public health emergency may have had a good effect on controlling the COVID-19 epidemic. Although new COVID-19 cases continued to be confirmed in China outside Wuhan and Hubei provinces, in our opinion, these are second-generation cases.
Phase-resolved wave simulation and direct numerical simulation of turbulence are performed to investigate the surface wave effects on the energy transfer in overlying turbulent flow. The JONSWAP spectrum is used to initialize a broadband wave field. The nonlinear wave field is simulated using a high-order spectral method, and the resultant wave surface provides the bottom boundary conditions for direct numerical simulation of the overlying turbulent flow. Two wave ages of $c_{p}/u_{\ast }=2$ and 25 are considered, corresponding to slow and fast wave fields, respectively, where $c_{p}$ denotes the celerity of the peak wave and $u_{\ast }$ denotes the friction velocity. The energy transfer of turbulent motions in the presence of surface waves is investigated through the spectral analysis of the two-point correlation transport equation. It is found that the production term has an extra peak at the dominant wavelength scale in the vicinity of the surface, and the energy transported to the surface via viscous and spatial turbulent transport is enhanced in the region of $y^{+}<10$. The presence of surface waves results in an inverse turbulent energy cascade in the near-surface region, where small-scale wave-related motions transfer energy back to the dominant wavelength scale. Pressure-related terms reflecting the spatial and inter-component energy transfer are strongly dependent on the wave age. Furthermore, triadic interaction analysis reveals that the energy influx at the dominant wavelength scale is due to the contribution of the neighbouring streamwise turbulent motions, and those at the harmonic wavelength scales contribute the most.
Current understanding of turbulence modulation by solid particles is incomplete as making reliable predictions on the nature and level of modulation remains a challenging task. Multiple modulation mechanisms may be simultaneously induced by particles, but the lack of reliable methods to identify these mechanisms and quantify their effects hinders a complete understanding of turbulence modulation. In this work, we present a full analysis of the turbulent kinetic energy (TKE) equation for a turbulent channel flow laden with a few fixed particles near the channel walls, in order to investigate how the wall generated turbulence interacts with the particles and how, as a result, the global turbulence statistics are modified. All terms in the budget equations of total and component-wise TKEs are explicitly computed using the data from direct numerical simulations. Particles are found to modify turbulence by two competing mechanisms: the reduction of the intrinsic turbulence production associated with a reduced mean shear due to the resistance imposed by solid particles (the first mechanism), and an additional TKE production mechanism by displacing incoming fluid (the second mechanism). The distribution of TKE in the wall-normal direction is also made more homogeneous due to the significantly enhanced pressure transport of TKE. Finally, the budget analysis of component-wise TKE reveals an enhanced inter-component TKE transfer due to the presence of particles, which leads to a more isotropic distribution of TKE among three velocity components.
The effects of flow topology on the subgrid-scale (SGS) kinetic energy flux in compressible isotropic turbulence is studied. The eight flow topological types based on the three invariants of the filtered velocity gradient tensor are analysed at different scales, along with their roles in the magnitude and direction of kinetic energy transfer. The unstable focus/compressing (UFC), unstable node/saddle/saddle (UN/S/S) and stable focus/stretching (SFS), are the three predominant topological types at all scales; they account for at least 75 % of the flow domain. The UN/S/S and SFS types make major contributions to the average SGS flux of the kinetic energy from large scales to small scales in the inertial range. The unstable focus/stretching (UFS) topology makes a contribution to the reverse SGS flux of kinetic energy from small scales to large scales. In strong compression regions, the average contribution of the stable node/saddle/saddle (SN/S/S) topology to the SGS kinetic energy flux is positive and is predominant over those of other flow topologies. In strong expansion regions, the UFS topology makes a major contribution to the reverse SGS flux of the kinetic energy. As the turbulent Mach number increases, the increase of volume fraction of the UFS topological regions leads to the increase of the SGS backscatter of kinetic energy. The SN/S/S topology makes a dominant contribution to the direct SGS flux of the compressible component of the kinetic energy, while the UFS topology makes a dominant contribution to the reverse SGS flux of the compressible component of the kinetic energy.
Mastitis, a major infectious disease in dairy cows, is characterized by an inflammatory response to pathogens such as Escherichia coli and Staphylococcus aureus. To better understand the immune and inflammatory response of the mammary gland, we stimulated bovine mammary gland epithelial cells (BMECs) with E. coli-derived lipopolysaccharide (LPS). Using transcriptomic and proteomic analyses, we identified 1019 differentially expressed genes (DEGs, fold change ≥2 and P-value < 0.05) and 340 differentially expressed proteins (DEPs, fold change ≥1.3 and P-value < 0.05), of which 536 genes and 162 proteins were upregulated and 483 genes and 178 proteins were downregulated following exposure to LPS. These differentially expressed genes were associated with 172 biological processes; 15 Gene Ontology terms associated with response to stimulus, 4 associated with immune processes, and 3 associated with inflammatory processes. The DEPs were associated with 51 biological processes; 2 Gene Ontology terms associated with response to stimulus, 1 associated with immune processes, and 2 associated with inflammatory processes. Meanwhile, several pathways involved in mammary inflammation, such as Toll-like receptor, NF-κB, and NOD-like receptor signaling pathways were also represented. NLRP3 depletion significantly inhibited the expression of IL-1β and PTGS2 by blocking caspase-1 activity in LPS-induced BMECs. These results suggest that NLR signaling pathways works in coordination with TLR4/NF-κB signaling pathways via NLRP3-inflammasome activation and pro-inflammatory cytokine secretion in LPS-induced mastitis. The study highlights the function of NLRP3 in an inflammatory microenvironment, making NLRP3 a promising therapeutic target in Escherichia coli mastitis.
In this study, the behaviours of subgrid-scale (SGS) turbulence are investigated with direct numerical simulations when an isotropic turbulence is brought to interact with imposed rapid waves. A partition of the velocity field is used to decompose the SGS stress into three parts, namely, the turbulent part $\unicode[STIX]{x1D749}^{T}$, the wave-induced part $\unicode[STIX]{x1D749}^{W}$ and the cross-interaction part $\unicode[STIX]{x1D749}^{C}$. Under strong wave straining, $\unicode[STIX]{x1D749}^{T}$ is found to follow the Kolmogorov scaling $\unicode[STIX]{x1D6E5}_{c}^{2/3}$, where $\unicode[STIX]{x1D6E5}_{c}$ is the filter width. Based on the linear Airy wave theory, $\unicode[STIX]{x1D749}^{W}$ and the filtered strain-rate tensor due to the wave motion, $\tilde{\unicode[STIX]{x1D64E}}^{W}$, are found to have different phases, posing a difficulty in applying the usual eddy-viscosity model. On the other hand, $\unicode[STIX]{x1D749}^{T}$ and the filtered strain-rate tensor due to the turbulent motion, $\tilde{\unicode[STIX]{x1D64E}}^{T}$, are only weakly wave-phase-dependent and could be well related by an eddy-viscosity model. The linear wave theory is also used to describe the vertical distributions of SGS statistics driven by the wave-induced motion. The predictions are in good agreement with the direct numerical simulation results. The budget equation for the turbulent SGS kinetic energy shows that the transport terms related to turbulence are important near the free surface and they compensate the imbalance between the energy flux and the SGS energy dissipation.
Endometrial injury is an important cause of intrauterine adhesion (IUA), amenorrhea and infertility in women, with limited effective therapies. Recently, stem cells have been used in animal experiments to repair and improve injured endometrium. To date, our understanding of adipose-derived stem cells (ADSCs) in endometrial injury repair and their further therapeutic mechanisms is incomplete. Here, we examined the benefit of ADSCs in restoration of injured endometrium by applying a rat endometrial injury model. The results revealed by immunofluorescence showed that green fluorescent protein (GFP)-labelled ADSCs can differentiate into endometrial epithelial cells in vivo. At 30 days after ADSCs transplantation, injured endometrium was significantly improved, with increased microvessel density, endometrial thickness and glands when compared with the model group. Furthermore, the fertility of rats with injured endometrium in ADSCs group was improved and had a higher conception rate (60% vs 20%, P = 0.014) compared with the control phosphate-buffered saline (PBS) group. However, there was no difference in the control group compared with the sham group. In addition, expression levels of the oestrogen receptor Eα/β (ERα, ERβ) and progesterone receptor (PR) detected by western blot and enzyme-linked immunosorbent assay (ELISA) were higher in the ADSCs group than in the PBS group. Taken together, these results suggested that ADSC transplantation could improve endometrial injury as a novel therapy for IUA.
Understanding the two-way interactions between finite-size solid particles and a wall-bounded turbulent flow is crucial in a variety of natural and engineering applications. Previous experimental measurements and particle-resolved direct numerical simulations revealed some interesting phenomena related to particle distribution and turbulence modulation, but their in-depth analyses are largely missing. In this study, turbulent channel flows laden with neutrally buoyant finite-size spherical particles are simulated using the lattice Boltzmann method. Two particle sizes are considered, with diameters equal to 14.45 and 28.9 wall units. To understand the roles played by the particle rotation, two additional simulations with the same particle sizes but no particle rotation are also presented for comparison. Particles of both sizes are found to form clusters. Under the Stokes lubrication corrections, small particles are found to have a stronger preference to form clusters, and their clusters orientate more in the streamwise direction. As a result, small particles reduce the mean flow velocity less than large particles. Particles are also found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall-normal direction, as well as a more isotropic distribution of TKE among different spatial directions. To understand these turbulence modulation phenomena, we analyse in detail the total and component-wise volume-averaged budget equations of TKE with the simulation data. This budget analysis reveals several mechanisms through which the particles modulate local and global TKE in the particle-laden turbulent channel flow.
Existing data on folate status and hepatocellular carcinoma (HCC) prognosis are scarce. We prospectively examined whether serum folate concentrations at diagnosis were associated with liver cancer-specific survival (LCSS) and overall survival (OS) among 982 patients with newly diagnosed, previously untreated HCC, who were enrolled in the Guangdong Liver Cancer Cohort (GLCC) study between September 2013 and February 2017. Serum folate concentrations were measured using chemiluminescent microparticle immunoassay. Cox proportional hazards models were performed to estimate hazard ratios (HR) and 95 % CI by sex-specific quartile of serum folate. Compared with patients in the third quartile of serum folate, patients in the lowest quartile had significantly inferior LCSS (HR = 1·48; 95 % CI 1·05, 2·09) and OS (HR = 1·43; 95 % CI 1·03, 1·99) after adjustment for non-clinical and clinical prognostic factors. The associations were not significantly modified by sex, age at diagnosis, alcohol drinking status and Barcelona Clinic Liver Cancer (BCLC) stage. However, there were statistically significant interactions on both multiplicative and additive scale between serum folate and C-reactive protein (CRP) levels or smoking status and the associations of lower serum folate with worse LCSS and OS were only evident among patients with CRP > 3·0 mg/l or current smokers. An inverse association with LCSS were also observed among patients with liver damage score ≥3. These results suggest that lower serum folate concentrations at diagnosis are independently associated with worse HCC survival, most prominently among patients with systemic inflammation and current smokers. A future trial of folate supplementation seems to be promising in HCC patients with lower folate status.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.