Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-29T03:12:19.899Z Has data issue: false hasContentIssue false

Nanoscale TiO2 coating improves water stability of Cs2SnCl6

Published online by Cambridge University Press:  12 November 2020

Yachun Wang
Affiliation:
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY12180, USA
Weiguang Zhu
Affiliation:
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY12180, USA
Tiankai Yao
Affiliation:
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY12180, USA
Xiaolei Guo
Affiliation:
Fontana Corrosion Center, Department of Materials Science and Engineering, Ohio State University, Columbus, OH43210, USA
Gerald S. Frankel
Affiliation:
Fontana Corrosion Center, Department of Materials Science and Engineering, Ohio State University, Columbus, OH43210, USA
Jie Lian*
Affiliation:
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY12180, USA
*
Address all correspondence to Jie Lian at lianj@rpi.edu
Get access

Abstract

To improve the stability of Cs2SnCl6 under aqueous/moisture environments, we applied a concept of artificial passivation by depositing a protective TiO2 coating of 10 nm on the surface of Cs2SnCl6. Static leaching experiments results indicate that the initial release rates of Cs+ and Cl are decreased by 20–30 times with TiO2 coating, suggesting its possibility to improve the short-term water/environmental stability of Cs2SnCl6. An amorphous-to-crystalline phase transition in TiO2 film was observed, possibly resulting in degradation of Cs2SnCl6. However, the crystalline TiO2 film still remains after 21 days water exposure and can still act as an effective passivation layer to reduce the release rates of Cs+ and Cl- by as much as about 17 and 7 times, respectively, relative to static leaching without artificial coatings. Therefore, the water/environmental stability of metal halide perovskite Cs2SnCl6, which is a highly soluble molecular salt, can be enhanced by the nanoscale TiO2 coating as an artificial passivation film.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhu, W., Xin, G., Wang, Y., Min, X., Yao, T., Xu, W., Fang, M., Shi, S., Shi, J., and Lian, J.: Tunable optical properties and stability of lead free all inorganic perovskites (Cs2SnIxCl6−x). J. Mater. Chem. A 6, 2577 (2018).10.1039/C7TA10040JCrossRefGoogle Scholar
Lee, B., Stoumpos, C.C., Zhou, N., Hao, F., Malliakas, C., Yeh, C.-Y., Marks, T.J., Kanatzidis, M.G., and Chang, R.P.: Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 136, 15379 (2014).10.1021/ja508464wCrossRefGoogle ScholarPubMed
Tan, Z., Li, J., Zhang, C., Li, Z., Hu, Q., Xiao, Z., Kamiya, T., Hosono, H., Niu, G., and Lifshitz, E.: Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 28, 1801131 (2018).CrossRefGoogle Scholar
Kaltzoglou, A., Antoniadou, M., Kontos, A.G., Stoumpos, C.C., Perganti, D., Siranidi, E., Raptis, V., Trohidou, K., Psycharis, V., and Kanatzidis, M.G.: Optical-vibrational properties of the Cs2SnX6 (X = Cl, Br, I) defect perovskites and hole-transport efficiency in dye-sensitized solar cells. J. Phys. Chem. C 120, 11777 (2016).CrossRefGoogle Scholar
Shao, D., Zhu, W., Xin, G., Lian, J., and Sawyer, S.: Inorganic vacancy-ordered perovskite Cs2SnCl6: Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Appl. Phys. Lett. 115, 121106 (2019).CrossRefGoogle Scholar
Zhou, J., Luo, J., Rong, X., Wei, P., Molokeev, M.S., Huang, Y., Zhao, J., Liu, Q., Zhang, X., and Tang, J.: Lead-free perovskite derivative Cs2SnCl6−xBrx single crystals for narrowband photodetectors. Adv. Opt. Mater. 7, 1900139 (2019).10.1002/adom.201900139CrossRefGoogle Scholar
Lumpkin, G.R.: Ceramic waste forms for actinides. Elements 2, 365 (2006).10.2113/gselements.2.6.365CrossRefGoogle Scholar
Ewing, R.C., Weber, W.J., and Lian, J.: Nuclear waste disposal—pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95, 5949 (2004).CrossRefGoogle Scholar
Yao, T., Lu, F., Sun, H., Wang, J., Ewing, R.C., and Lian, J.: Bulk iodoapatite ceramic densified by spark plasma sintering with exceptional thermal stability. J. Am. Ceram. Soc. 97, 2409 (2014).CrossRefGoogle Scholar
Tang, M., Kossoy, A., Jarvinen, G., Crum, J., Turo, L., Riley, B., Brinkman, K., Fox, K., Amoroso, J., and Marra, J.: Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms. Nucl. Instrum. Methods Phys. Res. B 326, 293 (2014).CrossRefGoogle Scholar
Vance, E.: Synroc: a suitable waste form for actinides. MRS Bull. 19, 28 (1994).CrossRefGoogle Scholar
Nakazawa, T., Kato, H., Okada, K., Ueta, S., and Mihara, M.: Iodine immobilization by sodalite waste form. MRS Online Proceedings Library Archive 663, P 51-57, (2000).Google Scholar
Ahn, B.-G., Park, H.-S., Kim, I.-T., and Lee, H.-S.: Solidification of Ln oxides containing volatile chlorides from pyrochemical process. Nucl. Technol. 173, 300 (2011).CrossRefGoogle Scholar
Zhu, W., Xin, G., Scott, S.M., Xu, W., Yao, T., Gong, B., Wang, Y., Li, M., and Lian, J.: Deciphering the degradation mechanism of the lead-free all inorganic perovskite Cs2SnI6. npj Mater. Degrad. 3, 7 (2019).CrossRefGoogle Scholar
Zhu, W., Yao, T., Shen, J., Xu, W., Gong, B., Wang, Y., and Lian, J.: In situ investigation of water interaction with lead-free All inorganic perovskite (Cs2SnIxCl6–x). J. Phys. Chem. C 123, 9575 (2019).CrossRefGoogle Scholar
Scott, S.M., Zhu, W., Yao, T., Vienna, J.D., Ewing, R.C., and Lian, J.: The thermal stability and consolidation of perovskite variant Cs2SnCl6 using spark plasma sintering. J. Am. Ceram. Soc. 101, 2060 (2018).CrossRefGoogle Scholar
Zhang, Z., Blackford, M.G., Lumpkin, G.R., Smith, K.L., and Vance, E.R.: Aqueous dissolution of perovskite (CaTiO3): effects of surface damage and [Ca2+] in the leachant. J. Mater. Res. 20, 2462 (2005).CrossRefGoogle Scholar
Frankel, G.S., Vienna, J.D., Lian, J., Scully, J.R., Gin, S., Ryan, J.V., Wang, J., Kim, S.H., Windl, W., and Du, J.: A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. npj Mater. Degrad. 2, 1 (2018).CrossRefGoogle Scholar
Lee, J., Lee, S.J., Han, W.B., Jeon, H., Park, J., Jang, W., Yoon, C.S., and Jeon, H.: Deposition temperature dependence of titanium oxide thin films grown by remote-plasma atomic layer deposition. Phys. Status Solidi (a) 210, 276 (2013).10.1002/pssa.201228671CrossRefGoogle Scholar
Aarik, J., Aidla, A., Uustare, T., and Sammelselg, V.: Morphology and structure of TiO2 thin films grown by atomic layer deposition. J. Cryst. Growth 148, 268 (1995).10.1016/0022-0248(94)00874-4CrossRefGoogle Scholar
Zhao, R. and Myhra, S.: Environmental degradation of YBa2Cu3O7−x A descriptive and predictive model. Phys. C 230, 75 (1994).10.1016/0921-4534(94)90447-2CrossRefGoogle Scholar
Zhu, M., Li, X., Zhang, Z., Sun, P., Zang, X., Wang, K., Zhong, M., Wu, D., and Zhu, H.: Amorphous nitrogen doped carbon films: a novel corrosion resistant coating material. Adv. Eng. Mater. 16, 532 (2014).CrossRefGoogle Scholar
White, W.B.: Theory of corrosion of glass and ceramics. In Corrosion of Glass, Ceramics and Ceramic Superconductors, vol. 2 (Hayes Publications, Park Ridge, New Jersey, 1992).Google Scholar
Zhang, W., He, Y., Zhang, M., Yin, Z., and Chen, Q.: Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D: Appl. Phys. 33, 912 (2000).10.1088/0022-3727/33/8/305CrossRefGoogle Scholar
Vechot, L., Buston, J.E., Kay, J., Round, G.A., Masharani, S., Tickle, G.A., and Rowlands, R.: Experimental study of the liquid phase hydrolysis reaction in titanium tetrachloride. In Hazards XXII, Symposium Series, 156 (The Controller of HMSO and the Queen’s Printer, Scotland, 2011), pp. 238.Google Scholar
Kong, D., Cheng, D., Wang, X., Zhang, K., Wang, H., Liu, K., Li, H., Sheng, X., and Yin, L.: Solution processed lead-free cesium titanium halide perovskites and their structural, thermal and optical characteristics. J. Mater. Chem. C 8, 1591 (2020).CrossRefGoogle Scholar
Nowotny, J.: Science of Ceramic Interfaces II. (Elsevier Science, Nowotny, J.,1995).Google Scholar
Yang, K., Zhu, W., Riley, B.J., Vienna, J., and Lian, J.: Perovskite-derived Cs2SnCl6-SilicaComposites as Advanced Waste Forms for Chloride Salt Waste Streams. (under preparation).-silica composite waste forms with simultaneously high Cl waste loading and excellent chemical durability. (under preparation).Google Scholar
Supplementary material: File

Wang et al. supplementary material

Figure S1

Download Wang et al. supplementary material(File)
File 410.9 KB