We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.
Nipah virus (NiV) outbreak occurred in Kozhikode district, Kerala, India in 2018 with a case fatality rate of 91% (21/23). In 2019, a single case with full recovery occurred in Ernakulam district. We described the response and control measures by the Indian Council of Medical Research and Kerala State Government for the 2019 NiV outbreak. The establishment of Point of Care assays and monoclonal antibodies administration facility for early diagnosis, response and treatment, intensified contact tracing activities, bio-risk management and hospital infection control training of healthcare workers contributed to effective control and containment of NiV outbreak in Ernakulam.
Infrared spectroscopy was used to study the hydrolysis of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] upon interaction with homoionic soil colloids. Montmorillonite, an allophanic soil clay, and a montmorillonitic Coker soil clay were saturated with H+, Al3+, Cu2+, and Ca2+ and treated with atrazine and hydroxyatrazine [2-hydroxy-4-(ethylamino)-6-(isopropylamino)-s-triazine]. Hydrolysis of atrazine was evaluated by the presence of a strong hydroxyatrazine carbonyl absorption band at 1745 cm-1. The H+- and Al3+-saturated montmorillonite and montmorillonitic Coker soil clay promoted atrazine hydrolysis while Ca2+- or Cu2+-saturated montmorillonite did not. A small degree of atrazine hydrolysis was detected in the Cu2+-Coker soil clay. Dehydration of Ca2+- or Cu2+-Coker soil clay after equilibration with atrazine increased the hydrolysis of atrazine. The allophanic soil clay did not catalyze the hydrolysis of atrazine when the exchange complex was saturated with H+, Al3+, Ca2+, or Cu2+. Moreover, Al3+-allophane was not sufficiently acidic to protonate hydroxyatrazine. Thus, a major difference exists between soil allophanic colloids, montmorillonitic soil clays, and montmorillonite as catalysts in the protonation and hydrolysis of atrazine.
The paper discusses the results of a study on the formation of indium oxide
nanoclusters in silica samples implanted with high energy indium ions. Trace
quantities of indium oxide were found on as-implanted samples. On annealing
in vacuum/oxygen atmosphere significant increase in the quantity of indium
oxide phase was observed. A mechanism is proposed for the formation of
indium oxide and is mainly attributed to the reaction of metallic indium
with the oxygen released from the silica matrix by ballistic process. During
annealing in oxygen atmosphere the oxygen diffusing into the silica also
plays a role in the oxidation of indium NCs.
Slender sharp-edged flexible beams such as flapping wings of micro air vehicles (MAVs), piezoelectric fans and insect wings typically oscillate at moderate-to-high values of non-dimensional frequency parameter β with amplitudes as large as their widths resulting in Keulegan–Carpenter (KC) numbers of order one. Their oscillations give rise to aerodynamic damping forces which vary nonlinearly with the oscillation amplitude and frequency; in contrast, at infinitesimal KC numbers the fluid damping coefficient is independent of the oscillation amplitude. In this article, we present experimental results to demonstrate the phenomenon of nonlinear aerodynamic damping in slender sharp-edged beams oscillating in surrounding fluid with amplitudes comparable to their widths. Furthermore, we develop a general theory to predict the amplitude and frequency dependence of aerodynamic damping of these beams by coupling the structural motions to an inviscid incompressible fluid. The fluid–structure interaction model developed here accounts for separation of flow and vortex shedding at sharp edges of the beam, and studies vortex-shedding-induced aerodynamic damping in slender sharp-edged beams for different values of the KC number and the frequency parameter β. The predictions of the theoretical model agree well with the experimental results obtained after performing experiments with piezoelectric fans under vacuum and ambient conditions.
The aim of the present study was to determine the impact of universal salt iodization (USI) on the prevalence of iodine deficiency in the population of an area previously known to have severe iodine deficiency in India.
Design
In a cross-sectional survey, a total of 2860 subjects residing in fifty-three villages of four sub-districts of Gonda District were examined for goitre and urinary iodine concentration. Free thyroxine and thyroid-stimulating hormone levels were also measured. Salt samples from households were collected for estimation of iodine content.
Results
A reduction in goitre prevalence was observed from 69 % reported in 1982 to 27·7 % assessed in 2007. However, 34 % of villages still had very high endemicity of goitre (goitre prevalence >30 %). Twenty-three per cent of households consumed a negligible amount (<5 ppm) and 56 % of households consumed an insufficient amount (5–15 ppm) of iodine from salt.
Conclusions
Although there was an overall improvement in iodine nutrition as revealed by decreased goitre prevalence and increased median urinary iodine levels, there were several pockets of severe deficiency that require a more targeted approach. Poor coverage, the use of unpackaged crystal salt with inadequate iodine and the washing of salt before use by 90 % of rural households are the major causes of persisting iodine-deficiency disorders. This demonstrates lapses in USI implementation, lack of monitoring and the need to identify hot spots. We advocate strengthening the USI programme with a mass education component, the supply of adequately iodized salt and the implementation of complementary strategies for vulnerable groups, particularly neonates and lactating mothers.
Classical works on Indian stratigraphy described three stratigraphic units, viz., Subathu, Dagshai and Kasauli within the Tertiary sequence of Simla Hills, India. Present work shows that the above three units represent mostly intertonguing among three distinct lithofacies, respectively termed as green, red and grey facies depending upon the dominant shale colour. Environmental significance of each facies is discussed. A road log presenting evidences of facies intertonguing on the basis of sedimentary structures is described.
Crop bioengineering provides unique and dramatic opportunities for international agricultural development. However, we consider the technology not as a ‘silver bullet’ or panacea for crop improvement in the developing world but as an increasingly important tool that can be used to complement conventional methods of crop improvement. The number of bioengineered crops ready for commercial release in developing countries is expected to expand considerably in the next few years. But the multi-national life sciences companies that are leading the research, development and commercialization of bioengineered crops focus primarily on major crops that have high commercial value and extensive international markets. These companies also hold proprietary gene technology for many other crops of extreme importance to subsistence and resource-poor farmers but do not pursue product development and commercialization because of low anticipated returns. Such crops have traditionally been overlooked and are sometimes referred to as ‘orphan crops’ because of the relative lack of research and development applied to them. We propose a strategy for the development and delivery of bioengineered crops, including orphan crops, for developing countries. Consulting local public and private sector stakeholders to determine their highest priority needs for agricultural products is the first step. This ensures local stakeholder buy-in and that we do not invest in technology that is unlikely to be adopted. Next, the feasibility of developing and delivering the product is assessed. If the result is positive, the work is organized into ‘product commercialization packages’ (PCPs) that integrate all elements of the research, development and commercialization processes. The main elements of each PCP include (i) technology development; (ii) policy-related issues such as intellectual property and licensing, as well as gaining regulatory approval by the relevant national authorities; (iii) providing public information to producers and consumers about the benefits, risks and correct management of these new products; and (iv) establishing, or verifying, the existence of marketing and distribution mechanisms to provide farmers access to planting material. Our strategy involves integration of needs-based capacity building, socio-economic impact studies and product stewardship into each PCP. Whenever appropriate, opportunities are sought to create public–private partnerships to help leverage public funds, help absorb development costs and provide a broader distribution channel. To illustrate how our strategy is being translated into action we include, as a case study, examples of work by the US Agency for International Development-funded, Cornell University-led Agricultural Biotechnology Support Project II on the research, development and delivery of bioengineered fruit and shoot-borer-resistant eggplant varieties (Solanum melanogena) for South and Southeast Asia.
The structure and track of monsoon depressions over India during the summer monsoon have been simulated using a double-nested limited-area numerical weather prediction model. Four distinct cases of monsoon depressions that formed over the Bay of Bengal and adjoining areas have been studied. Initial conditions for the simulations are from either the European Centre for Medium Range Weather Forecasts, Reading, UK or the National Centre for Medium Range Weather Forecasting, New Delhi, India. The model is integrated for up to 48 hours for each case and the results are compared with verification fields. Forecasts of mean sea level pressure and low-level wind indicate that the location of the centres of the depressions and their track could be predicted satisfactorily even though the magnitude of the central pressure is slightly too high. Temperature forecasts show close agreement with the verification analyses and the distribution of precipitation is well simulated. The vertical cross-sections of temperature and wind forecasts show the correct vertical structure. RMS errors of the mean sea level pressure, wind and temperature indicate that the model could simulate the large-scale fields reasonably well. RMS errors of the tracks of the depressions confirm the fact that the high-resolution nested grid model can predict the tracks of the depressions with reasonable accuracy.
The interactions between end of range dislocation loops and {311} defects as a function of their proximity was studied. The dislocation loops were introduced at 2600 Å by a dual 1 × 1015 cm−2, 30 keV and a 1 × 1015 cm−2 , 120 keV Si+ implantation into Silicon followed by a anneal at 850 °C for 30 minutes. The depth of the loop layer from the surface was varied from 2600 Å to 1800 Å and 1000 Å by polishing off the Si surface using a chemical-mechanical polishing (CMP) technique. A post-CMP 1 × 1014 cm−2, 40 keV Si+ implantation was used to create point defects at the projected range of 580 Å. The wafers were annealed at 700, 800 and 900 °C and plan-view transmission electron microscopy (TEM) study was performed. It was found that the number of interstitials in {311} defects decreased as the projected range damage was brought closer to the loop layer, while the number of rectangular elongated defects (REDs) increased. Experimental investigation showed that REDs are formed at the end-of-range. It is concluded that the interstitials introduced at the projected range are trapped at the end-of-range dislocations. The REDs are formed due to the interactions between the interstitials and the pre-existing loops.
Food consumption and utilization of a bivoltine silkworm hybrid was studied to understand the efficiency of food conversion into larval body, cocoon and cocoon shell during the life cycle. The ingesta, digesta, excreta, reference ratio, mean daily food ingested and digested in different larval instars were recorded. All these parameters differed from one larval instar to another. The AD and ECI were inversely correlated with the larval age. The ECI and ECD for body, cocoon and cocoon shell were 23.63, 17.59, 9.496 and 55.12, 46.65 and 25.23% respectively. Ingesta and digesta required to produce a gram body weight, progressively increased from first to fifth instar. Ingesta and digesta for one gram body, cocoon and cocoon shell production were 4.402, 5.762, 10.649 g and 1.840, 2.184 and 4.047 g respectively.
We report the first known cases of Fusariosis of maxillary sinus with granuloma and oro-antral fistula in two immunocompetent hosts. Fusarium solani was demonstrated in the direct microscopic examination and isolated in heavy growth from the biopsy materials. Both these patients were successfully treated with oral ketoconazole (200 mg daily) for three weeks followed by a Caldwell-Luc operation. Ketoconazole was continued for two months post-operatively.
Four types of trap, yellow water, yellow sticky board, bottle with 20% protein hydrolysate, and funnel with 10% casein hydrolysate, were field-tested to control Liriomyza huidobrensis (Blanchard) in the coastal region of Peru. The yellow sticky boards were the most effective in trap capture with a mean of 1193.92 L. huidobrensis per week. The male:female capture ratio was 16:1.
Five parasitoid species, Halticoptera palellana, Chrysocharis phytomyzae, Chrysocharis sp., Diglyphus sp. and Opius sp., were also trapped. A significant negative correlation (r = −0.607 at P < 0.05) was observed for female leafminer capture vs temperature. Wind velocity was positively correlated with parasitoid capture (r = 0.509 at P < 0.05). The population of adult L. huidobrensis was significantly lower (P < 0.05) in plots with yellow sticky boards. Yields in plots with yellow sticky boards and those treated with insecticides were similar and significantly higher (36%) than check plots.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.